Skip to content
2000
image of Preparation and Evaluation of Sodium Alginate Nanoparticles Containing Recombinant Diphtheria Toxoid (CRM197) and their Immunogenicity in Mice

Abstract

Introduction

Recombinant protein vaccines against infectious diseases, based on immunogenic antigen identification and employing polymeric nanoparticles as a delivery system, can provoke immune responses comparable to or better than traditional vaccines. The production of a safe and immunogenic vaccine against diphtheria was achieved by preparing sodium alginate nanoparticles containing recombinant diphtheria toxoid (CRM).

Methods

Alginate nanoparticles loaded with CRM were prepared using the ionic-gelation method and thoroughly characterized. Safety and immunogenicity studies were conducted in an animal model for comparison with commercial vaccines. Antibody responses were evaluated using both qualitative and quantitative measurements, as determined by the toxin neutralization test (TNT) and indirect ELISA, respectively. IgG subclasses in the sera of immunized mice and possible pathological lesions in vital tissues of all immunized mouse groups were investigated.

Results

Nanoparticles with or without CRM were synthesized by the ionic gelation method. LE and LC measurements showed ˃80% and ˃20%, respectively, indicating stable and persistent release without a bursting pattern. studies showed safety and enhanced immunogenicity in mice immunized with the CRM-loaded sodium alginate nanoparticles, with higher levels of total anti-CRM IgG and subclasses than those induced by conventional vaccines.

Discussion

Reducing antigen usage in vaccine production while increasing immunogenicity and safety compared with traditional vaccines are the goals of new vaccine development, which were achieved in the current study.

Conclusion

Engineered alginate nanoparticles loaded with recombinant diphtheria antigen (CRM) demonstrated controlled and slow release, as well as safety and immunogenicity profiles against diphtheria. Nanoparticles containing CRM antigens equivalent to adult and children doses showed high levels of IgG1 and IgG2a, confirming the combined responses of the humoral and cellular immune systems.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128402345250905072744
2025-09-18
2025-11-09
Loading full text...

Full text loading...

