Skip to content
2000
image of Exploring the Mechanism of Bu Zhong Yi Qi Decoction in Treating Sepsis-induced Acute Lung Injury based on Network Pharmacology and Experimental Verification

Abstract

Introduction

Sepsis-induced acute lung injury (S-ALI) is one of the diseases with a very high fatality rate. However, the traditional Chinese medicine compound Buzhong Yiqi Decoction (BZYQD) has an excellent effect in the treatment of S-ALI. Nevertheless, its mechanism of action is still unclear. In this study, we explored the molecular mechanisms of S-ALI injury treated with buzhong yiqi decoction through network pharmacology, in combination with in vivo experimental validation.

Methods

Traditional Chinese medicine system pharmacology (TCMSP) database was used to screen thechemical composition of BZYQD and its action targets; Multiple databases were used to collect target genesfor-S-ALI, including OMIM, TTD, GeneCards, and DrugBank; The STRING database was used for the protein-protein interaction (PPI) analysis of the common targets of the BZYQD and the S-ALI; The DAVID databasewas used for GO and KEGG analysis; molecular docking was used to detect the binding capacity of corecomponents and targets. HE staining was used to visualize the pathology of lung tissue in each group; ELISA wasused to detect the levels of inflammatory factors (IL-1β, IL-6, IL-8, NF-κB and TNF-α) and oxidative stressrelatedfactors (LDH, CK-MB, SOD, GSH-Px); The qPCR and Western blot were used to examine the mRNAand protein expression of IL-1β, IL-6, TNF-α NF-κB, p-NF-κB, PI3K, p-PI3K, AKT, and IKKα.

Results

113 chemical components and 226 targets were screened from BZYQD; 9059 S-ALI-related geneswere screened out, with a total of 228 intersecting targets between BZYQD and S-ALI. Stigmasterol, quercetin, and isorhamnetin are the core components of BZYQD, PPI analysis shows that AKT1, IL6, TNF, andIL1B are the core targets of BZYQD for treating S-ALI, and molecular docking results show that the corecomponents have high binding activity with the target; Enrichment analysis shows that these core targets arerelated to the TNF signaling pathway. In vivo experimental studies have found that BZYQD can improve thedegree of inflammatory infiltration and edema in lung tissue of S-ALI model mice, reduce the expression ofIL-6, IL-1β, IL-8, TNF-α, LDH, CK-MB, and NF-κB in serum (P0.05), as well as the mRNA and proteinexpression of IL-6, IL-1β, TNF-α, NF-κB, p-NF-κB, PI3K, p-PI3K, AKT, and IKKα in lung tissue (P0.05),and levels of SOD and GSH-Px were increased (P0.05).

Discussion

The action targets of the main chemical components of BZYQD are TNF, AKT, and IL6. Thesetargets can promote the activation of PI3K and TNF pathways and mediate the occurrence of inflammationand oxidative stress, which provides inspiration for the treatment of S-ALI. However, the results of this study still need to be verified in combination with in vitro approaches.

Conclusion

This study suggests that the mechanism of BZYQD in treating S-ALI may be achieved by inhibiting the TNF and PI3K signaling pathway and reducing inflammation and oxidative stress levels.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128397243250902131510
2025-09-30
2025-11-04
Loading full text...

Full text loading...

