Full text loading...
Chondroitinase ABC (ChABC) is a bacterial enzyme that can potentially address the inhibitory effects of Chondroitin Sulfate Proteoglycans (CSPGs) in various neurological disorders and injuries. CSPGs are key components of the extracellular matrix that, when accumulated after Central Nervous System (CNS) injury or neurodegenerative diseases, inhibit axonal growth and tissue repair. This review explores the therapeutic potential of ChABC in Spinal Cord Injury (SCI), Traumatic Brain Injury (TBI), stroke, Parkinson’s Disease (PD), Alzheimer’s Disease (AD), and peripheral nerve regeneration. ChABC’s mechanism of action involves the degradation of CSPGs, promoting neural plasticity, axonal regeneration, and functional recovery in SCI and other CNS injuries. In stroke and TBI, ChABC treatment has been shown to enhance neurogenesis, reduce glial scar formation, and support neuronal survival. In neurodegenerative conditions like PD and AD, ChABC's ability to modify the inhibitory extracellular environment offers novel strategies for promoting neuronal repair and cognitive function. Additionally, ChABC has been explored in cancer therapy, where its ability to degrade the tumor extracellular matrix facilitates improved drug delivery and tumor infiltration. While ChABC holds promise, challenges remain in its clinical application, particularly regarding stability, targeted delivery, and long-term effects. This review discusses the mechanism of action of ChABC and various delivery strategies, including viral vectors and localized infusion, and emphasizes the need for further research to optimize ChABC's potential. The future of ChABC in regenerative medicine depends on overcoming these barriers, improving delivery methods, and exploring synergistic treatments for enhanced recovery outcomes.
Article metrics loading...
Full text loading...
References
Data & Media loading...