Skip to content
2000
image of History, Challenges, and Perspectives of CNS-Targeted Transdermal Formulations

Abstract

Central nervous system (CNS) disorders, such as Alzheimer’s disease (), Parkinson’s disease (), and Schizophrenia () present significant challenges for healthcare systems, both in terms of prevalence and the complexity of pharmacological treatment. While current therapies offer symptomatic relief, there is a high rate of failure in addressing the full spectrum of clinical symptoms and patient adherence issues, especially in long-term care. Since ancient times, various civilizations, including the Chinese, Egyptians, and indigenous South African cultures, have investigated and utilized the transdermal route for therapeutic and medicinal applications. Recent advances in transdermal drug delivery systems () offer a promising alternative to traditional routes of administration, enhancing drug absorption and minimizing side effects, such as gastrointestinal distress. This review explores the potential of for improving the pharmacotherapy of , , and . We also highlight the ongoing challenges in optimizing formulations, such as drug absorption through the skin, skin irritation, and maintaining therapeutic efficacy. Furthermore, the review discusses the progress in prodrug design strategies aimed at enhancing skin permeation and bioavailability, particularly in the context of CNS-targeted drugs. The need for continued research into technology is emphasized, as it holds promise for improving treatment adherence, patient quality of life, and caregiver burden, thereby advancing therapeutic options for CNS disorders.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128409331250915220233
2025-10-06
2025-12-20
Loading full text...

Full text loading...

References

  1. Hanif S. Muhammad P. Chesworth R. Rehman F.U. Qian R. Zheng M. Shi B. Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacol. Sin. 2020 41 7 936 953 10.1038/s41401‑020‑0429‑z 32467570
    [Google Scholar]
  2. Dementia. 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/dementia
  3. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  4. Atri A. The Alzheimer’s disease clinical spectrum. Med. Clin. North Am. 2019 103 2 263 293 10.1016/j.mcna.2018.10.009 30704681
    [Google Scholar]
  5. Selkoe D.J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 2001 81 2 741 766 10.1152/physrev.2001.81.2.741 11274343
    [Google Scholar]
  6. Zhao N. Liu C.C. Qiao W. Bu G. Apolipoprotein E. Apolipoprotein E, receptors, and modulation of Alzheimer’s disease. Biol. Psychiatry 2018 83 4 347 357 10.1016/j.biopsych.2017.03.003 28434655
    [Google Scholar]
  7. Horgusluoglu E. Neff R. Song W.M. Wang M. Wang Q. Arnold M. Krumsiek J. Galindo-Prieto B. Ming C. Nho K. Kastenmüller G. Han X. Baillie R. Zeng Q. Andrews S. Cheng H. Hao K. Goate A. Bennett D.A. Saykin A.J. Kaddurah-Daouk R. Zhang B. Integrative metabolomics‐genomics approach reveals key metabolic pathways and regulators of Alzheimer’s disease. Alzheimers Dement. 2022 18 6 1260 1278 10.1002/alz.12468 34757660
    [Google Scholar]
  8. Passeri E. Elkhoury K. Morsink M. Broersen K. Linder M. Tamayol A. Malaplate C. Yen F.T. Arab-Tehrany E. Alzheimer’s disease: Treatment strategies and their limitations. Int. J. Mol. Sci. 2022 23 22 13954 10.3390/ijms232213954 36430432