References

  1. Murray P.R. Murray's Basic Medical Microbiology E-Book: Foundations and Cases Elsevier 2023
    [Google Scholar]
  2. Möller J. Nosratabadi F. Musella L. Hofmann J. Burkovski A. Corynebacterium diphtheriae proteome adaptation to cell culture medium and serum. Proteomes 2021 9 1 14 10.3390/proteomes9010014 33805816
    [Google Scholar]
  3. Truelove S.A. Keegan L.T. Moss W.J. Chaisson L.H. Macher E. Azman A.S. Lessler J. Clinical and epidemiological aspects of diphtheria: A systematic review and pooled analysis. Clin. Infect. Dis. 2020 71 1 89 97 10.1093/cid/ciz808 31425581
    [Google Scholar]
  4. Czajka U. Wiatrzyk A. Mosiej E. Formińska K. Zasada A.A. Changes in MLST profiles and biotypes of Corynebacterium diphtheriae isolates from the diphtheria outbreak period to the period of invasive infections caused by nontoxigenic strains in Poland (1950–2016). BMC Infect. Dis. 2018 18 1 121 10.1186/s12879‑018‑3020‑1 29523087
    [Google Scholar]
  5. Housey M. Zhang F. Miller C. Lyon-Callo S. McFadden J. Garcia E. Potter R. Vaccination with tetanus, diphtheria, and acellular pertussis vaccine of pregnant women enrolled in Medicaid - Michigan, 2011-2013. MMWR Morb. Mortal. Wkly. Rep. 2014 63 38 839 842 25254561
    [Google Scholar]
  6. Brewer J. (How) do aluminium adjuvants work? Immunol. Lett. 2006 102 1 10 15 10.1016/j.imlet.2005.08.002 16188325
    [Google Scholar]
  7. Healy C.M. Rench M.A. Baker C.J. Importance of timing of maternal combined tetanus, diphtheria, and acellular pertussis (Tdap) immunization and protection of young infants. Clin. Infect. Dis. 2013 56 4 539 544 10.1093/cid/cis923 23097585
    [Google Scholar]
  8. Reed S.G. Orr M.T. Fox C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013 19 12 1597 1608 10.1038/nm.3409 24309663
    [Google Scholar]
  9. Alving C.R. Peachman K.K. Rao M. Reed S.G. Adjuvants for human vaccines. Curr. Opin. Immunol. 2012 24 3 310 315 10.1016/j.coi.2012.03.008 22521140
    [Google Scholar]
  10. Ott L. Möller J. Burkovski A. Interactions between the re-emerging pathogen corynebacterium diphtheriae and host cells. Int. J. Mol. Sci. 2022 23 6 3298 10.3390/ijms23063298 35328715
    [Google Scholar]
  11. Simon N.C. Aktories K. Barbieri J.T. Novel bacterial ADP-ribosylating toxins: Structure and function. Nat. Rev. Microbiol. 2014 12 9 599 611 10.1038/nrmicro3310 25023120
    [Google Scholar]
  12. Malito E. Bursulaya B. Chen C. Surdo P.L. Picchianti M. Balducci E. Biancucci M. Brock A. Berti F. Bottomley M.J. Nissum M. Costantino P. Rappuoli R. Spraggon G. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc. Natl. Acad. Sci. USA 2012 109 14 5229 5234 10.1073/pnas.1201964109 22431623
    [Google Scholar]
  13. Mishra R.P.N. Yadav R.S.P. Jones C. Nocadello S. Minasov G. Shuvalova L.A. Anderson W.F. Goel A. Structural and immunological characterization of E. coli derived recombinant CRM197 protein used as carrier in conjugate vaccines. Biosci. Rep. 2018 38 5 BSR20180238 10.1042/BSR20180238 29875175
    [Google Scholar]
  14. Bröker M. Costantino P. DeTora L. McIntosh E.D. Rappuoli R. Biochemical and biological characteristics of cross-reacting material 197 (CRM197), a non-toxic mutant of diphtheria toxin: Use as a conjugation protein in vaccines and other potential clinical applications. Biologicals 2011 39 4 195 204 10.1016/j.biologicals.2011.05.004 21715186
    [Google Scholar]
