Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Introduction

The relevance of modernity can include both a huge number of physical injuries to people and a large number of methods of their diagnosis that have appeared in medical physics.

Objective and Methods

A narrative review of the use of modern physical imaging methods in the diagnosis of gunshot and mine-explosive wounds was conducted to develop algorithms for choosing optimal methods and devices for medical diagnostics.

Results and Discussion

After a comparative analysis of localization and physical characteristics of tissues and damaging elements, algorithms have been developed in the form of a matrix table “wound localization - physical visualization methods” for the specific purpose of special, adequate, qualitative, and effective diagnostics.

Conclusion

Development-synthesis of a prospective methodology for choosing optimal methods and devices for medical diagnostics, compression of verified information in the form of a locus-method algorithm, can contribute to the speed and optimality of choosing effective diagnostics using medical physics methods, as well as strategic planning for the acquisition and organization of special instrumentation in healthcare systems.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348365739250622144457
2025-07-03
2025-09-25
Loading full text...

Full text loading...

References

  1. AvitisovP.V. GasanovShM. Analysis of the possibilities of territorial healthcare in providing medical care to those affected by armed conflict.Scient. Educat. Prob. Civil Protect.20193423850
    [Google Scholar]
  2. Mc EvoyC HidegG. Global violent deaths 2017Time to decide. Geneva: Small Arms Survey,2017https://scholar.google.ru/scholar?cluster=6813973882713734409&hl=ru&as_sdt=0,5
    [Google Scholar]
  3. Oral update on the extent of conflict-related deaths in the syrian arab republic.In: Statement by Michelle Bachelet UN High Commissioner for Human Rights; 48th session of the Human Rights Council: Switzerland2021
    [Google Scholar]
  4. EnamS.A. KazimS.F. ShamimM.S. TahirM.Z. WaheedS. Management of penetrating brain injury.J. Emerg. Trauma Shock20114339540210.4103/0974‑2700.8387121887033
    [Google Scholar]
  5. ChenY. HuangW. ConstantiniS. Concepts and strategies for clinical management of blast-induced traumatic brain injury and posttraumatic stress disorder.J. Neuropsychiatry Clin. Neurosci.201325210311010.1176/appi.neuropsych.1203005823686026
    [Google Scholar]
  6. AndreJ.B. Arterial spin labeling magnetic resonance perfusion for traumatic brain injury: Technical challenges and potentials.Top. Magn. Reson. Imaging201524527528710.1097/RMR.000000000000006526502309
    [Google Scholar]
  7. RiedyG. SenseneyJ.S. LiuW. OllingerJ. ShamE. KrapivaP. PatelJ.B. SmithA. YehP.H. GranerJ. NathanD. CabanJ. FrenchL.M. HarperJ. EskayV. MorissetteJ. OakesT.R. Findings from structural MR imaging in military traumatic brain injury.Radiology2016279120721510.1148/radiol.201515043826669604
    [Google Scholar]
  8. ByrnesK.R. WilsonC.M. BrabazonF. von LedenR. JurgensJ.S. OakesT.R. SelwynR.G. FDG-PET imaging in mild traumatic brain injury: A critical review.Front. Neuroenergetics20145132010.3389/fnene.2013.0001324409143
    [Google Scholar]
  9. HuangC.X. LiY.H. LuW. HuangS.H. LiM.J. XiaoL.Z. LiuJ. Positron emission tomography imaging for the assessment of mild traumatic brain injury and chronic traumatic encephalopathy: Recent advances in radiotracers.Neural Regen. Res.2022171748110.4103/1673‑5374.31428534100430
    [Google Scholar]
  10. KrajnyukovP.A. DzhanelidzeT.D. Vasil’evaT.N. Penetrating eye wounds: The role of radiation diagnostics.Chief Phys. South Russ.20101202024
    [Google Scholar]
  11. ChaudharyR. UpendranM. CampionN. YeungA. BlanchR. Morgan-WarrenP. GibbI. NelsonT. ScottR. The role of computerised tomography in predicting visual outcome in ocular trauma patients.Eye (Lond.)2015297867871[PMID: 25853401
    [Google Scholar]
  12. ImranS. AminS. DaulaM.H. Imaging in ocular trauma: Optimizing the use of ultrasound and computerised tomography.Pakistan J. Ophthalmol.2011273146151
    [Google Scholar]
  13. KarasevaV.V. The use of computed tomographs in the examination, diagnosis and planning of dental rehabilitation of patients with gunshot wounds of the maxillofacial region.Med. Bull20192623034
    [Google Scholar]