References

  1. Singer M. Deutschman C.S. Seymour C.W. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016 315 8 801 810 10.1001/jama.2016.0287 26903338
    [Google Scholar]
  2. Rodríguez A. Martín-Loeches I. Yébenes J.C. New definition of sepsis and septic shock: What does it give us? Med. Intensiva 2017 41 1 38 40 10.1016/j.medin.2016.03.008 27255771
    [Google Scholar]
  3. Xu X. Zhang Q. Lv Z. Unraveling the deadly dance: Endothelial cells and neutrophils in sepsis-induced acute lung injury/acute respiratory distress syndrome. Front. Cell Dev. Biol. 2025 13 1551138 10.3389/fcell.2025.1551138 40476000
    [Google Scholar]
  4. Li Z. Yu Y. Bu Y. Targeting macrophagic RasGRP1 with catechin hydrate ameliorates sepsis-induced multiorgan dysfunction. Phytomedicine 2024 130 155733 10.1016/j.phymed.2024.155733 38759314
    [Google Scholar]
  5. Song L. Li M. Zhang T. Huang L. Ying J. Ying L. Association between high-flow nasal cannula use and mortality in patients with sepsis-induced acute lung injury: A retrospective propensity score-matched cohort study. BMC Pulm. Med. 2024 24 1 197 10.1186/s12890‑024‑03022‑9 38649913
    [Google Scholar]
  6. Moazed F. Hendrickson C. Jauregui A. Cigarette smoke exposure and acute respiratory distress syndrome in sepsis: Epidemiology, clinical features, and biologic markers. Am. J. Respir. Crit. Care Med. 2022 205 8 927 935 10.1164/rccm.202105‑1098OC 35050845
    [Google Scholar]
  7. Gong H. Chen Y. Chen M. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome. Front. Med. 2022 9 1043859 10.3389/fmed.2022.1043859 36452899
    [Google Scholar]
  8. Qiao X. Yin J. Zheng Z. Li L. Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: Pathogenesis and therapeutic implications. Cell Commun. Signal. 2024 22 1 241 10.1186/s12964‑024‑01620‑y 38664775
    [Google Scholar]
  9. Li H. Liu Q. Zhu C. β-Nicotinamide mononucleotide activates NAD+/SIRT1 pathway and attenuates inflammatory and oxidative responses in the hippocampus regions of septic mice. Redox Biol. 2023 63 102745 10.1016/j.redox.2023.102745 37201414
    [Google Scholar]
  10. Li X. Xiong Q. Yang Q. PTPRO inhibits LPS-induced apoptosis in alveolar epithelial cells. Biochem. Biophys. Res. Commun. 2024 718 150083 10.1016/j.bbrc.2024.150083 38735138
    [Google Scholar]
  11. Li X. Lin Z. Xu S. Zhang N. Zhou J. Liao B. Knockdown of KBTBD7 attenuates septic lung injury by inhibiting ferroptosis and improving mitochondrial dysfunction. Int. Immunopharmacol. 2024 133 112129 10.1016/j.intimp.2024.112129 38652964
    [Google Scholar]
  12. Zeng H. Zhou Y. Liu Z. Liu W. MiR-21-5p modulates LPS-induced acute injury in alveolar epithelial cells by targeting SLC16A10. Sci. Rep. 2024 14 1 11160 10.1038/s41598‑024‑61777‑x 38750066
    [Google Scholar]
  13. Sun R. Ding J. Yang Y. Trichinella spiralis alleviates LPS-induced acute lung injury by modulating the protective Th2 immune response. Vet. Parasitol. 2025 333 110206 10.1016/j.vetpar.2024.110206 38797638
    [Google Scholar]
  14. Wu D. Spencer C.B. Ortoga L. Zhang H. Miao C. Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury. Redox Biol. 2024 74 103194 10.1016/j.redox.2024.103194 38852200
    [Google Scholar]
