Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Background/Introduction

The Calcitonin receptor () gene encodes a protein essential for bone metabolism, playing a key role in inhibiting bone resorption and promoting renal calcium excretion. Polymorphisms in have been associated with differences in bone mineral density, osteoporosis, and an increased risk of calcium stone urolithiasis.

Aim

This study aimed to investigate the non-synonymous SNPs of human genes.

Objective

This study was conducted to analyse the structural and functional impact of high-risk non-synonymous single nucleotide polymorphisms (nsSNPs) in the gene using bioinformatics tools.

Methods

We retrieved nsSNPs from the NCBI and Uniprot databases and assessed their deleterious potential using SIFT, PolyPhen v2, PROVEAN, PANTHER, PhD-SNP, and SNPs and GO. Gene-gene interactions were examined with GeneMANIA, while protein-protein interactions were analyzed STRING. Structural and functional predictions were performed using I-Mutant, MUPro, ConSurf, SOPMA, NetSurf 2.0, AlphaFold, and NetPhos 3.1.

Results and Discussion

Our analysis found 17 deleterious nsSNPs (rs972946, rs138829125, rs146344939, rs148707949, rs149570603, rs149628324, rs200643258, rs200900623, rs201985045, rs267601640, rs368981699, rs369253212, rs369926913, rs371453754, rs374929068, rs375143115, rs375417465) that destabilize the protein. ConSurf revealed that 9 of these high-risk nsSNPs are located in conserved regions, with the variants S129Y, R321Q, D101Y, D77V, L176F, P122S, N312S, M187T, and W406R being identified as highly conserved. NetsurfP-2.0 analysis indicated that some nsSNPs are exposed while others are buried, and phosphorylation analysis highlighted variations in threonine and tyrosine residues.

Conclusion

These findings indicate that the identified nsSNPs may substantially affect the functionality of and could potentially be used as biomarkers for disease diagnosis and targets for therapy.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921355047250118115852
2025-02-07
2025-09-25
Loading full text...

Full text loading...

