Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

In recent years, novel therapeutic approaches have revolutionized the landscape of medicine, offering promising avenues for the cure of various diseases. The novel approaches explore advancements in gene therapy in pharmaceuticals, immunotherapy, RNA-based therapeutics, cell-based therapies, and targeted tumor therapies. Gene therapy has emerged as a groundbreaking approach, leveraging genetic material to cure or prevent diseases by targeting defective genes. In pharmaceuticals, gene therapy holds immense potential for addressing genetic disorders, offering a personalized approach to medicine. Immunotherapy, on the other hand, harnesses the body's immune system to combat diseases, including tumors, by enhancing immune responses or directly targeting malignant cells. RNA-based therapeutics have gained prominence due to their ability to modulate gene expression, offering targeted and precise interventions for a wide range of diseases. Cell-based therapies involve the transplantation or manipulation of cells to restore or enhance their function, offering innovative solutions for diseases such as neurodegenerative disorders and cardiovascular diseases. Furthermore, targeted tumor therapies have revolutionized tumor cure by specifically targeting molecular alterations driving tumor growth and minimizing damage to healthy cells. Overall, these novel therapeutic approaches represent a paradigm shift in medicine, offering tailored and precise interventions with the potential to significantly improve patient outcomes and quality of life.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037336137250102104842
2025-01-28
2025-09-15
Loading full text...

Full text loading...

References

  1. RayaproluB.M. StrawserJ.J. AnyarambhatlaG. Excipients in parenteral formulations: Selection considerations and effective utilization with small molecules and biologics.Drug Dev. Ind. Pharm.201844101565157110.1080/03639045.2018.148339229863908
    [Google Scholar]
  2. VargasonA.M. AnselmoA.C. MitragotriS. The evolution of commercial drug delivery technologies.Nat. Biomed. Eng.20215995196710.1038/s41551‑021‑00698‑w33795852
    [Google Scholar]
  3. AlqahtaniM.S. KaziM. AlsenaidyM.A. AhmadM.Z. Advances in oral drug delivery.Front. Pharmacol.20211261841110.3389/fphar.2021.61841133679401
    [Google Scholar]
  4. SahooD. BandaruR. SamalS.K. Oral drug delivery of nanomedicine. Theory and applications of nonparenteral nanomedicines.Academic Press202118120710.1016/B978‑0‑12‑820466‑5.00009‑0
    [Google Scholar]
  5. MoralesJ.O. VuddandaP.R. VelagaS. Controlled drug delivery via the buccal and sublingual routes.Fundam. Drug Deliv202143344810.1002/9781119769644.ch17
    [Google Scholar]
  6. HusseinN.R. OmerH.K. ElhissiA.M.A. Advances in nasal drug delivery systems. Advances in medical and surgical engineering.Academic Press202027931110.1016/B978‑0‑12‑819712‑7.00015‑2
    [Google Scholar]
  7. ChauhanA. FitzhenryL. SerroA.P. Recent advances in ophthalmic drug delivery.Pharmaceutics202214102075
    [Google Scholar]
  8. ThirunavukkarasuA. NithyaR. JeyanthiJ. Transdermal drug delivery systems for the effective management of type 2 diabetes mellitus: A review.Diabetes Res. Clin. Pract.202219410999610.1016/j.diabres.2022.10999635850300
    [Google Scholar]
  9. SharmaP. GajulaK. DingariN.N. Subcutaneous drug delivery: A review of the state-of-the-art modelling and experimental techniques.J. Biomech. Eng.2023145202080110.1115/1.405575836149008