    [Google Scholar]
  9. Hampel H. Hardy J. Blennow K. Chen C. Perry G. Kim S.H. Villemagne V.L. Aisen P. Vendruscolo M. Iwatsubo T. Masters C.L. Cho M. Lannfelt L. Cummings J.L. Vergallo A. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5481 5503 10.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  10. Twarowski B. Herbet M. Inflammatory processes in Alzheimer’s disease—Pathomechanism, diagnosis and treatment: A review. Int. J. Mol. Sci. 2023 24 7 6518 10.3390/ijms24076518 37047492
    [Google Scholar]
  11. Weller J. Budson A. Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res 2018 7 F1000 Faculty Rev-1161 10.12688/f1000research.14506.1 30135715
    [Google Scholar]
  12. Ferrari C. Sorbi S. The complexity of Alzheimer’s disease: An evolving puzzle. Physiol. Rev. 2021 101 3 1047 1081 10.1152/physrev.00015.2020 33475022
    [Google Scholar]
  13. Vieira M.N.N. Forny-Germano L. Saraiva L.M. Sebollela A. Martinez A.M.B. Houzel J.C. De Felice F.G. Ferreira S.T. Soluble oligomers from a non‐disease related protein mimic Aβ‐induced tau hyperphosphorylation and neurodegeneration. J. Neurochem. 2007 103 2 736 748 10.1111/j.1471‑4159.2007.04809.x 17727639
    [Google Scholar]
  14. Brosch J.R. Farlow M.R. Risacher S.L. Apostolova L.G. Tau imaging in Alzheimer’s disease diagnosis and clinical trials. Neurotherapeutics 2017 14 1 62 68 10.1007/s13311‑016‑0490‑y 27873182
    [Google Scholar]
  15. Briggs R. Kennelly S.P. O’Neill D. Drug treatments in Alzheimer’s disease. Clin. Med. 2016 16 3 247 253 10.7861/clinmedicine.16‑3‑247 27251914
    [Google Scholar]
  16. Cummings J.L. Tong G. Ballard C. Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options. J. Alzheimers Dis. 2019 67 3 779 794 10.3233/JAD‑180766 30689575
    [Google Scholar]
  17. Schneider L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol. 2020 19 2 111 112 10.1016/S1474‑4422(19)30480‑6 31978357
    [Google Scholar]
  18. Brockmann R. Nixon J. Love B.L. Yunusa I. Impacts of FDA approval and medicare restriction on antiamyloid therapies for Alzheimer’s disease: Patient outcomes, healthcare costs, and drug development. Lancet Reg Health Am 2023 20 100467 10.1016/j.lana.2023.100467 36908502
    [Google Scholar]
  19. Jucker M. Walker L.C. Alzheimer’s disease: From immunotherapy to immunoprevention. Cell 2023 186 20 4260 4270 10.1016/j.cell.2023.08.021 37729908
    [Google Scholar]
  20. Cabreira V. Massano J. Parkinson's disease: Clinical review and update. Acta Med. Port. 2019 32 10 661 670 10.20344/amp.11978 31625879
    [Google Scholar]
  21. Parkinson disease. 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/parkinson-disease
  22. Dinis-Oliveira R.J. Remião F. Carmo H. Duarte J.A. Navarro A.S. Bastos M.L. Carvalho F. Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology 2006 27 6 1110 1122 10.1016/j.neuro.2006.05.012 16815551
    [Google Scholar]
  23. Beitz J.M. Parkinson's disease: A review. Front. Biosci. 2014 S6 1 65 74 10.2741/S415 24389262
    [Google Scholar]
  24. De Virgilio A. Greco A. Fabbrini G. Inghilleri M. Rizzo M.I. Gallo A. Conte M. Rosato C. Ciniglio Appiani M. de Vincentiis M. Parkinson’s disease: Autoimmunity and neuroinflammation. Autoimmun. Rev. 2016 15 10 1005 1011 10.1016/j.autrev.2016.07.022 27497913