  15. Yu J. Fu Y. Zhang N. Extracellular histones promote TWIK2-dependent potassium efflux and associated NLRP3 activation in alveolar macrophages during sepsis-induced lung injury. Inflamm. Res. 2024 73 7 1137 1155 10.1007/s00011‑024‑01888‑3 38733398
    [Google Scholar]
  16. Li X.B. Liu J.L. Zhao S. Recombinant Klotho protein protects pulmonary alveolar epithelial cells against sepsis-induced apoptosis by inhibiting the Bcl-2/Bax/caspase-3 pathway. Adv. Clin. Exp. Med. 2024 34 1 123 124 10.17219/acem/184639 38742739
    [Google Scholar]
  17. Ping K. Yang R. Chen H. Gypenoside XLIX activates the Sirt1/Nrf2 signaling pathway to inhibit NLRP3 inflammasome activation to alleviate septic acute lung injury. Inflammation 2024 48 1 42 60 10.1007/s10753‑024‑02041‑2 38717633
    [Google Scholar]
  18. Li X. Wang S. Luo M. Carnosol alleviates sepsis‐induced pulmonary endothelial barrier dysfunction by targeting nuclear factor erythroid2‐related factor 2/sirtuin‐3 signaling pathway to attenuate oxidative damage. Phytother. Res. 2024 38 5 2182 2197 10.1002/ptr.8138 38414287
    [Google Scholar]
  19. Dong Y. Li T. Wang S. Bu zhong Yiqi Decoction ameliorates mild cognitive impairment by improving mitochondrial oxidative stress damage via the SIRT3/MnSOD/OGG1 pathway. J. Ethnopharmacol. 2024 331 118237 10.1016/j.jep.2024.118237 38688355
    [Google Scholar]
  20. Li G. Ding J. Zhang Y. Wang X. The clinical application and pharmacological mechanism of Bu-Zhong-Yi-Qi decoction for treating cancer-related fatigue: An overview. Biomed. Pharmacother. 2022 156 113969 10.1016/j.biopha.2022.113969 36411646
    [Google Scholar]
  21. Kang Y. Gao Y. Li X. Bupleurum chinense exerts a mild antipyretic effect on LPS-induced pyrexia rats involving inhibition of peripheral TNF-α production. J. Ethnopharmacol. 2023 310 116375 10.1016/j.jep.2023.116375 36934787
    [Google Scholar]
  22. Zhao H. Li S. Zhang H. Wang G. Xu G. Zhang H. Saikosaponin A protects against experimental sepsis via inhibition of NOD2-mediated NF-κB activation. Exp. Ther. Med. 2015 10 2 823 827 10.3892/etm.2015.2558 26622400
    [Google Scholar]
  23. Yang H. Yin N. Gu Q. Astragaloside IV reduces lung injury in lethal sepsis via promoting treg cells expansion and inhibiting inflammatory responses. Pak. J. Pharm. Sci. 2023 36 6 1709 1718 38124410
    [Google Scholar]
  24. Feng J. Li Y. Liu J. Preliminary investigation on the mechanism of anti-periodontitis effect of Scutellariae Radix based on bioinformatics analysis and in vitro verification. Heliyon 2024 10 16 35744 10.1016/j.heliyon.2024.e35744 39224355
    [Google Scholar]
  25. Miao J. Wei C. Wang H.L. Mechanism of Chaihuang-Yishen formula to attenuate renal fibrosis in the treatment of chronic kidney disease: Insights from network pharmacology and experimental validation. Heliyon 2024 10 16 35728 10.1016/j.heliyon.2024.e35728 39220918
    [Google Scholar]
  26. Jiang H. Zhang J. Li Q. Zhou Y. Integrating network pharmacology and bioinformatics to explore the mechanism of Xiaojian Zhongtang in treating major depressive disorder: An observational study. Medicine 2024 103 38 39726 10.1097/MD.0000000000039726 39312335
    [Google Scholar]