    [Google Scholar]
  10. HaqM.U.M. RazzakM. UddinM.A. Rectal drug delivery system: An overview.Clin. Pharmacol. Biopharm.20211051000219
    [Google Scholar]
  11. MahantS. SharmaA.K. GandhiH. Emerging trends and potential prospects in vaginal drug delivery.Curr. Drug Deliv.202220673075110.2174/156720181966622041313124335422213
    [Google Scholar]
  12. ChoM. JooM. KimK. The immunotherapeutic effects of recombinant Bacillus rin resistant to antimicrobial peptides on Calmette-Gu e bladder tumor cells.Biochem. Biophys. Res. Commun.2019509116717410.1016/j.bbrc.2018.12.09730579607
    [Google Scholar]
  13. PaluganL. CereaM. CirilliM. MoutaharrikS. MaroniA. ZemaL. MelocchiA. UboldiM. FilippinI. FoppoliA. GazzanigaA. Intravesical drug delivery approaches for improved therapy of urinary bladder diseases.Int. J. Pharm. X2021310010010.1016/j.ijpx.2021.10010034765967
    [Google Scholar]
  14. VermaR. GargS. Current status of drug delivery technologies and future directions.Pharm. Technol.2001252114
    [Google Scholar]
  15. KeraliyaR.A. PatelC. PatelP. KeraliyaV. SoniT.G. PatelR.C. PatelM.M. Osmotic drug delivery system as a part of modified release dosage form.ISRN Pharm.201220121910.5402/2012/52807922852100
    [Google Scholar]
  16. MattosB.D. RojasO.J. MagalhãesW.L.E. Biogenic silica nanoparticles loaded with neem bark extract as green, slow-release biocide.J. Clean. Prod.20171424206421310.1016/j.jclepro.2016.11.183
    [Google Scholar]
  17. DingC. LiZ. A review of drug release mechanisms from nanocarrier systems.Mater. Sci. Eng. C2017761440145310.1016/j.msec.2017.03.13028482511
    [Google Scholar]
  18. ChenK ChenX. Design and development of molecular imaging probes.Curr. Top. Med. Chem.201010121227123610.2174/156802610791384225
    [Google Scholar]
  19. FaheemA.M. AbdelkaderD.H. Novel drug delivery systems.Engineering drug delivery systems.Woodhead Publishing202011610.1016/B978‑0‑08‑102548‑2.00001‑9
    [Google Scholar]
  20. PathakC. VaidyaF.U. PandeyS.M. Mechanism for development of nanobased drug delivery system.Applications of targeted nano drugs and delivery systemsElsevier2019356710.1016/B978‑0‑12‑814029‑1.00003‑X
    [Google Scholar]
  21. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.02720797419
    [Google Scholar]
  22. AgrahariV. Novel drug delivery systems. Devices, and fabrication methodsDrug Deliv. Trans. Res.201882303306
    [Google Scholar]
  23. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnol.20181613310.1186/s12951‑018‑0392‑8
    [Google Scholar]
  24. LiX jugrootM.C. Folic acid-conjugated amphiphilic alternating copolymer as a new active tumor targeting drug delivery platform.Drug Des Devel Ther.20161041014110
    [Google Scholar]
  25. TorchilinV.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.Nat. Rev. Drug Discov.2014131181382710.1038/nrd4333
    [Google Scholar]
  26. NaldiniL. Introduction to gene therapy: Concepts and recent advances.Annu. Rev. Med.201162433449
    [Google Scholar]
  27. KayM.A. RaperS.E. Gene therapy for inherited diseases: Progress and challenges.Nat. Rev. Genet.20181910669684
    [Google Scholar]
  28. SharmaP. AllisonJ.P. The future of immune checkpoint therapy.Tumor Cell.201527333834937059068
    [Google Scholar]
  29. JuneC.H. CAR T cells: The first generation.J. Clin. Invest.201812811525
    [Google Scholar]
  30. CrookeS.T. RNA-targeted therapeutics.Nat. Rev. Drug Discov.20131211873884
    [Google Scholar]
  31. JacksonA.L. LinsleyP.S. Antisense and RNA interference therapeutics.Nat. Rev. Drug Discov.2010912911926
