Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Background

Gastric cancer has become one of the major diseases threatening human health. This study aimed to investigate the mechanism of an anticancer bioactive peptide (ACBP) combined with oxaliplatin (OXA) on MKN-45, SGC7901, and NCI-N87 differentiated human gastric cancer cells and GES-1 immortalized human gastric mucosal epithelial cells. The therapeutic effect and action mechanism of short-term intermittent ACBP combined with OXA on nude mice with human gastric cancer were also investigated.

Methods

The half-maximal inhibitory concentrations of these agents in these cells were measured by an MTT assay, and cell morphological changes were observed by H&E staining. The expression of Lin28, miR-107, miR-609, and Let-7 in these four cell lines was determined by q-PCR after drug treatment. Lin28 protein expression in these four cell lines treated with these drugs was measured by western blotting. Furthermore, activity and quality of life were observed daily in all tumor-bearing nude mice, and the expression of Lin28 in tumor tissue was determined by immunohistochemistry and RT-PCR.

Results

The results showed that ACBP inhibited the proliferation of MKN-45, SGC7901, and NCI-N87 gastric cancer cells in a dose-dependent manner and weakly suppressed the proliferation of GES-1 cells. Moreover, its inhibitory effect on proliferation was stronger in poorly differentiated gastric cancer cells. ACBP, OXA, and the combination upregulated Lin28 gene expression in MKN-45 cells and downregulated it in SGC7901 and GES-1 cells. ACBP and the combination therapy downregulated Let-7 expression in MKN-45 cells and upregulated Let-7 expression in SGC7901 cells. The combination of ACBP with OXA demonstrated significant anticancer sensitization. Moreover, it also significantly improved the quality of life of tumor-bearing nude mice and reduced the toxic side effects of chemotherapeutic drugs on nude mice.

Conclusion

ACBP alone and in combination with oxaliplatin influenced the expression of tumor stem cell marker gene Lin28 and regulated the expression of microRNAs specifically regulated by Lin28. In addition, the anticancer effects and attenuated sensitization effects of ACBP may be related to the Lin28/miRNA-107 signaling pathway, acting by inhibiting the proliferation of cancerous stem cells. The findings of this study provide a scientific basis for exploring the antitumor mechanism of ACBP alone and combined with chemotherapeutic drugs.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037350632241205040150
2025-01-08
2025-09-15
Loading full text...

Full text loading...