  15. O’Hagan D.T. New generation vaccine adjuvants. Encyclopedia of Life Sciences John Wiley & Sons Ltd. 2007 1 7 10.1002/9780470015902.a0020177
    [Google Scholar]
  16. Soleimani Roudi P. Golian A. Haghparast A. Bassami M.R. Majidzadeh Heravi R. Vaccine adjuvants: Past, current and future. Majallah-i Danishgah-i Ulum-i Pizishki-i Gurgan 2018 20 2 1 16
    [Google Scholar]
  17. Maughan C.N. Preston S.G. Williams G.R. Particulate inorganic adjuvants: Recent developments and future outlook. J. Pharm. Pharmacol. 2015 67 3 426 449 10.1111/jphp.12352 25496339
    [Google Scholar]
  18. Peek L.J. Middaugh C.R. Berkland C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev. 2008 60 8 915 928 10.1016/j.addr.2007.05.017 18325628
    [Google Scholar]
  19. Lai J. Azad A.K. Sulaiman W.M.A.W. Kumarasamy V. Subramaniyan V. Alshehade S.A. Alginate-based encapsulation fabrication technique for drug delivery: An updated review of particle type, formulation technique, pharmaceutical ingredient, and targeted delivery system. Pharmaceutics 2024 16 3 370 10.3390/pharmaceutics16030370 38543264
    [Google Scholar]
  20. Wathoni N. Herdiana Y. Suhandi C. Mohammed A.F.A. El-Rayyes A. Narsa A.C. Chitosan/alginate-based nanoparticles for antibacterial agents delivery. Int. J. Nanomed. 2024 19 5021 5044 10.2147/IJN.S469572
    [Google Scholar]
  21. Essa D. Kondiah P.P.D. Choonara Y.E. Pillay V. The design of poly (lactide-co-glycolide) nanocarriers for medical applications. Front. Bioeng. Biotechnol. 2020 8 48 10.3389/fbioe.2020.00048 32117928
    [Google Scholar]
  22. Rowe R.C. Sheskey P. Quinn M. Handbook of Pharmaceutical Excipients. 6th Edition. Pharmaceutical Press 2009
    [Google Scholar]
  23. Bojorges H. Martínez-Abad A. Martínez-Sanz M. Rodrigo M.D. Vilaplana F. López-Rubio A. Fabra M.J. Structural and functional properties of alginate obtained by means of high hydrostatic pressure-assisted extraction. Carbohydr. Polym. 2023 299 120175 10.1016/j.carbpol.2022.120175 36876790
    [Google Scholar]
  24. Shaikh M.A.J. Alharbi K.S. Almalki W.H. Imam S.S. Albratty M. Meraya A.M. Alzarea S.I. Kazmi I. Al-Abbasi F.A. Afzal O. Altamimi A.S.A. Singh Y. Singh S.K. Dua K. Gupta G. Sodium alginate based drug delivery in management of breast cancer. Carbohydr. Polym. 2022 292 119689 10.1016/j.carbpol.2022.119689 35725179
    [Google Scholar]
  25. Dodero A. Alberti S. Gaggero G. Ferretti M. Botter R. Vicini S. Castellano M. An up‐to‐date review on alginate nanoparticles and nanofibers for biomedical and pharmaceutical applications. Adv. Mater. Interfaces 2021 8 22 2100809 10.1002/admi.202100809
    [Google Scholar]
  26. Lai G. Wu H. Yang K. Hu K. Zhou Y. Chen X. Fu F. Li J. Xie G. Wang H.F. Lv Z. Wu X. Progress of nanoparticle drug delivery system for the treatment of glioma. Front. Bioeng. Biotechnol. 2024 12 1403511 10.3389/fbioe.2024.1403511 38919382
    [Google Scholar]
  27. Vauthier C. Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009 26 5 1025 1058 10.1007/s11095‑008‑9800‑3 19107579
    [Google Scholar]
  28. Yue W. Zhang H.H. Yang Z.N. Xie Y. Preparation of low-molecular-weight sodium alginate by ozonation. Carbohydr. Polym. 2021 251 117104 10.1016/j.carbpol.2020.117104 33142642
    [Google Scholar]
  29. Green M.R. Sambrook J. Molecular cloning 4. 2012 Available from: https://rnajournal.cshlp.org/content/18/7/local/advertising.pdf
  30. Paques J.P. van der Linden E. van Rijn C.J.M. Sagis L.M.C. Preparation methods of alginate nanoparticles. Adv. Colloid Interface Sci. 2014 209 163 171 10.1016/j.cis.2014.03.009 24745976