  14. OffiahC. HallE. Imaging assessment of penetrating injury of the neck and face.Insights Imaging20123541943110.1007/s13244‑012‑0191‑y22945428
    [Google Scholar]
  15. SteenburgS.D. SlikerC.W. ShanmuganathanK. SiegelE.L. Imaging evaluation of penetrating neck injuries.Radiographics201030486988610.1148/rg.30410502220631357
    [Google Scholar]
  16. PasleyJ. BergR.J. InabaK. Multidetector computed tomographic angiography (MDCTA) for penetrating neck injuriesRambam Maimonides Med. J.20123(3)001610.5041/RMMJ.1008423908840
    [Google Scholar]
  17. GonzalezR.P. FalimirskiM. HolevarM.R. TurkB. Penetrating zone II neck injury: Does dynamic computed tomographic scan contribute to the diagnostic sensitivity of physical examination for surgically significant injury? A prospective blinded study.J. Trauma2003541616510.1097/00005373‑200301000‑0000812544900
    [Google Scholar]
  18. NúñezD.B. Torres-LeónM. MúneraF. Vascular injuries of the neck and thoracic inlet: Helical CT-angiographic correlation.Radiographics20042441087109810.1148/rg.24403503515256630
    [Google Scholar]
  19. OikonomouA. PrassopoulosP. CT imaging of blunt chest trauma.Insights Imaging20112328129510.1007/s13244‑011‑0072‑922347953
    [Google Scholar]
  20. SharifullinF.A. BarminaT.G. ZabavskayaO.A. Spiral computed tomography in diagnostics of chest wounds and their complications.Med. Imag.2005200558389
    [Google Scholar]
  21. SamokhvalovI.M. TyurinM.V. KucherenkoA.D. Chest wounds from firearms of limited damage.Bullet Nat. Med. Surg. Cent20161122535
    [Google Scholar]
  22. SheykhZ.V. DunaevA.P. DrebushevskiyN.S. Abscessed pneumonia with a gunshot wound to the chest (a clinical example). Bullet Russ. Scient. Cent Rentgenradiol Minist. Health.Russ. Federat20143316
    [Google Scholar]
  23. CohnS.M. DuBoseJ.J. Pulmonary contusion: An update on recent advances in clinical management.World J. Surg.20103481959197010.1007/s00268‑010‑0599‑920407767
    [Google Scholar]
  24. Gentry WilkersonR. StoneM.B. Sensitivity of bedside ultrasound and supine anteroposterior chest radiographs for the identification of pneumothorax after blunt trauma.Acad. Emerg. Med.2010171111710.1111/j.1553‑2712.2009.00628.x20078434
    [Google Scholar]
  25. BrooksA. DaviesB. SmethhurstM. ConnollyJ. Emergency ultrasound in the acute assessment of haemothorax.Emerg. Med. J.2004211444610.1136/emj.2003.00543814734374
    [Google Scholar]
  26. ObelchakI.S. VasilievA.Y. Multisection computed tomography in the diagnosis of a gunshot wound to the heart.Radiol. Prat.201913945
    [Google Scholar]
  27. UlyanovaV.A. MRI in the diagnosis of gunshot wounds to the spine.Med. Imag.2015201531016
    [Google Scholar]
  28. FischerT.V. FolioL.R. BackusC.E. BungerR. Case report highlighting how wound path identification on CT can help identify organ damage in abdominal blast injuries.Mil. Med.2012177110110710.7205/MILMED‑D‑11‑0013022338990
    [Google Scholar]
  29. VasilievA.Yu. RomanovaA.V. LezhnevD.A. Radiation diagnostics of abdominal injuries based on clinical examples of penetrating wounds from the practice of a first-level medical institution.Consilium Medicum2018208323610.26442/2075‑1753_2018.8.32‑36
    [Google Scholar]
  30. ObelchakI.S. Multisection computed tomography in the diagnosis of damage to the main vessels of the abdominal cavity and pelvis in combat gunshot wounds.Radiat. Diagnost. Thera.2019115
    [Google Scholar]
  31. JohnsonE.K. JudgeT. LundyJ. MeyermannM. Diagnostic pelvic computed tomography in the rectal-injured combat casualty.Mil. Med.2008173329329910.7205/MILMED.173.3.29318419033
    [Google Scholar]
  32. StawickiS.P. HowardJ.M. PryorJ.P. BahnerD.P. WhitmillM.L. DeanA.J. Portable ultrasonography in mass casualty incidents: The CAVEAT examination.World J. Orthop.201011101910.5312/wjo.v1.i1.1022474622
    [Google Scholar]
  33. GaivoronskyA.I. ZhurbinE.A. ZheleznyakI.S. AlekseevE.D. Intraoperative ultrasound examination in surgery of peripheral nerves of the upper limb. Bullet Russ Milit Med.Acad.2015201525659
    [Google Scholar]
  34. XuY. XuW. WangA. MengH. WangY. LiuS. LiR. LuS. PengJ. Diagnosis and treatment of traumatic vascular injury of limbs in military and emergency medicine: A systematic review.Medicine 201998181540610.1097/MD.000000000001540631045795
    [Google Scholar]
  35. RiceP.L. GatesJ.S. Vascular trauma.Trauma: A Comprehensive Emergency Medicine Approach.UKCambridge University Press2011360371
    [Google Scholar]