    [Google Scholar]
  25. Pajares M. I Rojo A. Manda G. Boscá L. Cuadrado A. Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells 2020 9 7 1687 10.3390/cells9071687 32674367
    [Google Scholar]
  26. Uwishema O. Onyeaka H. Badri R. Yücel A.N. Korkusuz A.K. Ajagbe A.O. Abuleil A. Chaaya C. Alhendawi B.H.M. Chalhoub E. The understanding of Parkinson’s disease through genetics and new therapies. Brain Behav. 2022 12 5 e2577 10.1002/brb3.2577 35451243
    [Google Scholar]
  27. Zhang Y. Chen H. Li R. Sterling K. Song W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023 8 1 248 10.1038/s41392‑023‑01484‑7 37386015
    [Google Scholar]
  28. Mhyre T.R. Boyd J.T. Hamill R.W. Maguire-Zeiss K.A. Parkinson’s disease. Subcell. Biochem. 2012 65 389 455 10.1007/978‑94‑007‑5416‑4_16 23225012
    [Google Scholar]
  29. Poewe W. Non‐motor symptoms in Parkinson’s disease. Eur. J. Neurol. 2008 15 s1 Suppl. 1 14 20 10.1111/j.1468‑1331.2008.02056.x 18353132
    [Google Scholar]
  30. Gejman P.V. Sanders A.R. The etiology of schizophrenia. Medicina 2012 72 3 227 234 22763160
    [Google Scholar]
  31. Anticevic A. Schleifer C. Youngsun T.C. Emotional and cognitive dysregulation in schizophrenia and depression: Understanding common and distinct behavioral and neural mechanisms. Dialogues Clin. Neurosci. 2015 17 4 421 434 10.31887/DCNS.2015.17.4/aanticevic 26869843
    [Google Scholar]
  32. Tsuang M.T. Stone W.S. Faraone S.V. Schizophrenia: A multifactorial etiology. Dialogues Clin. Neurosci. 2000 2 3 257 266 10.31887/DCNS.2000.2.3/mtsuang 22034456
    [Google Scholar]
  33. Queirós T. Coelho F. Linhares L. Telles-Correia D. Schizophrenia: What non-psychiatrist physicians need to know. Acta Med. Port. 2019 32 1 70 77 10.20344/amp.10768 30753806
    [Google Scholar]
  34. Stępnicki P. Kondej M. Kaczor A.A. Current concepts and treatments of schizophrenia. Molecules 2018 23 8 2087 10.3390/molecules23082087 30127324
    [Google Scholar]
  35. Weintraub D. Aarsland D. Chaudhuri K.R. Dobkin R.D. Leentjens A.F.G. Rodriguez-Violante M. Schrag A. The neuropsychiatry of Parkinson’s disease: Advances and challenges. Lancet Neurol. 2022 21 1 89 102 10.1016/S1474‑4422(21)00330‑6 34942142
    [Google Scholar]
  36. Cavalcante D.A. Gadelha A. Noto C. How challenging is to manage agitated patients? Br. J. Psychiatry 2019 41 4 277 278 10.1590/1516‑4446‑2019‑4105 31365715
    [Google Scholar]
  37. Ramadon D. McCrudden M.T.C. Courtenay A.J. Donnelly R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res. 2022 12 4 758 791 10.1007/s13346‑021‑00909‑6 33474709
    [Google Scholar]
  38. Wong W.F. Ang K.P. Sethi G. Looi C.Y. Recent advancement of medical patch for transdermal drug delivery. Medicina 2023 59 4 778 10.3390/medicina59040778 37109736
    [Google Scholar]
  39. Prausnitz M.R. Langer R. Transdermal drug delivery. Nat. Biotechnol. 2008 26 11 1261 1268 10.1038/nbt.1504 18997767
    [Google Scholar]
  40. Al Hanbali O.A. Khan H.M.S. Sarfraz M. Arafat M. Ijaz S. Hameed A. Transdermal patches: Design and current approaches to painless drug delivery. Acta Pharm. 2019 69 2 197 215 10.2478/acph‑2019‑0016 31259729
    [Google Scholar]