References

  1. SmythE.C. NilssonM. GrabschH.I. van GriekenN.C.T. LordickF. Gastric cancer.Lancet20203961025163564810.1016/S0140‑6736(20)31288‑532861308
    [Google Scholar]
  2. LiZ. ChoC. Development of peptides as potential drugs for cancer therapy.Curr. Pharm. Des.201016101180118910.2174/13816121079094591320166989
    [Google Scholar]
  3. SookrajK.A. BowneW.B. AdlerV. Sarafraz-YazdiE. MichlJ. PincusM.R. The anti-cancer peptide, PNC-27, induces tumor cell lysis as the intact peptide.Cancer Chemother. Pharmacol.201066232533110.1007/s00280‑009‑1166‑720182728
    [Google Scholar]
  4. ChoiS. ChoiJ. Effects of the teach-back method among cancer patients: A systematic review of the literature.Support. Care Cancer202129127259726810.1007/s00520‑021‑06445‑w34302545
    [Google Scholar]
  5. HouJ.F. YanM.R. YanX.H. RongY.N. JiaoT.M. SuX.L. Effect of anti-cancer bioactive peptide on leukemia mice.Acta Acad. Med. Neimongol.2004263-6
    [Google Scholar]
  6. ZhaoY.Y. PengS.D. SuX.L. Effects of anti-cancer bioactive peptide on cell cycle in human nasopharyngeal carcinoma strain CNE.Chin. J. Otorhinolaryngol. Head Neck Surg.200641860761117039804
    [Google Scholar]
  7. YanM.R. LanS.X. Effect of anti-gastric cancer bilogical peptide on lactic dehydrogenase isoenzyme.J. Qilu Oncol.2002
    [Google Scholar]
  8. AshrafizadehM. RafieiH. MohammadinejadR. FarkhondehT. SamarghandianS. Anti-tumor activity of resveratrol against gastric cancer: A review of recent advances with an emphasis on molecular pathways.Cancer Cell Int.20212116610.1186/s12935‑021‑01773‑733478512
    [Google Scholar]
  9. LinZ. RadaevaM. CherkasovA. DongX. Lin28 regulates cancer cell stemness for tumour progression.Cancers (Basel)20221419464010.3390/cancers1419464036230562
    [Google Scholar]
  10. ZhuoZ.L. XianH.P. SunY.J. LongY. LiuC. LiangB. ZhaoX.T. Long noncoding RNA ZNFX1-AS1 promotes the invasion and proliferation of gastric cancer cells by regulating LIN28 and CAPR1N1.World J. Gastroenterol.202228344973499210.3748/wjg.v28.i34.497336160641
    [Google Scholar]
  11. HuangJ. LinH. ZhongM. HuangJ. SunS. LinL. ChenY. Role of Lin28A/let-7a/c-Myc pathway in growth and malignant behavior of Papillary Thyroid Carcinoma.Med. Sci. Monit.2018248899890910.12659/MSM.90862830531691
    [Google Scholar]
  12. ShinodaG. Shyh-ChangN. SoysaT.Y. ZhuH. SeligsonM.T. ShahS.P. Abo-SidoN. YabuuchiA. HaganJ.P. GregoryR.I. AsaraJ.M. CantleyL.C. MossE.G. DaleyG.Q. Fetal deficiency of lin28 programs life-long aberrations in growth and glucose metabolism.Stem Cells20133181563157310.1002/stem.142323666760
    [Google Scholar]
  13. ViswanathanS.R. PowersJ.T. EinhornW. HoshidaY. NgT.L. ToffaninS. O’SullivanM. LuJ. PhillipsL.A. LockhartV.L. ShahS.P. TanwarP.S. MermelC.H. BeroukhimR. AzamM. TeixeiraJ. MeyersonM. HughesT.P. LlovetJ.M. RadichJ. MullighanC.G. GolubT.R. SorensenP.H. DaleyG.Q. Lin28 promotes transformation and is associated with advanced human malignancies.Nat. Genet.200941784384810.1038/ng.39219483683
    [Google Scholar]
  14. SongH. XuW. SongJ. LiangY. FuW. ZhuX.C. LiC. PengJ.S. ZhengJ.N. Overexpression of Lin28 inhibits the proliferation, migration and cell cycle progression and induces apoptosis of BGC-823 gastric cancer cells.Oncol. Rep.2015332997100310.3892/or.2014.367425515921
    [Google Scholar]
  15. HsuK-F. ShenM-R. HuangY-F. ChengY-M. LinS-H. ChowN-H. ChengS-W. ChouC-Y. HoC-L. Overexpression of the RNA-binding proteins Lin28B and IGF2BP3 (IMP3) is associated with chemoresistance and poor disease outcome in ovarian cancer.Br. J. Cancer2015113341442410.1038/bjc.2015.25426158423
    [Google Scholar]
  16. MaW. MaJ. XuJ. QiaoC. BranscumA. CardenasA. BaronA.T. SchwartzP. MaihleN.J. HuangY. Lin28 regulates BMP4 and functions with Oct4 to affect ovarian tumor microenvironment.Cell Cycle2013121889710.4161/cc.2302823255092
    [Google Scholar]
  17. LiG. WakaoS. KitadaM. DezawaM. Tumor suppressor let-7 acts as a key regulator for pluripotency gene expression in Muse cells.Cell. Mol. Life Sci.20248115410.1007/s00018‑023‑05089‑938261036
    [Google Scholar]
  18. XuW.P. YiM. LiQ.Q. ZhouW.P. CongW.M. YangY. NingB.F. YinC. HuangZ.W. WangJ. QianH. JiangC.F. ChenY.X. XiaC.Y. WangH.Y. ZhangX. XieW.F. Perturbation of MicroRNA-370/Lin-28 homolog A/nuclear factor kappa B regulatory circuit contributes to the development of hepatocellular carcinoma.Hepatology20135861977199110.1002/hep.2654123728999
    [Google Scholar]
  19. YangH. ChoM.E. LiT.W.H. PengH. KoK.S. MatoJ.M. LuS.C. MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma.J. Clin. Invest.2013123128529810.1172/JCI6386123241961
    [Google Scholar]
