Skip to content
2000
Volume 3, Issue 3
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Hemostasis and thrombosis are highly complex and coordinated interfacial responses to vascular injury. In recent years, atomic force microscopy (AFM) has proven to be a very useful approach for studying hemostatic processes under near physiologic conditions. In this report, we review recent progress in the use of AFM for studying hemostatic processes, including molecular level visualization of plasma proteins, protein aggregation and multimer assembly, and structural and morphological details of vascular cells under aqueous conditions. AFM offers opportunities for visualizing surface-dependent molecular and cellular interactions in three dimensions on a nanoscale and for sensitive, picoNewton level, measurements of intermolecular forces. AFM has been used to obtain molecular and sub-molecular, resolution of many biological molecules and assemblies, including coagulation proteins and cell surfaces. Surface-dependent molecular processes including protein adsorption, conformational changes, and subsequent interactions with cellular components have been described. This review outlines the basic principles and utility of AFM for imaging and force measurements, and offers objective perspectives on both the advantages and disadvantages. We focus primarily on molecular level events related to hemostasis and thrombosis, particularly coagulation proteins, and blood platelets, but also explore the use of AFM in force measurements and surface property mapping.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/1389203023380611
2002-06-01
2025-09-03
Loading full text...

Full text loading...

/content/journals/cpps/10.2174/1389203023380611
Loading

  • Article Type:
    Review Article
Keyword(s): afm and hemostasis; hemostasis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test