  41. Araujo de Oliveira A.P. Romero Colmenares V.C. Diniz R. Freitas J.T.J. da Cruz C.M. Lages E.B. Ferreira L.A.M. Vieira R.P. Beraldo H. Memantine-derived schiff bases as transdermal prodrug candidates. ACS Omega 2022 7 14 11678 11687 10.1021/acsomega.1c06571 35449959
    [Google Scholar]
  42. Pastore M.N. Kalia Y.N. Horstmann M. Roberts M.S. Transdermal patches: History, development and pharmacology. Br. J. Pharmacol. 2015 172 9 2179 2209 10.1111/bph.13059 25560046
    [Google Scholar]
  43. Munn J.D. The history of anesthesia. Univ. West. Ont. Med. J. 1936 7 1 27 32
    [Google Scholar]
  44. Johnstone R.T. Louis S. Occupational medicine and industrial hygiene: With one hundred seventeen illustrations seven in color. Consulant in Industrial Health 1948 17 555
    [Google Scholar]
  45. Henshilwood C.S. d’Errico F. van Niekerk K.L. Coquinot Y. Jacobs Z. Lauritzen S.E. Menu M. García-Moreno R. A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa. Science 2011 334 6053 219 222 10.1126/science.1211535 21998386
    [Google Scholar]
  46. McMullen R.L. Dell’Acqua G. History of natural ingredients in cosmetics. Cosmetics 2023 10 3 71 10.3390/cosmetics10030071
    [Google Scholar]
  47. Huang Y. Yao P. Leung K.W. Wang H. Kong X.P. Dong T.T.X. Chen Y. Qin Q.W. Tsim K.W.K. The Chinese medicinal herbs of spleen-meridian property regulate body temperature in yeast-induced fever rats. Phytomedicine 2020 74 152815 10.1016/j.phymed.2018.12.038 30833146
    [Google Scholar]
  48. Wang X. Yue J. Guo S. Rahmatulla A. Li S. Liu Y. Chen Y. Dissolving microneedles: A transdermal drug delivery system for the treatment of rheumatoid arthritis. Int. J. Pharm. 2025 671 125206 10.1016/j.ijpharm.2025.125206 39799999
    [Google Scholar]
  49. Marwah H. Garg T. Goyal A.K. Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2016 23 2 564 578 10.3109/10717544.2014.935532 25006687
    [Google Scholar]
  50. Chen C.P. Chen C.C. Huang C.W. Chang Y.C. Evaluating molecular properties involved in transport of small molecules in stratum corneum: A quantitative structure-activity relationship for skin permeability. Molecules 2018 23 4 911 10.3390/molecules23040911 29662033
    [Google Scholar]
  51. Waters C. The development of the rotigotine transdermal patch: A historical perspective. Neurol. Clin. 2013 31 3 S37 S50 Suppl. 10.1016/j.ncl.2013.04.012 23931953
    [Google Scholar]
  52. Hirano M. Isono C. Sakamoto H. Ueno S. Kusunoki S. Nakamura Y. Rotigotine transdermal patch improves swallowing in dysphagic patients with Parkinson’s disease. Dysphagia 2015 30 4 452 456 10.1007/s00455‑015‑9622‑5 25966655
    [Google Scholar]
  53. Blesa R. Ballard C. Orgogozo J.M. Lane R. Thomas S.K. Caregiver preference for rivastigmine patches versus capsules for the treatment of Alzheimer disease. Neurology 2007 69 4_suppl_1 S23 S28 10.1212/01.wnl.0000281848.25142.11 17646620
    [Google Scholar]
  54. Rabin C.R. Siegel S.J. Delivery systems and dosing for antipsychotics. Current Antipsychotics. Gross G. Geyer M. Berlin, Heidelberg Springer 2012 212 267 298 10.1007/978‑3‑642‑25761‑2_11
    [Google Scholar]
  55. Stevens J.R. Justin Coffey M. Fojtik M. Kurtz K. Stern T.A. The use of transdermal therapeutic systems in psychiatric care: A primer on patches. Psychosomatics 2015 56 5 423 444 10.1016/j.psym.2015.03.007 26211981