    [Google Scholar]
  31. Ahdyani R. Novitasari L. Martien R. Danarti R. Formulation and characterization of timolol maleate-loaded nanoparticles gel by ionic gelation method using chitosan and sodium alginate. Int. J. Appl. Pharm. 2019 11 48 54 10.22159/ijap.2019v11i6.34983
    [Google Scholar]
  32. Zimet P. Mombrú Á.W. Faccio R. Brugnini G. Miraballes I. Rufo C. Pardo H. Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. Lebensm. Wiss. Technol. 2018 91 107 116 10.1016/j.lwt.2018.01.015
    [Google Scholar]
  33. Sabbagh H.A.K. Hussein-Al-Ali S.H. Hussein M.Z. Abudayeh Z. Ayoub R. Abudoleh S.M. A statistical study on the development of metronidazole-chitosan-alginate nanocomposite formulation using the full factorial design. Polymers 2020 12 4 772 10.3390/polym12040772 32244671
    [Google Scholar]
  34. Mokhtari S. Jafari S.M. Assadpour E. Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem. 2017 229 286 295 10.1016/j.foodchem.2017.02.071 28372176
    [Google Scholar]
  35. Samprasit W. Akkaramongkolporn P. Jaewjira S. Opanasopit P. Design of alpha mangostin-loaded chitosan/alginate controlled-release nanoparticles using genipin as crosslinker. J. Drug Deliv. Sci. Technol. 2018 46 312 321 10.1016/j.jddst.2018.05.029
    [Google Scholar]
  36. Lopes M.A. Abrahim-Vieira B. Oliveira C. Fonte P. Souza A.M. Lira T. Sequeira J.A. Rodrigues C.R. Cabral L.M. Sarmento B. Seiça R. Veiga F. Ribeiro A.J. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation. Int. J. Nanomedicine 2015 10 5865 5880 26425087
    [Google Scholar]
  37. Nait Mohamed F.A. Laraba-Djebari F. Development and characterization of a new carrier for vaccine delivery based on calcium-alginate nanoparticles: Safe immunoprotective approach against scorpion envenoming. Vaccine 2016 34 24 2692 2699 10.1016/j.vaccine.2016.04.035 27109567
    [Google Scholar]
  38. Baghbani F. Moztarzadeh F. Mohandesi J.A. Yazdian F. Mokhtari-Dizaji M. Hamedi S. Formulation design, preparation and characterization of multifunctional alginate stabilized nanodroplets. Int. J. Biol. Macromol. 2016 89 550 558 10.1016/j.ijbiomac.2016.05.033 27177456
    [Google Scholar]
  39. Rahaiee S. Shojaosadati S.A. Hashemi M. Moini S. Razavi S.H. Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. Int. J. Biol. Macromol. 2015 79 423 432 10.1016/j.ijbiomac.2015.04.041 25934104
    [Google Scholar]
  40. Aghamiri S. Noofeli M. Saffarian P. Salehi Najafabadi Z. Goudarzi H.R. Investigating preparation and characterisation of diphtheria toxoid‐loaded on sodium alginate nanoparticles. IET Nanobiotechnol. 2022 16 5 199 209 10.1049/nbt2.12088 35610737
    [Google Scholar]
  41. Aghamiri S. Noofeli M. Saffarian P. Salehi N.Z. Preparation and evaluation of sodium alginate nanoparticles containing CRM197 protein by ionic gelation method Subject Areas: Synthesis and Characterization of Nanostructures. Chem. Res. Nanomat. 2023 55 70
    [Google Scholar]
  42. Manual for quality control of diphtheria, tetanus and pertussis vaccines. 2013 Available from: https://www.who.int/publications/i/item/WHO-IVB-11.-11
  43. Forster R. Study designs for the nonclinical safety testing of new vaccine products. J. Pharmacol. Toxicol. Methods 2012 66 1 1 7 10.1016/j.vascn.2012.04.003 22561062
    [Google Scholar]
  44. Porsolt R.D. Picard S. Lacroix P. International safety pharmacology guidelines (ICH S7A and S7B): Where do we go from here? Drug Develop. Res. 2005 64 2 83 89 10.1002/ddr.10411