  27. Ma Q. Liu Y. Zhang Q. Integrating network pharmacology, molecular docking and experimental verification to reveal the mechanism of artesunate in inhibiting choroidal melanoma. Front. Pharmacol. 2024 15 1448381 10.3389/fphar.2024.1448381 39185308
    [Google Scholar]
  28. Hu M. Du H. Xu Y. Wang Y. Gentiopicroside ameliorates sepsis‐induced acute lung injury via inhibiting inflammatory response. Can. Respir. J. 2024 2024 1 1068326 10.1155/2024/1068326 39268525
    [Google Scholar]
  29. Kang X. Jia M. Zhao L. Zhang S. Bu-Zhong-Yi-Qi granule enhances colonic tight junction integrity via TLR4/NF-κB/MLCK signaling pathway in ulcerative colitis rats. Evid. Based Complement. Alternat. Med. 2021 2021 1 12 10.1155/2021/6657141 33763148
    [Google Scholar]
  30. Xue W.M.J. Wang Z.F. Multaneous determination of 3 active constituents in buzhong yiqi pills by HPLC. China Pharmacy 2014 16 1524 1526
    [Google Scholar]
  31. Li W. Ma Z. Su C. The hepatoprotective effect of sodium butyrate on hepatic inflammatory injury mediated by the NLRP3 inflammatory pathway in subchronic fluoride-exposed mice. Mol. Biol. Rep. 2024 51 1 1022 10.1007/s11033‑024‑09926‑3 39340679
    [Google Scholar]
  32. Wang D. Xie D. Meng S. Role and molecular mechanisms of HuangQiSiJunZi decoction for treating triple-negative breast cancer as explored via network pharmacology and bioinformatics analyses. BMC Cancer 2024 24 1 1217 10.1186/s12885‑024‑12957‑5 39350059
    [Google Scholar]
  33. Xu Y. Zhang J. Li X. Erjingwan and Alzheimer’s disease: Research based on network pharmacology and experimental confirmation. Front. Pharmacol. 2024 15 1328334 10.3389/fphar.2024.1328334 38741585
    [Google Scholar]
  34. Chen X. Chen J. Ren Y. β-Sitosterol enhances lung epithelial cell permeability by suppressing the NF-κB signaling pathway. Discov. Med. 2023 35 179 946 955 10.24976/Discov.Med.202335179.90 38058059
    [Google Scholar]
  35. Zhou B. Li J. Liang X. β-sitosterol ameliorates influenza A virus-induced proinflammatory response and acute lung injury in mice by disrupting the cross-talk between RIG-I and IFN/STAT signaling. Acta Pharmacol. Sin. 2020 41 9 1178 1196 10.1038/s41401‑020‑0403‑9 32504068
    [Google Scholar]
  36. Deng S. Li J. Li L. Quercetin alleviates lipopolysaccharide induced acute lung injury by inhibiting ferroptosis via the Sirt1/Nrf2/Gpx4 pathway. Int. J. Mol. Med. 2023 52 6 118 10.3892/ijmm.2023.5321 37888753
    [Google Scholar]
  37. Chen L. Song C. Zhang Y. Quercetin protects against LPS-induced lung injury in mice via SIRT1-mediated suppression of PKM2 nuclear accumulation. Eur. J. Pharmacol. 2022 936 175352 10.1016/j.ejphar.2022.175352 36309049
    [Google Scholar]
  38. Yang B. Ma L. Wei Y. Isorhamnetin alleviates lipopolysaccharide-induced acute lung injury by inhibiting mTOR signaling pathway. Immunopharmacol. Immunotoxicol. 2022 44 3 387 399 10.1080/08923973.2022.2052892 35306954
    [Google Scholar]
  39. Li Y. Chi G. Shen B. Tian Y. Feng H. Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling. Inflammation 2016 39 4 1291 1301 10.1007/s10753‑016‑0361‑z 27138362
    [Google Scholar]