References

  1. DakalTC KalaD DhimanG YadavV KrokhotinA Dokholyan, N.V. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms in IL8 gene.Sci Rep. 201771652510.1038/s41598‑017‑06575‑4
    [Google Scholar]
  2. ZengL TalukdarHA KoplevS Giannarelli C. IvertI. Contribution of regulatory-gene networks to heritability of coronary artery disease.J Am Coll Cardio20191817294610.1016/j.jacc.2019.03.520
    [Google Scholar]
  3. ButlerJ.M. 2012Single nucleotide polymorphisms and applications.Advanced Topics in Forensic DNA Typing: MethodologyAcademic Press10.1016/B978‑0‑12‑374513‑2.00012‑9
    [Google Scholar]
  4. AjithA. In silico prediction of deleterious non-synonymous SNPs in STAT3. AAsian Biomed (Res Rev News).202317418510.2478/abm‑2023‑0059.
    [Google Scholar]
  5. KiriakopoulosA GiannakisP Menenakos, E Calcitonin: current concepts and differential diagnosis.Ther Adv Endocrinol Metab.132042018822109934410.1177/20420188221099344
    [Google Scholar]
  6. NugentA. ProiaR.L. The role of G protein-coupled receptors in lymphoid malignancies.Cell. Signal.20173995107http://www.ncbi.nlm.nih.gov/pubmed/2880284210.1016/j.cellsig.2017.08.00228802842
    [Google Scholar]
  7. PondelM. Calcitonin and calcitonin receptors: Bone and beyond.Int. J. Exp. Pathol.200081640542210.1046/j.1365‑2613.2000.00176.x11298188
    [Google Scholar]
  8. MitraP. GuhaM. GhoshS. MukherjeeS. BankuraB. PalD.K. MaityB. DasM. Association of calcitonin receptor gene ( CALCR ) polymorphism with kidney stone disease in the population of West Bengal, India.Gene2017622232810.1016/j.gene.2017.04.03328435134
    [Google Scholar]
  9. GareljaM.L. BowerR.L. BrimbleM.A. ChandS. HarrisP.W.R. JamaluddinM.A. PetersenJ. SiowA. WalkerC.S. HayD.L. Pharmacological characterisation of mouse calcitonin and calcitonin receptor‐like receptors reveals differences compared with human receptors.Br. J. Pharmacol.2022179341643410.1111/bph.1562834289083
    [Google Scholar]
  10. KuestnerRE ElrodRD GrantFJ HagenFS KuijperJL MatthewesSL O’HaraPJ SheppardPO StroopSD TD Cloning and characterization of an abundant subtype of the human calcitonin receptor.Mol Pharmacol.462246255
    [Google Scholar]
  11. Dal MasoE JustR HickC ChristopoulosA SextonPM WoottenD FS Characterization of signalling and regulation of common calcitonin receptor splice variants and polymorphisms.Biochem Pharmacol.2018 148111129010.1016/j.bcp.2017.12.016
    [Google Scholar]
  12. ZhangL NoguchiYT NakayamaH KajiT TsujikawaK Ikemoto-UezumiM UezumiA OkadaY DoiT WatanabeS BraunT FujioY FS The CalcR-PKA-Yap1 axis is critical for maintaining quiescence in muscle stem cells.Cell Rep.2019 292154216310.1016/j.celrep.2019.10.057
    [Google Scholar]
  13. LitvinovaM.M. KhafizovK. KorchaginV.I. SperanskayaA.S. AsanovA.Y. MatsvayA.D. KiselevD.A. SvetlichnayaD.V. NuralievaS.Z. MoskalevA.A. FilippovaT.V. Association of CASR, CALCR, and ORAI1 genes polymorphisms with the calcium urolithiasis development in Russian population.Front. Genet.20211262104910.3389/fgene.2021.62104934054913
    [Google Scholar]
  14. AliF.T. El-AzeemE.M.A. HekalH.F.A. El-GizawyM.M. SayedM.S. MandohA.Y. SolimanA.F. Association of TRPV5, CASR, and CALCR genetic variants with kidney stone disease susceptibility in Egyptians through main effects and gene–gene interactions.Urolithiasis202250670171010.1007/s00240‑022‑01360‑z36088585
    [Google Scholar]
  15. Fukumitsu K Huang A.J. McHugh T.J Kuroda K.O. Role of Calcr expressing neurons in the medial amygdala in social contact among females. Mol Brain. 20231611036658598
    [Google Scholar]
  16. OstrovskayaA HickC HutchinsonDS StringerBW WookeyPJ WoottenD SextonPM FS Expression and activity of the calcitonin receptor family in a sample of primary human high-grade gliomas.BMC Cancer.201919115710.1186/s12885‑019‑5369‑y
    [Google Scholar]
  17. González-Castro T.B. Blachman-BraunR. Tovilla-ZárateC.A. Hernández-DíazY. Vargas-AlarcónG. Rodríguez-PérezJ.M. Association of vitamin D receptor polymorphisms and nephrolithiasis: A meta-analysis.Gene201671114393610.1016/j.gene.2019.06.026.
    [Google Scholar]
  18. AbdulAzeezS. BorgioJ.F. In-silico computing of the most deleterious nsSNPs in HBA1 gene.PLoS One2016111e014770210.1371/journal.pone.014770226824843
    [Google Scholar]
  19. ChengJ. RandallA. BaldiP. Prediction of protein stability changes for single‐site mutations using support vector machines.Proteins20066241125113210.1002/prot.2081016372356
    [Google Scholar]
  20. Paul D. Thomas, Anish Kejariwal, Nan Guo, Huaiyu Mi, Michael J. Campbell, Anushya Muruganujan BLU. Applications for protein sequence–function evolution data:mRNA/protein expression analysis and coding SNP scoring tools.
  21. CapriottiE. CalabreseR. CasadioR. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information.Bioinformatics200622222729273410.1093/bioinformatics/btl42316895930
    [Google Scholar]
  22. CalabreseR. CapriottiE. FariselliP. MartelliP.L. CasadioR. Functional annotations improve the predictive score of human disease-related mutations in proteins.Hum. Mutat.20093081237124410.1002/humu.2104719514061
    [Google Scholar]
  23. BuchanD.W.A. JonesD.T. The PSIPRED protein analysis workbench: 20 years on.Nucleic Acids Res.201947W1W402W40710.1093/nar/gkz29731251384
    [Google Scholar]
  24. GeourjonC. DeléageG. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments.Bioinformatics199511668168410.1093/bioinformatics/11.6.6818808585
    [Google Scholar]
  25. AbidF. KhanK. BadshahY. AshrafN.M. ShabbirM. HamidA. AfsarT. AlmajwalA. RazakS. Non-synonymous SNPs variants of PRKCG and its association with oncogenes predispose to hepatocellular carcinoma.Cancer Cell Int.202323112310.1186/s12935‑023‑02965‑z37344815
    [Google Scholar]
  26. AshkenazyH. AbadiS. MartzE. ChayO. MayroseI. PupkoT. Ben-TalN. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules.Nucleic Acids Res.201644W1W344W35010.1093/nar/gkw40827166375
    [Google Scholar]
  27. SivakumarK. SubbiahU. Computational analysis of non-synonymous SNPs in the human LCN2 gene.Egypt J Med Hum Genet2024259410.1186/s43042‑024‑00565‑8
    [Google Scholar]
  28. KlausenM.S. JespersenM.C. NielsenH. JensenK.K. JurtzV.I. SønderbyC.K. SommerM.O.A. WintherO. NielsenM. PetersenB. MarcatiliP. NetSurfP‐2.0: Improved prediction of protein structural features by integrated deep learning.Proteins201987652052710.1002/prot.2567430785653
    [Google Scholar]
  29. RaoV.S. SrinivasK. SujiniG.N. KumarG.N.S. Protein-protein interaction detection: Methods and analysis.Int. J. Proteomics2014201411210.1155/2014/14764824693427
    [Google Scholar]
  30. CordellH.J. Detecting gene–gene interactions that underlie human diseases.Nat. Rev. Genet.200910639240410.1038/nrg257919434077
    [Google Scholar]
  31. Warde-FarleyD. DonaldsonS.L. ComesO. ZuberiK. BadrawiR. ChaoP. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function.Nucleic Acids Res.201038W21410.1093/nar/gkq537
    [Google Scholar]
  32. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  33. BlomN. GammeltoftS. BrunakS. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.J. Mol. Biol.199929451351136210.1006/jmbi.1999.331010600390
    [Google Scholar]
  34. IrfanM. IqbalT. HashmiS. GhaniU. BhattiA. In silico prediction and functional analysis of nonsynonymous SNPs in human CTLA4 gene.Sci. Rep.20221212044110.1038/s41598‑022‑24699‑036443461
    [Google Scholar]
  35. JavedR. Current research status, databases and application of single nucleotide polymorphism. Pakistan J Biol Sci 20101313657
    [Google Scholar]
  36. SidhicN. SubbiahU. In silico analysis of non-synonymous Snps in the Human WWOX Gene.Curr. Pharmacogenomics Person. Med.2024211385010.2174/0118756921312973240517112757
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921355047250118115852
Loading
/content/journals/cppm/10.2174/0118756921355047250118115852
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CALCR; GeneMANIA; in silico; non-synonymous; phosphorylation analysis; SNP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test