    [Google Scholar]
  45. Greaves P. Histopathology of Preclinical Toxicity Studies Academic Press 2011
    [Google Scholar]
  46. Percy D.H. Barthold S.W. Pathology of Laboratory Rodents and Rabbits 2013
    [Google Scholar]
  47. Kumar V. Abbas A.K. Aster J.C. Robbins Basic Pathology E-Book Elsevier Health Sciences 2012
    [Google Scholar]
  48. Kontopoulou K. Nakas C.T. Papazisis G. Significant increase in antibody titers after the 3rd booster dose of the Pfizer–BioNTech mRNA COVID-19 vaccine in healthcare workers in Greece. Vaccines 2022 10 6 876 10.3390/vaccines10060876 35746484
    [Google Scholar]
  49. Exavier M.M. Paul Hanna M. Muscadin E. Freishstat R.J. Brisma J.P. Canarie M.F. Diphtheria in children in northern Haiti. J. Trop. Pediatr. 2019 65 2 183 187 10.1093/tropej/fmy021 29688558
    [Google Scholar]
  50. Dureab F. Al-Sakkaf M. Ismail O. Kuunibe N. Krisam J. Müller O. Jahn A. Diphtheria outbreak in Yemen: The impact of conflict on a fragile health system. Confl. Health 2019 13 1 19 10.1186/s13031‑019‑0204‑2 31139250
    [Google Scholar]
  51. Page K.R. Doocy S. Reyna Ganteaume F. Castro J.S. Spiegel P. Beyrer C. Venezuela’s public health crisis: A regional emergency. Lancet 2019 393 10177 1254 1260 10.1016/S0140‑6736(19)30344‑7 30871722
    [Google Scholar]
  52. Raad I.I. Chaftari A.M. Dib R.W. Graviss E.A. Hachem R. Emerging outbreaks associated with conflict and failing healthcare systems in the Middle East. Infect. Control Hosp. Epidemiol. 2018 39 10 1230 1236 10.1017/ice.2018.177 30099975
    [Google Scholar]
  53. Lodeiro-Colatosti A. Reischl U. Holzmann T. Hernández-Pereira C.E. Rísquez A. Paniz-Mondolfi A.E. Diphtheria outbreak in amerindian communities, Wonken, Venezuela, 2016–2017. Emerg. Infect. Dis. 2018 24 7 1340 1344 10.3201/eid2407.171712 29912686
    [Google Scholar]
  54. Sharma N.C. Efstratiou A. Mokrousov I. Mutreja A. Das B. Ramamurthy T. Diphtheria. Nat. Rev. Dis. Primers 2019 5 1 81 10.1038/s41572‑019‑0131‑y 31804499
    [Google Scholar]
  55. Stratton K. Ford A. Rusch E. Clayton E.W. Diphtheria toxoid–, tetanus toxoid–, and acellular pertussis–containing vaccines, adverse effects of vaccines: Evidence and causality. Washington, D.C. National Academies Press 2011
    [Google Scholar]
  56. Shafiee F. Aucoin M.G. Jahanian-Najafabadi A. Targeted diphtheria toxin-based therapy: a review article. Front. Microbiol. 2019 10 2340 10.3389/fmicb.2019.02340 31681205
    [Google Scholar]
  57. Wagner V. Hüsing B. Gaisser S. Bock A.-K. Nanomedicine: Drivers for development and possible impacts. 2008 Available from: https://publications.jrc.ec.europa.eu/repository/handle/JRC46744
  58. Elumalai K. Srinivasan S. Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed. Technol. 2024 5 109 122 10.1016/j.bmt.2023.09.001
    [Google Scholar]
  59. Yuan J. Guo L. Wang S. Liu D. Qin X. Zheng L. Tian C. Han X. Chen R. Yin R. Preparation of self-assembled nanoparticles of ε-polylysine-sodium alginate: A sustained-release carrier for antigen delivery. Colloids Surf. B Biointerfaces 2018 171 406 412 10.1016/j.colsurfb.2018.07.058 30071482
    [Google Scholar]
  60. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  61. Singh A. Misra R. Mohanty C. Sahoo S.K. Applications of nanotechnology in vaccine delivery. Int. J. Green Nanotechnol. Biomed. 2010 2 1 B25 B45
    [Google Scholar]