    [Google Scholar]
  32. VerfaillieC.M. Cell therapy: From bench to bedside.Nat. Med.20121811014
    [Google Scholar]
  33. DaleyG.Q. Regenerative medicine: Stem cells and beyond.Nat. Med.20121811516
    [Google Scholar]
  34. SledgeG.W.Jr SchilskyR.L. Personalized tumor therapy: Fact or fiction?J. Clin. Oncol.2014323205208
    [Google Scholar]
  35. GrayN.K. SwantonC. Personalized tumor medicine: The role of genetics and genomics.Nat. Rev. Genet.20121310729742
    [Google Scholar]
  36. MukherjeeS. Genetic therapies: Posthuman gene therapy.The gene: An intimate history. Novel York. MukherjeeS. Scribner2016415
    [Google Scholar]
  37. FriedmannT. A brief history of gene therapy.Nat. Genet.199222939810.1038/ng1092‑931303270
    [Google Scholar]
  38. MisraS. Human gene therapy: A brief overview of the genetic revolution.J. Assoc. Physicians India201361212713324471251
    [Google Scholar]
  39. TebasP. SteinD. TangW.W. FrankI. WangS.Q. LeeG. SprattS.K. SuroskyR.T. GiedlinM.A. NicholG. HolmesM.C. GregoryP.D. AndoD.G. KalosM. CollmanR.G. SchollB.G. PlesaG. HwangW.T. LevineB.L. JuneC.H. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.N. Engl. J. Med.20143701090191010.1056/NEJMoa130066224597865
    [Google Scholar]
  40. NaingC. NiH. AungH.H. HtetN.H. NikolovaD. Gene therapy for people with hepatocellular carcinoma.Cochrane Libr.202420247CD01373110.1002/14651858.CD013731.pub238837373
    [Google Scholar]
  41. GoldmanM.J. BaskinA.M. SharpeM.A. BaskinD.S. Advances in gene therapy for high-grade glioma: A review of the clinical evidence.Expert Rev. Neurother.202424987989510.1080/14737175.2024.237684739090786
    [Google Scholar]
  42. GolM.T. ZahedipourF. TrosienP. BailénU.G. KimM. AntonyJ.S. MezgerM. Gene therapy in pediatrics – Clinical studies and approved drugs (as of 2023).Life Sci.202434812268510.1016/j.lfs.2024.12268538710276
    [Google Scholar]
  43. AbulohaS. NiuS. AdirikaD. HarveyB.P. SvenssonM. A review of the cost-effectiveness evidence for FDA-approved cell and gene therapies.Hum. Gene Ther.20243511-1236537310.1089/hum.2023.18638526393
    [Google Scholar]
  44. WheelerS. MahmoudzadehR. RandolphJ. Treatment for dry age-related macular degeneration: Where we stand in 2024.Curr. Opin. Ophthalmol.202435535936410.1097/ICU.000000000000106438869976
    [Google Scholar]
  45. MaharaniI.L. ZauhariM.H. KiansantangR.A. WibowoR.S. HumairaR.N. DwijayantiA. SianiparI.R. Systematic review of hematopoietic stem cell gene therapy approach in thalassemia: Comparative analysis in animal models.Eur. J. Haematol.2024112684885910.1111/ejh.1417938342626
    [Google Scholar]
  46. AlshehriA. DoughertyJ.A. BeckmanL. SvenssonM. A systematic review of cost-effectiveness analyses of gene therapy for hemophilia type A and B.J. Manag. Care Spec. Pharm.202430101178118810.18553/jmcp.2024.30.10.117839321118
    [Google Scholar]
  47. LindenR. Gene therapy: What it is, what it is not and what it will be.Estud. Av.20102470316910.1590/S0103‑40142010000300004
    [Google Scholar]
  48. GinterE.K. Gene therapy of hereditary diseases.Vopr. Med. Khim.200046326527811033886
    [Google Scholar]
  49. MatthewsQ.L. CurielD.T. Gene therapy: Human germline genetic modifications--assessing the scientific, socioethical, and religious issues.South. Med. J.200710019810010.1097/SMJ.0b013e31802e645f17269544
    [Google Scholar]
  50. BankA. Human somatic cell gene therapy.BioEssays19961812999100710.1002/bies.9501812108976157
    [Google Scholar]