  36. LiuJ.L. LiJ.Y. JiangP. JiaW. TianX. ChengZ.Y. ZhangY.X. Literature review of peripheral vascular trauma: Is the era of intervention coming?Chin. J. Traumatol.20202315910.1016/j.cjtee.2019.11.00332014343
    [Google Scholar]
  37. StacyM.R. DearthC.L. Multimodality imaging approaches for evaluating traumatic extremity injuries: Implications for military medicine.Adv. Wound Care 20176724125110.1089/wound.2016.071628736684
    [Google Scholar]
  38. HareS.S. GoddardI. WardP. NaraghiA. DickE.A. The radiological management of bomb blast injury.Clin. Radiol.20076211910.1016/j.crad.2006.09.01317145257
    [Google Scholar]
  39. YazganC. AksuN.M. Imaging features of blast injuries: Experience from 2015 Ankara bombing in Turkey.Br. J. Radiol.20168910622016006310.1259/bjr.2016006326959613
    [Google Scholar]
  40. TawfikN. ElnemrH.A. FakhrM. DessoukyM.I. Abd El-SamieF.E. Survey study of multimodality medical image fusion methods.Multimedia Tools Appl.202080463696396
    [Google Scholar]
  41. BogatovN.M. GrigoryanL.R. KovalenkoM.S. ReutovV. SinitsynA.S. A program for converting pseudo-color images.2017Available from: https://innoscope.ru/tech/offer/3079/
    [Google Scholar]
  42. HussainS. MubeenI. UllahN. ShahS.S.U.D. KhanB.A. ZahoorM. UllahR. KhanF.A. SultanM.A. Modern diagnostic imaging technique applications and risk factors in the medical field: A review.BioMed Res. Int.202220221516497010.1155/2022/516497035707373
    [Google Scholar]
  43. SchweitzerA.D. NiogiS.N. WhitlowC.J. TsiourisA.J. Traumatic brain injury: Imaging patterns and complications.Radiographics20193961571159510.1148/rg.201919007631589576
    [Google Scholar]
  44. BienN. RajpurkarP. BallR.L. IrvinJ. ParkA. JonesE. BereketM. PatelB.N. YeomK.W. ShpanskayaK. HalabiS. ZuckerE. FantonG. AmanatullahD.F. BeaulieuC.F. RileyG.M. StewartR.J. BlankenbergF.G. LarsonD.B. JonesR.H. LanglotzC.P. NgA.Y. LungrenM.P. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.PLoS Med.20181511100269910.1371/journal.pmed.100269930481176
    [Google Scholar]
  45. v, V.; Gudigar, A.; Raghavendra, U.; Hegde, A.; Menon, G.R.; Molinari, F.; Ciaccio, E.J.; Acharya, U.R. Automated detection and screening of traumatic brain injury (TBI) using computed tomography images: A comprehensive review and future perspectives.Int. J. Environ. Res. Public Health20211812649910.3390/ijerph1812649934208596
    [Google Scholar]
  46. SchwartzR.G. BrioschiM. O’YoungB. The american academy of thermology guidelines for neuro-musculoskeletal 2021: Infrared medical thermology and sympathetic skin response (SSR) studies.Pan Am J. Med. Thermol2021800218
    [Google Scholar]
  47. LiuQ. LiM. WangW. JinS. PiaoH. JiangY. LiN. YaoH. Infrared thermography in clinical practice: A literature review.Eur. J. Med. Res.20253013310.1186/s40001‑025‑02278‑z39815375
    [Google Scholar]
  48. SternM.V. SharovaE.V. ZhavoronkovaL.A. Methodical approach to fMRI assessment of motor connectome in patients after severe traumatic brain injury.General Reanimatol20231925159
    [Google Scholar]
  49. TanP. LimJ. MoiemenN. Imaging techniques used for wound healing assessment: A systematic review part 1 chronic wounds.European Burn Journal20212419421410.3390/ebj2040015
    [Google Scholar]
  50. ChuikoA.N. KopytovA.A. KopytovA.A. Determination of basic mechanical descriptions of bones clos on database computer tomography.Med. Imag.201220121102107
    [Google Scholar]
  51. OdéenH. ParkerD.L. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations.Prog. Nucl. Magn. Reson. Spectrosc.2019110346110.1016/j.pnmrs.2019.01.00330803693
    [Google Scholar]
  52. Diagnostic radiology physics: A handbook for teachers and students.ViennaInternational Atomic Energy Agency2014
    [Google Scholar]
  53. Guidelines for the Certification of Clinically Qualified Medical Physicists.ViennaInternational Atomic Energy Agency2021
    [Google Scholar]
  54. "On approval of qualification requirements for medical and pharmaceutical workers with higher education".2023
  55. KlenevskiiA.V. BogatovN.M. Effects of ionizing radiation detector characteristics on the results of measurements of percent depth doses in small photon fields.Biomed. Eng. 201953212512910.1007/s10527‑019‑09891‑3
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348365739250622144457
Loading
/content/journals/cphs/10.2174/0127723348365739250622144457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test