    [Google Scholar]
  56. Kandiah N. Pai M.C. Senanarong V. Looi I. Ampil E. Park K.W. Karanam A.K. Christopher S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging 2017 12 697 707 10.2147/CIA.S129145 28458525
    [Google Scholar]
  57. Patel P.H. Gupta V. Rivastigmine. StatPearls StatPearls Publishing Treasure Island 2023 32491370
    [Google Scholar]
  58. Exelon® patch receives European Union approval, the first skin patch therapy to treat Alzheimer’s disease. 2025
    [Google Scholar]
  59. McAfee D.A. Hadgraft J. Lane M.E. Rotigotine: The first new chemical entity for transdermal drug delivery. Eur. J. Pharm. Biopharm. 2014 88 3 586 593 10.1016/j.ejpb.2014.08.007 25173087
    [Google Scholar]
  60. R Dongaonkar A. S Deshmukh P. S Deshmukh G. Folane P.N. Kale R.H. R Biyani K. A review on current effective medications in the treatment of schizophrenia. Int. J. Adv. Pharm. Biotechnol. 2020 6 3 1 4 10.38111/ijapb.20200603001
    [Google Scholar]
  61. Zhou M. Derakhshanian S. Rath A. Bertrand S. DeGraw C. Barlow R. Menard A. Kaye A.M. Hasoon J. Cornett E.M. Kaye A.D. Viswanath O. Urits I. Asenapine transdermal patch for the management of schizophrenia. Psychopharmacol. Bull. 2020 50 4 60 82 33012873
    [Google Scholar]
  62. Carrithers B. El-Mallakh R.S. Transdermal asenapine in schizophrenia: A systematic review. Patient Prefer. Adherence 2020 14 1541 1551 10.2147/PPA.S235104 32943849
    [Google Scholar]
  63. Pahwa M. Sleem A. Elsayed O.H. Good M.E. El-Mallakh R.S. New antipsychotic medications in the last decade. Curr. Psychiatry Rep. 2021 23 12 87 10.1007/s11920‑021‑01298‑w 34843030
    [Google Scholar]
  64. U.S. Food and Drug Administration Approved drug products with therapeutic equivalence evaluations. 45th ed. U.S. Food and Drug Administration Silver Spring, MD 2025 Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/approveddrug-products-therapeutic-equivalence-evaluations-orange-book.
    [Google Scholar]
  65. Leo A. Hansch C. Elkins D. Partition coefficients and their uses. Chem. Rev. 1971 71 6 525 616 10.1021/cr60274a001
    [Google Scholar]
  66. Ramteke K.H. Dhole S.N. Patil S.V. Transdermal drug delivery system: A review. Int. J. Adv. Sci. Res. 2012 3 1 22 35
    [Google Scholar]
  67. Ogiso T. Ito Y. Iwaki M. Yamamoto Y. Membrane-controlled transdermal therapeutic system containing clonazepam and anticonvulsant activity after its application. Chem. Pharm. Bull. 1989 37 2 446 449 10.1248/cpb.37.446 2743491
    [Google Scholar]
  68. Agrawal M.B. Patel M.M. Design, development and in vivo evaluation of clozapine loaded adhesive diffusion controlled system for the treatment of schizophrenia. J. Drug Deliv. Sci. Technol. 2021 64 102629 102629 10.1016/j.jddst.2021.102629
    [Google Scholar]
  69. Woo F.Y. Basri M. Reza Fard Masoumi H. Ahmad M. Ismail M. Formulation optimization of galantamine hydrobromide loaded gel drug reservoirs in transdermal patch for Alzheimer’s disease. Int. J. Nanomedicine 2015 10 3879 3886 10.2147/IJN.S80253 26089664
    [Google Scholar]
  70. Galipoğlu M. Erdal M.S. Güngör S. Biopolymer-based transdermal films of donepezil as an alternative delivery approach in Alzheimer’s disease treatment. AAPS PharmSciTech 2015 16 2 284 292 10.1208/s12249‑014‑0224‑6 25273029