  62. Idrees H. Zaidi S.Z.J. Sabir A. Khan R.U. Zhang X. Hassan S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials 2020 10 10 1970 10.3390/nano10101970 33027891
    [Google Scholar]
  63. Oyewumi M.O. Kumar A. Cui Z. Nano-microparticles as immune adjuvants: Correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines 2010 9 9 1095 1107 10.1586/erv.10.89 20822351
    [Google Scholar]
  64. Gutierro I. Hernández R.M. Igartua M. Gascón A.R. Pedraz J.L. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 2002 21 1-2 67 77 10.1016/S0264‑410X(02)00435‑8 12443664
    [Google Scholar]
  65. Zolnik B.S. González-Fernández Á. Sadrieh N. Dobrovolskaia M.A. Nanoparticles and the immune system. Endocrinology 2010 151 2 458 465 10.1210/en.2009‑1082 20016026
    [Google Scholar]
  66. Vila A. Sánchez A. Janes K. Behrens I. Kissel T. Jato J.L.V. Alonso M.J. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur. J. Pharm. Biopharm. 2004 57 1 123 131 10.1016/j.ejpb.2003.09.006 14729088
    [Google Scholar]
  67. Sahoo N. Sahoo R.K. Biswas N. Guha A. Kuotsu K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int. J. Biol. Macromol. 2015 81 317 331 10.1016/j.ijbiomac.2015.08.006 26277745
    [Google Scholar]
  68. Choi K.Y. Min K.H. Na J.H. Choi K. Kim K. Park J.H. Kwon I.C. Jeong S.Y. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: Synthesis, characterization, and in vivo biodistribution. J. Mater. Chem. 2009 19 24 4102 4107 10.1039/b900456d
    [Google Scholar]
  69. Li P. Luo Z. Liu P. Gao N. Zhang Y. Pan H. Liu L. Wang C. Cai L. Ma Y. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J. Control. Release 2013 168 3 271 279 10.1016/j.jconrel.2013.03.025 23562637
    [Google Scholar]
  70. Han J. Zhao D. Li D. Wang X. Jin Z. Zhao K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers 2018 10 1 31 10.3390/polym10010031 30966075
    [Google Scholar]
  71. Peng D. Huang K. Liu Y. Liu S. Preparation of novel polymeric microspheres for controlled release of finasteride. Int. J. Pharm. 2007 342 1-2 82 86 10.1016/j.ijpharm.2007.05.002 17580108
    [Google Scholar]
  72. Mi F.L. Sung H.W. Shyu S.S. Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydr. Polym. 2002 48 1 61 72 10.1016/S0144‑8617(01)00212‑0
    [Google Scholar]
  73. Choukaife H. Doolaanea A.A. Alfatama M. Alginate nanoformulation: Influence of process and selected variables. Pharmaceuticals (Basel) 2020 13 11 335 10.3390/ph13110335 33114120
    [Google Scholar]
  74. Heyman B. Antibody mediated regulation of humoral immunity. In: Molecular and Cellular Mechanisms of Antibody Activity. Springer New York, NY 2013 221 249
    [Google Scholar]
  75. Vidarsson G. Dekkers G. Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 2014 5 520 10.3389/fimmu.2014.00520 25368619
    [Google Scholar]
  76. Mosley Y.Y.C. Radder J.E. HogenEsch H. H. HogenEsch, Genetic variation in the magnitude and longevity of the IgG subclass response to a diphtheria-tetanus-acellular pertussis (DTaP) vaccine in mice. Vaccines 2019 7 4 124 10.3390/vaccines7040124 31547158
    [Google Scholar]
  77. Bramwell V.W. Somavarapu S. Outschoorn I. Alpar H.O. Adjuvant action of melittin following intranasal immunisation with tetanus and diphtheria toxoids. J. Drug Target. 2003 11 8-10 525 530 10.1080/10611860410001670080 15203921
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128402345250905072744
Loading
/content/journals/cpd/10.2174/0113816128402345250905072744
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test