  51. GardlíkR. PálffyR. HodosyJ. LukácsJ. TurnaJ. CelecP. Vectors and delivery systems in gene therapy.Med. Sci. Monit.2005114RA110RA12115795707
    [Google Scholar]
  52. McDonnellW.M. AskariF.K. DNA Vaccines.N. Engl. J. Med.19963341424510.1056/NEJM1996010433401107494571
    [Google Scholar]
  53. PlankC. TangM.X. WolfeA.R. SzokaF.C.Jr Branched cationic peptides for gene delivery: Role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes.Hum. Gene Ther.199910231933210.1089/1043034995001910110022556
    [Google Scholar]
  54. CaplenN.J. KinradeE. SorgiF. GaoX. GruenertD. GeddesD. CoutelleC. HuangL. AltonE.W. WilliamsonR. In vitro liposome-mediated DNA transfection of epithelial cell lines using the cationic liposome DC-Chol/DOPE.Gene Ther.1995296036138548549
    [Google Scholar]
  55. NabelG.J. ChangA.E. NabelE.G. PlautzG.E. EnsmingerW. FoxB.A. FelgnerP. ShuS. ChoK. Immunotherapy for cancer by direct gene transfer into tumors.Hum. Gene Ther.199451577710.1089/hum.1994.5.1‑578155772
    [Google Scholar]
  56. YangY. NunesF.A. BerencsiK. FurthE.E. GönczölE. WilsonJ.M. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy.Proc. Natl. Acad. Sci.199491104407441110.1073/pnas.91.10.44078183921
    [Google Scholar]
  57. KayM.A. State-of-the-art gene-based therapies: The road ahead.Nat. Rev. Genet.201112531632810.1038/nrg297121468099
    [Google Scholar]
  58. EshharZ. WaksT. GrossG. SchindlerD.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.Proc. Natl. Acad. Sci.199390272072410.1073/pnas.90.2.7208421711
    [Google Scholar]
  59. GrossG. WaksT. EshharZ. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity.Proc. Natl. Acad. Sci.19898624100241002810.1073/pnas.86.24.100242513569
    [Google Scholar]
  60. FifeB.T. BluestoneJ.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways.Immunol. Rev.2008224116618210.1111/j.1600‑065X.2008.00662.x18759926
    [Google Scholar]
  61. WalkerL.S.K. Treg and CTLA-4: Two intertwining pathways to immune tolerance.J. Autoimmun.201345100495710.1016/j.jaut.2013.06.00623849743
    [Google Scholar]
  62. ChikumaS. BluestoneJ.A. Expression of CTLA-4 and FOXP3 in cis protects from lethal lymphoproliferative disease.Eur. J. Immunol.20073751285128910.1002/eji.20073715917429849
    [Google Scholar]
  63. van der BruggenP. TraversariC. ChomezP. LurquinC. PlaenD.E. Van den EyndeB. KnuthA. BoonT. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma.Science199125450381643164710.1126/science.18407031840703
    [Google Scholar]
  64. TraversariC. van der BruggenP. LuescherI.F. LurquinC. ChomezP. PelV.A. PlaenD.E. CostesecA.A. BoonT. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E.J. Exp. Med.199217651453145710.1084/jem.176.5.14531402688
    [Google Scholar]
  65. HannaM.G.Jr PetersL.C. Immunotherapy of established micrometastases with Bacillus Calmette-Guérin tumor cell vaccine.Cancer Res.1978381204209201374
    [Google Scholar]
  66. GuoC. ManjiliM.H. SubjeckJ.R. SarkarD. FisherP.B. WangX.Y. Therapeutic cancer vaccines: Past, present, and future.Adv. Tumor Res.201311942147523870514
    [Google Scholar]
  67. YangY. Cancer immunotherapy: Harnessing the immune system to battle cancer.J. Clin. Invest.201512593335333710.1172/JCI8387126325031
    [Google Scholar]
  68. BarbeeM.S. OgunniyiA. HorvatT.Z. DangT.O. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology.Ann. Pharmacother.201549890793710.1177/106002801558621825991832
    [Google Scholar]