  40. Gao M. Zhu X. Gao X. Kaempferol mitigates sepsis-induced acute lung injury by modulating the SphK1/S1P/S1PR1/MLC2 signaling pathway to restore the integrity of the pulmonary endothelial cell barrier. Chem. Biol. Interact. 2024 398 111085 10.1016/j.cbi.2024.111085 38823539
    [Google Scholar]
  41. Rabha D.J. Singh T.U. Rungsung S. Kaempferol attenuates acute lung injury in caecal ligation and puncture model of sepsis in mice. Exp. Lung Res. 2018 44 2 63 78 10.1080/01902148.2017.1420271 29393707
    [Google Scholar]
  42. Zhao M. Li C. Shen F. Wang M. Jia N. Wang C. Naringenin ameliorates LPS-induced acute lung injury through its anti-oxidative and anti-inflammatory activity and by inhibition of the PI3K/AKT pathway. Exp. Ther. Med. 2017 14 3 2228 2234 10.3892/etm.2017.4772 28962147
    [Google Scholar]
  43. Song Z. Yao C. Yin J. Genetic variation in the TNF receptor-associated factor 6 gene is associated with susceptibility to sepsis-induced acute lung injury. J. Transl. Med. 2012 10 1 166 10.1186/1479‑5876‑10‑166 22901274
    [Google Scholar]
  44. Song Z. Song Y. Yin J. Genetic variation in the TNF gene is associated with susceptibility to severe sepsis, but not with mortality. PLoS One 2012 7 9 46113 10.1371/journal.pone.0046113 23029405
    [Google Scholar]
  45. Carrasco-Garcia E. Moreno M. Moreno-Cugnon L. Matheu A. Increased Arf/p53 activity in stem cells, aging and cancer. Aging Cell 2017 16 2 219 225 10.1111/acel.12574 28101907
    [Google Scholar]
  46. Fischer M. Gene regulation by the tumor suppressor p53 – The omics era. Biochim. Biophys. Acta Rev. Cancer 2024 1879 4 189111 10.1016/j.bbcan.2024.189111 38740351
    [Google Scholar]
  47. Sergio L.P.S. Lucinda L.M.F. Reboredo M.M. Emphysema induced by elastase alters the mRNA relative levels from DNA repair genes in acute lung injury in response to sepsis induced by lipopolysaccharide administration in Wistar rats. Exp. Lung Res. 2018 44 2 79 88 10.1080/01902148.2017.1422158 29419339
    [Google Scholar]
  48. Liao Q. Chen W. Tong Z. Shufeng Jiedu capsules protect rats against LPS-induced acute lung injury via activating NRF2-associated antioxidant pathway. Histol. Histopathol. 2021 36 3 317 324 33346364
    [Google Scholar]
  49. Huang S.W. Hsu M.J. Chen H.C. Suppression of lipopolysaccharide-induced COX-2 expression via p38MAPK, JNK, and C/EBPβ phosphorylation inhibition by furomagydarin A, a benzofuran glycoside from Magydaris pastinacea. J. Enzyme Inhib. Med. Chem. 2024 39 1 2287420 10.1080/14756366.2023.2287420 38058285
    [Google Scholar]
  50. Pańczyszyn-Trzewik P. Sowa-Kućma M. Misztak P. Tabecka-Lonczynska A. Stachowicz K. Time-dependent dual mode of action of COX-2 inhibition on mouse serum corticosterone levels. Steroids 2024 207 109438 10.1016/j.steroids.2024.109438 38723842
    [Google Scholar]
  51. Chang B. Wang Z. Cheng H. Acacetin protects against sepsis-induced acute lung injury by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis. Innate Immun. 2024 30 1 11 20 10.1177/17534259231216852 38043934
    [Google Scholar]
  52. Wang L. Zhao M. Suppression of NOD-like receptor protein 3 inflammasome activation and macrophage M1 polarization by hederagenin contributes to attenuation of sepsis-induced acute lung injury in rats. Bioengineered 2022 13 3 7262 7276 10.1080/21655979.2022.2047406 35266443