    [Google Scholar]
  71. Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics 2015 7 3 90 105 10.3390/pharmaceutics7030090 26131647
    [Google Scholar]
  72. Qu F. Geng R. Liu Y. Zhu J. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics 2022 12 7 3372 3406 10.7150/thno.69999 35547773
    [Google Scholar]
  73. Ita K.B. Transdermal drug delivery: Progress and challenges. J. Drug Deliv. Sci. Technol. 2014 24 3 245 250 10.1016/S1773‑2247(14)50041‑X
    [Google Scholar]
  74. Chandrashekar N.S. Shobha Rani R.H. Physicochemical and pharmacokinetic parameters in drug selection and loading for transdermal drug delivery. Indian J. Pharm. Sci. 2008 70 1 94 96 10.4103/0250‑474X.40340 20390089
    [Google Scholar]
  75. Findling R.L. Bukstein O.G. Melmed R.D. López F.A. Sallee F.R. Arnold L.E. Pratt R.D.A. A randomized, double-blind, placebo-controlled, parallel-group study of methylphenidate transdermal system in pediatric patients with attention-deficit/hyperactivity disorder. J. Clin. Psychiatry 2008 69 1 149 159 10.4088/JCP.v69n0120 18312050
    [Google Scholar]
  76. LeWitt P.A. Lyons K.E. Pahwa R. Pahwa R. Advanced Parkinson disease treated with rotigotine transdermal system. Neurology 2007 68 16 1262 1267 10.1212/01.wnl.0000259516.61938.bb 17438216
    [Google Scholar]
  77. Tsolaki M. P2‐251: Side effects of Rivastigmine (Exelon) transdermal patch. Alzheimers Dement. 2009 5 4S_Part_11 493 10.1016/j.jalz.2009.04.565
    [Google Scholar]
  78. Ale I. Lachapelle J.M. Maibach H.I. Skin tolerability associated with transdermal drug delivery systems: An overview. Adv. Ther. 2009 26 10 920 935 10.1007/s12325‑009‑0075‑9 19967501
    [Google Scholar]
  79. Zhang Z.X. Hong Z. Wang Y.P. He L. Wang N. Zhao Z.X. Zhao G. Shang L. Weisskopf M. Callegari F. Strohmaier C. Rivastigmine patch in Chinese patients with probable Alzheimer’s disease: A 24‐week, randomized, double‐blind parallel‐group study comparing rivastigmine patch (9.5 mg/24 h) with capsule (6 mg Twice Daily). CNS Neurosci. Ther. 2016 22 6 488 496 10.1111/cns.12521 27012596
    [Google Scholar]
  80. Nazir E. Mushtaq M. A prospective study on the use of rivastigmine transdermal patch in Alzheimer’s dementia in a routine clinical setting. Dement. Neuropsychol. 2010 4 3 245 249 10.1590/S1980‑57642010DN40300014 29213693
    [Google Scholar]
  81. Grossberg G. Meng X. Velting D. P1‐122: A 24‐week, randomized, controlled trial of 13.3 mg/24 h versus 4.6 mg/24 h rivastigmine patch in patients with severe Alzheimer’s disease: Analysis of neuropsychiatric inventory items. Alzheimers Dement. 2015 11 7S_Part_8 387 P388 10.1016/j.jalz.2015.06.320
    [Google Scholar]
  82. Ueda K. Katayama S. Arai T. Furuta N. Ikebe S. Ishida Y. Kanaya K. Ouma S. Sakurai H. Sugitani M. Takahashi M. Tanaka T. Tsuno N. Wakutani Y. Shekhawat A. Das Gupta A. Kiyose K. Toriyama K. Nakamura Y. Efficacy, safety, and tolerability of switching from oral cholinesterase inhibitors to rivastigmine transdermal patch with 1-step titration in patients with mild to moderate Alzheimer's disease: A 24-week, open-label, multicenter study in Japan. Dement. Geriatr. Cogn. Disord. Extra 2019 9 2 302 318 10.1159/000501364 31572426