  69. MaudeS.L. LaetschT.W. BuechnerJ. RivesS. BoyerM. BittencourtH. BaderP. VernerisM.R. StefanskiH.E. MyersG.D. QayedM. MoerlooseD.B. HiramatsuH. SchlisK. DavisK.L. MartinP.L. NemecekE.R. YanikG.A. PetersC. BaruchelA. BoisselN. MechinaudF. BalduzziA. KruegerJ. JuneC.H. LevineB.L. WoodP. TaranT. LeungM. MuellerK.T. ZhangY. SenK. LebwohlD. PulsipherM.A. GruppS.A. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia.N. Engl. J. Med.2018378543944810.1056/NEJMoa170986629385370
    [Google Scholar]
  70. SchusterS.J. SvobodaJ. ChongE.A. NastaS.D. MatoA.R. AnakÖ. BrogdonJ.L. MaliniciP.I. BhojV. LandsburgD. WasikM. LevineB.L. LaceyS.F. MelenhorstJ.J. PorterD.L. JuneC.H. Chimeric antigen receptor T cells in refractory B-cell lymphomas.N. Engl. J. Med.2017377262545255410.1056/NEJMoa170856629226764
    [Google Scholar]
  71. ChengS. LiB. YuJ. WangL. Update of latest data for combined therapy for esophageal cancer using radiotherapy and immunotherapy: A focus on efficacy, safety, and biomarkers.Chin. J. Cancer Res.202335548350010.21147/j.issn.1000‑9604.2023.05.0637969961
    [Google Scholar]
  72. PatelM. GibsonL. CannonP. WangS. NargisN. Abstract B018: Changes in prevalence and correlates of tobacco use in 13 high-risk states in the United States from 2023-2024.Cancer Epidemiol. Biomarkers Prev.202433S9B01910.1158/1538‑7755.DISP24‑B018
    [Google Scholar]
  73. WangF.H. ZhangX.T. TangL. WuQ. CaiM.Y. LiY.F. QuX.J. QiuH. ZhangY.J. YingJ.E. ZhangJ. SunL.Y. LinR.B. WangC. LiuH. QiuM.Z. GuanW.L. RaoS.X. JiJ.F. XinY. ShengW.Q. XuH.M. ZhouZ.W. ZhouA.P. JinJ. YuanX.L. BiF. LiuT.S. LiangH. ZhangY.Q. LiG.X. LiangJ. LiuB.R. ShenL. LiJ. XuR.H. The chinese society of clinical oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer, 2023.Cancer Commun.202444112717210.1002/cac2.1251638160327
    [Google Scholar]
  74. PeriA. SalomonN. WolfY. KreiterS. DikenM. SamuelsY. The landscape of T cell antigens for cancer immunotherapy.Nat. Cancer20234793795410.1038/s43018‑023‑00588‑x37415076
    [Google Scholar]
  75. WilliamsN. ManzanaresM.A. AndersonK. ZunrutH. GeraS. HabibN. StantonS. FloydT. ShahS. TrahanD. AkermanM. ArunG. Abstract 5894: Novel splicing-derived neoantigen in triple negative breast cancer uncovered by SpliceIO™ a robust platform for the discovery and validation of disease-specific immunotherapies.Cancer Res.202484S6589410.1158/1538‑7445.AM2024‑5894
    [Google Scholar]
  76. JungK.W. KangM.J. ParkE.H. YunE.H. KimH.J. KongH.J. Prediction of cancer incidence and mortality in Korea, 2023.Canc. Res. Treat.20235540040710.4143/crt.2023.448
    [Google Scholar]
  77. HegeK.M. BergslandE.K. FisherG.A. NemunaitisJ.J. WarrenR.S. McArthurJ.G. LinA.A. SchlomJ. JuneC.H. SherwinS.A. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer.J. Immunother. Cancer2017512210.1186/s40425‑017‑0222‑928344808
    [Google Scholar]
  78. MuradJ.P. KozlowskaA.K. LeeH.J. RamamurthyM. ChangW.C. YazakiP. ColcherD. ShivelyJ. CristeaM. FormanS.J. PricemanS.J. Effective targeting of TAG72+ peritoneal ovarian tumors via regional delivery of CAR-engineered T cells.Front. Immunol.20189226810.3389/fimmu.2018.0226830510550
    [Google Scholar]
  79. ZamecnikP.C. StephensonM.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide.Proc. Natl. Acad. Sci.197875128028410.1073/pnas.75.1.28075545
    [Google Scholar]
  80. ElbashirS.M. HarborthJ. LendeckelW. YalcinA. WeberK. TuschlT. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature2001411683649449810.1038/3507810711373684
    [Google Scholar]
  81. WangF. ZuroskeT. WattsJ.K. RNA therapeutics on the rise.Nat. Rev. Drug Discov.202019744144210.1038/d41573‑020‑00078‑032341501
    [Google Scholar]