    [Google Scholar]
  53. Wang Y. Nie X.B. Liu S.J. Liu J. Bian W.H. Curcumol attenuates endometriosis by inhibiting the JAK2/STAT3 signaling pathway. Med. Sci. Monit. 2022 28 934914 10.12659/MSM.934914 35279667
    [Google Scholar]
  54. Xu Y. Wu F. Qin C. Lin Y. Paradoxical role of phosphorylated STAT3 in normal fertility and the pathogenesis of adenomyosis and endometriosis. Biol. Reprod. 2024 110 1 5 13 10.1093/biolre/ioad148 37930185
    [Google Scholar]
  55. Wu J. Yan X. Jin G. Ulinastatin protects rats from sepsis‐induced acute lung injury by suppressing the JAK‐STAT3 pathway. J. Cell. Biochem. 2019 120 2 2554 2559 10.1002/jcb.27550 30242880
    [Google Scholar]
  56. Hu M. Yang J. Xu Y. Isoorientin suppresses sepsis-induced acute lung injury in mice by activating an EPCR-dependent JAK2/] STAT3 pathway. J. Mol. Histol. 2022 53 1 97 109 10.1007/s10735‑021‑10039‑5 34787735
    [Google Scholar]
  57. Liu Y. Yang H. Zhu F. Ouyang Y. Pan P. Inhibition of STAT3 phosphorylation by colchicine regulates NLRP3 activation to alleviate sepsis-induced acute lung injury. Inflammopharmacology 2023 31 4 2007 2021 10.1007/s10787‑023‑01199‑9 37115345
    [Google Scholar]
  58. Feng D. Guo R. Liao W. Li J. Cao S. Plantamajoside alleviates acute sepsis-induced organ dysfunction through inhibiting the TRAF6/NF-κB axis. Pharm. Biol. 2023 61 1 897 906 10.1080/13880209.2023.2215849 37288729
    [Google Scholar]
  59. Das S. Mukherjee T. Mohanty S. Impact of NF-κB signaling and Sirtuin-1 protein for targeted inflammatory intervention. Curr. Pharm. Biotechnol. 2024 26 8 1207 1220 10.2174/0113892010301469240409082212 38638042
    [Google Scholar]
  60. Raunak Salian T. Noushida N. Mohanto S. Development of optimized resveratrol/piperine-loaded phytosomal nanocomplex for isoproterenol-induced myocardial infarction treatment. J. Liposome Res. 2024 34 4 640 657 10.1080/08982104.2024.2378130 39001631
    [Google Scholar]
  61. Ge J. Yang H. Yu N. Lin S. Zeng Y. Wogonin alleviates sepsis-induced acute lung injury by modulating macrophage polarization through the SIRT1-FOXO1 pathways. Tissue Cell 2024 88 102400 10.1016/j.tice.2024.102400 38759522
    [Google Scholar]
  62. He S. Jiang X. Yang J. Nicotinamide mononucleotide alleviates endotoxin-induced acute lung injury by modulating macrophage polarization via the SIRT1/NF-κB pathway. Pharm. Biol. 2024 62 1 22 32 10.1080/13880209.2023.2292256 38100537
    [Google Scholar]
  63. Vachharajani V. McCall C.E. Sirtuins: Potential therapeutic targets for regulating acute inflammatory response? Expert Opin. Ther. Targets 2020 24 5 489 497 10.1080/14728222.2020.1743268 32174215
    [Google Scholar]
  64. Li H. Zheng F. Zhang Y. Sun J. Gao F. Shi G. Resveratrol, novel application by preconditioning to attenuate myocardial ischemia/reperfusion injury in mice through regulate AMPK pathway and autophagy level. J. Cell. Mol. Med. 2022 26 15 4216 4229 10.1111/jcmm.17431 35791579
    [Google Scholar]