    [Google Scholar]
  83. Hauser R.A. Slawek J. Barone P. Dohin E. Surmann E. Asgharnejad M. Bauer L. Evaluation of rotigotine transdermal patch for the treatment of apathy and motor symptoms in Parkinson’s disease. BMC Neurol. 2016 16 1 90 10.1186/s12883‑016‑0610‑7 27267880
    [Google Scholar]
  84. Zhou C.Q. Li S.S. Chen Z.M. Li F.Q. Lei P. Peng G.G. Rotigotine transdermal patch in Parkinson’s disease: A systematic review and meta-analysis. PLoS One 2013 8 7 e69738 10.1371/journal.pone.0069738 23936090
    [Google Scholar]
  85. Koh J. Takahashi M. Sakata M. Yasui M. Yorozu S. Ito H. Preventive effect of a heparinoid-containing product on the application site reaction of the rotigotine transdermal patch in Parkinson’s disease: A pilot randomized clinical trial (the SkinHeRo study). Clin. Parkinsonism Relat. Disord. 2021 5 100105 10.1016/j.prdoa.2021.100105 34458718
    [Google Scholar]
  86. Iwata N. Ishigooka J. Kim W.H. Yoon B.H. Lin S.K. Sulaiman A.H. Cosca R. Wang L. Suchkov Y. Agarkov A. Watabe K. Matsui T. Sato T. Inoue Y. Higuchi T. Correll C.U. Kane J.M. Efficacy and safety of blonanserin transdermal patch in patients with schizophrenia: A 6-week randomized, double-blind, placebo-controlled, multicenter study. Schizophr. Res. 2020 215 408 415 10.1016/j.schres.2019.07.055 31471246
    [Google Scholar]
  87. Citrome L Komaroff M Starling B Byreddy S Terahara T Hasebe M. Efficacy of HP-3070, an asenapine transdermal system, on symptoms of hostility in adults with schizophrenia. J Clin Psychiatry 2022 83 4 21m14355 10.4088/jcp.21m14355
    [Google Scholar]
  88. Morris A.P. Brain K.R. Heard C.M. Skin permeation and ex vivo skin metabolism of O-acyl haloperidol ester prodrugs. Int. J. Pharm. 2009 367 1-2 44 50 10.1016/j.ijpharm.2008.09.013 18845232
    [Google Scholar]
  89. Liu KS Sung KC Al-Suwayeh SA Ku MC Chu CC Wang JJ Fang JY Enhancement of transdermal apomorphine delivery with a diester prodrug strategy. Eur J Pharm Biopharm 2011 78 3 422 431 10.1016/j.ejpb.2011.01.024
    [Google Scholar]
  90. del Rio-Sancho S. Serna-Jiménez C.E. Calatayud-Pascual M.A. Balaguer-Fernández C. Femenía-Font A. Merino V. López-Castellano A. Transdermal absorption of memantine – Effect of chemical enhancers, iontophoresis, and role of enhancer lipophilicity. Eur. J. Pharm. Biopharm. 2012 82 1 164 170 10.1016/j.ejpb.2012.06.005 22732268
    [Google Scholar]
  91. Beraldo H. Barreto A.M. Vieira R.P. Rebolledo A.P. Speziali N.L. Pinheiro C.B. Chapuis G. Structural studies and spectral characteristics of 4-benzoylpyridine thiosemicarbazone and N(4′)-phenyl-4-benzoylpyridine thiosemicarbazone. J. Mol. Struct. 2003 645 2-3 213 220 10.1016/S0022‑2860(02)00564‑1
    [Google Scholar]
  92. Vieira R.P. Lessa J.A. Ferreira W.C. Costa F.B. Bastos L.F.S. Rocha W.R. Coelho M.M. Beraldo H. Influence of susceptibility to hydrolysis and hydrophobicity of arylsemicarbazones on their anti-nociceptive and anti-inflammatory activities. Eur. J. Med. Chem. 2012 50 140 148 10.1016/j.ejmech.2012.01.048 22357114
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128409331250915220233
Loading
/content/journals/cpd/10.2174/0113816128409331250915220233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test