  82. CrookeS.T. WitztumJ.L. BennettC.F. BakerB.F. RNA-targeted therapeutics.Cell Metab.201827471473910.1016/j.cmet.2018.03.00429617640
    [Google Scholar]
  83. FaleseJ.P. DonlicA. HargroveA.E. Targeting RNA with small molecules: From fundamental principles towards the clinic.Chem. Soc. Rev.20215042224224310.1039/D0CS01261K33458725
    [Google Scholar]
  84. LambY.N. BNT162b2 mRNA COVID-19 vaccine: First approval.Drugs202181449550110.1007/s40265‑021‑01480‑733683637
    [Google Scholar]
  85. BadenL.R. SahlyE.H.M. EssinkB. KotloffK. FreyS. NovakR. DiemertD. SpectorS.A. RouphaelN. CreechC.B. McGettiganJ. KhetanS. SegallN. SolisJ. BroszA. FierroC. SchwartzH. NeuzilK. CoreyL. GilbertP. JanesH. FollmannD. MarovichM. MascolaJ. PolakowskiL. LedgerwoodJ. GrahamB.S. BennettH. PajonR. KnightlyC. LeavB. DengW. ZhouH. HanS. IvarssonM. MillerJ. ZaksT. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine.N. Engl. J. Med.2021384540341610.1056/NEJMoa203538933378609
    [Google Scholar]
  86. CorbettK.S. EdwardsD.K. LeistS.R. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness.Nature2020586783056757110.1038/s41586‑020‑2622‑032756549
    [Google Scholar]
  87. HeineA. JuranekS. BrossartP. Clinical and immunological effects of mRNA vaccines in malignant diseases.Mol. Cancer20212015210.1186/s12943‑021‑01339‑133722265
    [Google Scholar]
  88. MiaoL. ZhangY. HuangL. mRNA vaccine for cancer immunotherapy.Mol. Cancer20212014110.1186/s12943‑021‑01335‑533632261
    [Google Scholar]
  89. MemczakS. JensM. ElefsiniotiA. TortiF. KruegerJ. RybakA. MaierL. MackowiakS.D. GregersenL.H. MunschauerM. LoewerA. ZieboldU. LandthalerM. KocksC. Noblel.F. RajewskyN. Circular RNAs are a large class of animal RNAs with regulatory potency.Nature2013495744133333810.1038/nature1192823446348
    [Google Scholar]
  90. HansenT.B. JensenT.I. ClausenB.H. BramsenJ.B. FinsenB. DamgaardC.K. KjemsJ. Natural RNA circles function as efficient microRNA sponges.Nature2013495744138438810.1038/nature1199323446346
    [Google Scholar]
  91. LavenniahA. LuuT.D.A. LiY.P. LimT.B. JiangJ. JohnsonA.M. FooR.S.Y. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy.Mol. Ther.20202861506151710.1016/j.ymthe.2020.04.00632304667
    [Google Scholar]
  92. LiuC.X. GuoS.K. NanF. XuY.F. YangL. ChenL.L. RNA circles with minimized immunogenicity as potent PKR inhibitors.Mol. Cell2022822420434.e610.1016/j.molcel.2021.11.01934951963
    [Google Scholar]
  93. QuL. YiZ. ShenY. LinL. ChenF. XuY. WuZ. TangH. ZhangX. TianF. WangC. XiaoX. DongX. GuoL. LuS. YangC. TangC. YangY. YuW. WangJ. ZhouY. HuangQ. YisimayiA. LiuS. HuangW. CaoY. WangY. ZhouZ. PengX. WangJ. XieX.S. WeiW. Circular RNA vaccines against SARS-CoV-2 and emerging variants.Cell20221851017281744.e1610.1016/j.cell.2022.03.04435460644
    [Google Scholar]
  94. TodenS. ZumwaltT.J. GoelA. Non-coding RNAs and potential therapeutic targeting in cancer.Biochim. Biophys. Acta Rev. Cancer20211875118849110.1016/j.bbcan.2020.18849133316377
    [Google Scholar]
  95. MatsuiM. CoreyD.R. Non-coding RNAs as drug targets.Nat. Rev. Drug Discov.201716316717910.1038/nrd.2016.11727444227
    [Google Scholar]
  96. WinkleM. DalyE.S.M. FabbriM. CalinG.A. Noncoding RNA therapeutics — challenges and potential solutions.Nat. Rev. Drug Discov.202120862965110.1038/s41573‑021‑00219‑z34145432
    [Google Scholar]
  97. JiangG. New worm study paves way for better RNA-based drugs to treat human disease, 2024. Available from: https://today.umd.edu/new-worm-study-paves-way-for-better-rna-based-drugs-to-treat-human-disease.