  20. LiuS. LiuX. LinX. ChenH. Zinc finger proteins in the war on gastric cancer: Molecular mechanism and clinical potential.Cells2023129131410.3390/cells1209131437174714
    [Google Scholar]
  21. WeiW. ZengH. ZhengR. ZhangS. AnL. ChenR. WangS. SunK. MatsudaT. BrayF. HeJ. Cancer registration in China and its role in cancer prevention and control.Lancet Oncol.2020217e342e34910.1016/S1470‑2045(20)30073‑532615118
    [Google Scholar]
  22. YuL. YangL. AnW. SuX. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells.J. Cell. Biochem.2014115469771110.1002/jcb.2471124214799
    [Google Scholar]
  23. KumarM.S. LuJ. MercerK.L. GolubT.R. JacksT. Impaired microRNA processing enhances cellular transformation and tumorigenesis.Nat. Genet.200739567367710.1038/ng200317401365
    [Google Scholar]
  24. WalterJ. MonthouxC. FortesC. GrossmannJ. RoschitzkiB. MeiliT. RiondB. Hofmann-LehmannR. NaegeliH. BleulU. The bovine cumulus proteome is influenced by maturation condition and maturational competence of the oocyte.Sci. Rep.2020101988010.1038/s41598‑020‑66822‑z32555221
    [Google Scholar]
  25. YuJ. VodyanikM.A. Smuga-OttoK. Antosiewicz-BourgetJ. FraneJ.L. TianS. NieJ. JonsdottirG.A. RuottiV. StewartR. SlukvinI.I. ThomsonJ.A. Induced pluripotent stem cell lines derived from human somatic cells.Science200731858581917192010.1126/science.115152618029452
    [Google Scholar]
  26. ChenL.L. LiY.Q. KangZ.H. ZhangX. GuS.Y. WangN. ShenX.Y. Blocking the interaction between circTNRC18 and LIN28A promotes trophoblast epithelial–mesenchymal transformation and alleviates preeclampsia.Mol. Cell. Endocrinol.202457911207310.1016/j.mce.2023.11207337774938
    [Google Scholar]
  27. GaytanF. Sangiao-AlvarellosS. Manfredi-LozanoM. García-GalianoD. Ruiz-PinoF. Romero-RuizA. LeónS. MoralesC. CordidoF. PinillaL. Tena-SempereM. Distinct expression patterns predict differential roles of the miRNA-binding proteins, Lin28 and Lin28b, in the mouse testis: Studies during postnatal development and in a model of hypogonadotropic hypogonadism.Endocrinology201315431321133610.1210/en.2012‑174523337528
    [Google Scholar]
  28. TribouletR. PirouzM. GregoryR.I. A single Let-7 MicroRNA bypasses LIN28-mediated repression.Cell Rep.201513226026610.1016/j.celrep.2015.08.08626440890
    [Google Scholar]
  29. O’DayE. LeM.T.N. ImaiS. TanS.M. KirchnerR. ArthanariH. HofmannO. WagnerG. LiebermanJ. An RNA-binding protein, Lin28, recognizes and remodels G-quartets in the MicroRNAs (miRNAs) and mRNAs it regulates.J. Biol. Chem.201529029179091792210.1074/jbc.M115.66552126045559
    [Google Scholar]
  30. WangP. ZhouY. WangJ. ZhouY. ZhangX. LiuY. LiA. HeY. ChenS. QianA. WangX. NieY. FanD. CaoT. LuY. ZhaoX. miR-107 reverses the multidrug resistance of gastric cancer by targeting the CGA/EGFR/GATA2 positive feedback circuit.J. Biol. Chem.2024300810752210.1016/j.jbc.2024.10752238960034
    [Google Scholar]
  31. AvalleL. IncarnatoD. SavinoA. GaiM. MarinoF. PensaS. BarbieriI. StadlerM.B. ProveroP. OlivieroS. PoliV. MicroRNAs-143 and -145 induce epithelial to mesenchymal transition and modulate the expression of junction proteins.Cell Death Differ.201724101750176010.1038/cdd.2017.10328644441
    [Google Scholar]
  32. ShenH. YangY. ZhaoL. YuanJ. NiuY. Lin28A and androgen receptor expression in ER−/Her2+ breast cancer.Breast Cancer Res. Treat.2016156113514710.1007/s10549‑016‑3744‑926944953
    [Google Scholar]
  33. ZhangM. WangX. LiW. CuiY. miR-107 and miR-25 simultaneously target LATS2 and regulate proliferation and invasion of gastric adenocarcinoma (GAC) cells.Biochem. Biophys. Res. Commun.2015460380681210.1016/j.bbrc.2015.03.11025824045
    [Google Scholar]
  34. SpenceT. PerottiC. Sin-ChanP. PicardD. WuW. SinghA. AndersonC. BloughM.D. CairncrossJ.G. Lafay-CousinL. StrotherD. HawkinsC. NarendranA. HuangA. ChanJ.A. A novel C19MC amplified cell line links Lin28/let-7 to mTOR signaling in embryonal tumor with multilayered rosettes.Neuro-oncol.2014161627110.1093/neuonc/not16224311633
    [Google Scholar]
  35. LiX. ZhangY. ShiY. DongG. LiangJ. HanY. WangX. ZhaoQ. DingJ. WuK. FanD. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer.J. Cell. Mol. Med.20111591887189510.1111/j.1582‑4934.2010.01194.x21029372
    [Google Scholar]
  36. VenugopalN. YehJ. KodeboyinaS. LeeT. SharmaS. PatelN. SharmaA. Differences in the early stage gene expression profiles of lung adenocarcinoma and lung squamous cell carcinoma.Oncol. Lett.20191866572658210.3892/ol.2019.1101331788115
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037350632241205040150
Loading
/content/journals/cpps/10.2174/0113892037350632241205040150
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test