  65. Rodrigues M.E.D.S. Bolen M.L. Blackmer-Raynolds L. Diet-induced metabolic and immune impairments are sex-specifically modulated by soluble TNF signaling in the 5xFAD mouse model of Alzheimer’s disease. Neurobiol. Dis. 2024 196 106511 10.1016/j.nbd.2024.106511 38670277
    [Google Scholar]
  66. Luecke S. Guo X. Sheu K.M. Dynamical and combinatorial coding by MAPK p38 and NFκB in the inflammatory response of macrophages. Mol. Syst. Biol. 2024 20 8 898 932 10.1038/s44320‑024‑00047‑4 38872050
    [Google Scholar]
  67. Andersh K.M. MacLean M. Howell G.R. IL1A enhances TNF-induced retinal ganglion cell death. bioRxiv 2024 2024.05.28.596328
    [Google Scholar]
  68. Meng Q. Tan X. Wu B. Zhang S. Zu Y. Jiang S. Polysaccharide of sunflower (Helianthus annuus L.) stalk pith inhibits cancer proliferation and metastases via TNF-α pathway. Int. J. Biol. Macromol. 2024 272 Pt 1 132873 10.1016/j.ijbiomac.2024.132873 38838890
    [Google Scholar]
  69. Jie X.L. Luo Z.R. Yu J. Pi-Pa-Run-Fei-Tang alleviates lung injury by modulating IL-6/JAK2/STAT3/IL-17 and PI3K/AKT/] NF-κB signaling pathway and balancing Th17 and Treg in murine model of OVA-induced asthma. J. Ethnopharmacol. 2023 317 116719 10.1016/j.jep.2023.116719 37268260
    [Google Scholar]
  70. Tirpude N.V. Sharma A. Joshi R. Kumari M. Acharya V. Vitex negundo Linn. extract alleviates inflammatory aggravation and lung injury by modulating AMPK/PI3K/Akt/p38-NF-κB and TGF-β/Smad/Bcl2/caspase/LC3 cascade and macrophages activation in murine model of OVA-LPS induced allergic asthma. J. Ethnopharmacol. 2021 271 113894 10.1016/j.jep.2021.113894 33516930
    [Google Scholar]
  71. Wang Y. Liu Y. Li J. Zhang Y. Ding Y. Peng Y. Gualou xiebai decoction ameliorates cardiorenal syndrome type II by regulation of PI3K/AKT/NF-κB signalling pathway. Phytomedicine 2024 123 155172 10.1016/j.phymed.2023.155172 37976694
    [Google Scholar]
  72. Farhan M. Wang H. Gaur U. Little P.J. Xu J. Zheng W. FOXO signaling pathways as therapeutic targets in cancer. Int. J. Biol. Sci. 2017 13 7 815 827 10.7150/ijbs.20052 28808415
    [Google Scholar]
  73. Wei X. Zhou R. Chen Y. Systemic pharmacological verification of Baixianfeng decoction regulating TNF-PI3K-Akt-NF-κB pathway in treating rheumatoid arthritis. Bioorg. Chem. 2022 119 105519 10.1016/j.bioorg.2021.105519 34864624
    [Google Scholar]
  74. Liu Y. Liu D. Wang Z. Zhao C. Miao J. Baicalein alleviates TNF-α-induced apoptosis of human nucleus pulposus cells through PI3K/AKT signaling pathway. J. Orthop. Surg. Res. 2023 18 1 292 10.1186/s13018‑023‑03759‑9 37041597
    [Google Scholar]
  75. Wu X. Sun Q. He S. Ropivacaine inhibits wound healing by suppressing the proliferation and migration of keratinocytes via the PI3K/AKT/mTOR pathway. BMC Anesthesiol. 2022 22 1 106 10.1186/s12871‑022‑01646‑0 35428182
    [Google Scholar]
  76. Zhang Z. Chong W. Xie X. Liu Y. Shang L. Li L. Hedysarum multijugum Maxim treats ulcerative colitis through the PI3K-AKT and TNF signaling pathway according to network pharmacology and molecular docking. Ann. Transl. Med. 2022 10 20 1132 10.21037/atm‑22‑4815 36388782
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128397243250902131510
Loading
/content/journals/cpd/10.2174/0113816128397243250902131510
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test