    [Google Scholar]
  98. SatoK. HamadaM. Recent trends in RNA informatics: A review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery.Brief. Bioinform.2023244bbad18610.1093/bib/bbad18637232359
    [Google Scholar]
  99. WinnZ. Taking RNAi from interesting science to impactful new treatments.Available from: https://news.mit.edu/2024/alnylam-pharmaceuticals-turns-rnai-research-into-impactful-new-treatments-0513 2024
  100. FangE. LiuX. LiM. ZhangZ. SongL. ZhuB. WuX. LiuJ. ZhaoD. LiY. Advances in COVID-19 mRNA vaccine development.Signal Transduct. Target. Ther.2022719410.1038/s41392‑022‑00950‑y35322018
    [Google Scholar]
  101. ZhaoJ.H. LiuQ.Y. XieZ.M. GuoH-S. Exploring the challenges of RNAi-based strategies for crop protection.Advanced Biotechnol.2024232310.1007/s44307‑024‑00031‑x
    [Google Scholar]
  102. QuarrierS. MartinJ.S. NeulanderD.L. BeauregardA. LaederachA. Evaluation of the information content of RNA structure mapping data for secondary structure prediction.RNA20101661108111710.1261/rna.198851020413617
    [Google Scholar]
  103. HeB. PengW. HuangJ. ZhangH. ZhouY. YangX. LiuJ. LiZ. XuC. XueM. YangH. HuangP. Modulation of metabolic functions through Cas13d-mediated gene knockdown in liver.Protein Cell202011751852410.1007/s13238‑020‑00700‑232185621
    [Google Scholar]
  104. ZhouC. HuX. TangC. LiuW. WangS. ZhouY. ZhaoQ. BoQ. ShiL. SunX. ZhouH. YangH. CasRx-mediated RNA targeting prevents choroidal neovascularization in a mouse model of age-related macular degeneration.Natl. Sci. Rev.20207583583710.1093/nsr/nwaa03334692105
    [Google Scholar]
  105. KamolaP.J. NakanoY. TakahashiT. WilsonP.A. TeiU.K. The siRNA non-seed region and its target sequences are auxiliary determinants of off-target effects.PLOS Comput. Biol.20151112e100465610.1371/journal.pcbi.100465626657993
    [Google Scholar]
  106. GrimmD. StreetzK.L. JoplingC.L. StormT.A. PandeyK. DavisC.R. MarionP. SalazarF. KayM.A. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways.Nature2006441709253754110.1038/nature0479116724069
    [Google Scholar]
  107. KimI. A brief overview of cell therapy and its product.J. Korean Assoc. Oral Maxillofac. Surg.201339520120210.5125/jkaoms.2013.39.5.20124471045
    [Google Scholar]
  108. American Society of Gene and Cell TherapyGene & Cell Therapy FAQs.Available from: https://asgct.org/education/more-resources/gene-and-cell-therapy-faqs 2021
  109. LefrèreJ.J. BercheP. The therapy of doctor brown-séquard.Ann. Endocrinol.2010712697510.1016/j.ando.2010.01.00320167305
    [Google Scholar]
  110. Grand View Study ICell therapy market size analysis report, 2021-2028.Available from: https://www.grandviewstudy.com/industry-analysis/cell-therapy-market# 2021
  111. MountN.M. WardS.J. KefalasP. HyllnerJ. Cell-based therapy technology classifications and translational challenges.Philos. Trans. R. Soc. Lond. B Biol. Sci.201537016802015001710.1098/rstb.2015.001726416686
    [Google Scholar]
  112. GlassG.E. FerrettiP. Adipose-derived stem cells in aesthetic surgery.Aesthet. Surg. J.201939442343810.1093/asj/sjy16029982396
    [Google Scholar]
  113. NIH. NCT04050111The evaluation of safety and effectiveness of intraarticular administration of autologous stromal-vascular fraction of adipose tissue cells for curement of knee joint arthrosis.Available from: https://clinicaltrials.gov/ct2/show/NCT04050111?intr=stromal$+$vascular$+$fraction&draw=2&rank=2 2019
  114. NIH. NCT04238468Scar tissue analysis after intraoperative application of stromal vascular fraction cells into suture line.Available from: https://clinicaltrials.gov/ct2/show/NCT04238468?intr=stromal$+$vascular$+$fraction&draw=2&rank=3 2020
  115. NIH. NCT04771442 Stem cell curement of peyronies disease.Available from: https://clinicaltrials.gov/ct2/show/NCT04771442?intr=stromal$+$vascular$+$fraction&draw=2&rank=6 2021
  116. NtegeE.H. SunamiH. ShimizuY. Advances in regenerative therapy: A review of the literature and future directions.Regen. Ther.20201413615310.1016/j.reth.2020.01.00432110683
    [Google Scholar]
  117. BourinP. BunnellB.A. CasteillaL. DominiciM. KatzA.J. MarchK.L. RedlH. RubinJ.P. YoshimuraK. GimbleJ.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the international federation for adipose therapeutics and science (IFATS) and the international society for cellular therapy (ISCT).Cytotherapy201315664164810.1016/j.jcyt.2013.02.00623570660
    [Google Scholar]
  118. GuoJ. NguyenA. BanyardD.A. FadaviD. TorantoJ.D. WirthG.A. PaydarK.Z. EvansG.R.D. WidgerowA.D. Stromal vascular fraction: A regenerative reality? Part 2: Mechanisms of regenerative action.J. Plast. Reconstr. Aesthet. Surg.201669218018810.1016/j.bjps.2015.10.01426546112
    [Google Scholar]
  119. CutlerC. AntinJ.H. Peripheral blood stem cells for allogeneic transplantation: A review.Stem Cells200119210811710.1634/stemcells.19‑2‑10811239165
    [Google Scholar]
  120. American Tumor SocietyStem cell or bone marrow transplant.Available from: https://www.tumor.org/content/dam/CRC/PDF/Public/128.00.pdf 2020
  121. AnderliniP. RizzoJ.D. NugentM.L. SchmitzN. ChamplinR.E. HorowitzM.M. Peripheral blood stem cell donation: An analysis from the international bone marrow transplant registry (IBMTR) and European group for blood and marrow transplant (EBMT) databases.Bone Marrow Transplant.200127768969210.1038/sj.bmt.170287511360107
    [Google Scholar]
  122. RindyL.J. ChambersA.R. Bone marrow aspiration and biopsy.Treasure Island, FLStatPearls Publishing2021
    [Google Scholar]
  123. GorinN.C. Bone marrow harvesting for HSCT.The EBMT Handbook: Hematopoietic stem cell transplantation and cellular therapies.Cham, SwitzerlandSpringer International Publishing201910911510.1007/978‑3‑030‑02278‑5
    [Google Scholar]
  124. TeipelR. OelschlägelU. WetzkoK. SchmiedgenM. KramerM. BraunR.E. HöligK. Boninv.M. HeidrichK. FuchsA. OrdemannR. KroschinskyF. BornhäuserM. HütterG. SchmidtH. EhningerG. ScheteligJ. HeidenreichF. Differences in cellular composition of peripheral blood stem cell grafts from healthy stem cell donors mobilized with either granulocyte colony-stimulating factor (G-CSF) alone or G-CSF and plerixafor.Biol. Blood Marrow Transplant.201824112171217710.1016/j.bbmt.2018.06.02329935214
    [Google Scholar]
  125. GygerM. StuartR.K. PerreaultC. Immunobiology of allogeneic peripheral blood mononuclear cells mobilized with granulocyte-colony stimulating factor.Bone Marrow Transplant.200026111610.1038/sj.bmt.170246410918400
    [Google Scholar]
  126. KörblingM. AnderliniP. Peripheral blood stem cell versus bone marrow allotransplantation: Does the source of hematopoietic stem cells matter?Blood200198102900290810.1182/blood.V98.10.290011698269
    [Google Scholar]
  127. YasuiK. MatsumotoK. HirayamaF. TaniY. NakanoT. Differences between peripheral blood and cord blood in the kinetics of lineage-restricted hematopoietic cells: Implications for delayed platelet recovery following cord blood transplantation.Stem Cells200321214315110.1634/stemcells.21‑2‑14312634410
    [Google Scholar]
  128. RobinM. RuggeriA. LabopinM. NiederwieserD. TabriziR. SanzG. BourhisJ.H. Biezenv.A. KoeneckeC. BlaiseD. TischerJ. CraddockC. MaillardN. MohtyM. RusselN. ScheteligJ. FinkeJ. GluckmanE. Witted.T.M. RochaV. KrogerN. Comparison of unrelated cord blood and peripheral blood stem cell transplantation in adults with myelodysplastic syndrome after reduced-intensity conditioning regimen: A collaborative study from Eurocord (Cord blood Committee of Cellular Therapy & Immunobiology Working Party of EBMT) and chronic malignancies working party.Biol. Blood Marrow Transplant.201521348949510.1016/j.bbmt.2014.11.67525529382
    [Google Scholar]
  129. PasswegJ.R. BaldomeroH. GratwohlA. BregniM. CesaroS. DregerP. WitteT. BancelF.D. GasparB. MarshJ. MohtyM. PetersC. TichelliA. VelardiA. Elvirad.C.R. FalkenburgF. SuredaA. MadrigalA. The EBMT activity survey: 1990–2010.Bone Marrow Transplant.201247790692310.1038/bmt.2012.6622543746
    [Google Scholar]
  130. PasswegJ.R. BaldomeroH. BaderP. BoniniC. CesaroS. DregerP. DuarteR.F. DufourC. KuballJ. BancelF.D. GenneryA. KrögerN. LanzaF. NaglerA. SuredaA. MohtyM. Hematopoietic stem cell transplantation in Europe 2014: More than 40 000 transplants annually.Bone Marrow Transplant.201651678679210.1038/bmt.2016.2026901709
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037336137250102104842
Loading
/content/journals/cpps/10.2174/0113892037336137250102104842
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test