Skip to content
2000
image of Chondroitinase ABC in Neural Regeneration: Advances in CNS and Peripheral Nerve Repair

Abstract

Chondroitinase ABC (ChABC) is a bacterial enzyme that can potentially address the inhibitory effects of Chondroitin Sulfate Proteoglycans (CSPGs) in various neurological disorders and injuries. CSPGs are key components of the extracellular matrix that, when accumulated after Central Nervous System (CNS) injury or neurodegenerative diseases, inhibit axonal growth and tissue repair. This review explores the therapeutic potential of ChABC in Spinal Cord Injury (SCI), Traumatic Brain Injury (TBI), stroke, Parkinson’s Disease (PD), Alzheimer’s Disease (AD), and peripheral nerve regeneration. ChABC’s mechanism of action involves the degradation of CSPGs, promoting neural plasticity, axonal regeneration, and functional recovery in SCI and other CNS injuries. In stroke and TBI, ChABC treatment has been shown to enhance neurogenesis, reduce glial scar formation, and support neuronal survival. In neurodegenerative conditions like PD and AD, ChABC's ability to modify the inhibitory extracellular environment offers novel strategies for promoting neuronal repair and cognitive function. Additionally, ChABC has been explored in cancer therapy, where its ability to degrade the tumor extracellular matrix facilitates improved drug delivery and tumor infiltration. While ChABC holds promise, challenges remain in its clinical application, particularly regarding stability, targeted delivery, and long-term effects. This review discusses the mechanism of action of ChABC and various delivery strategies, including viral vectors and localized infusion, and emphasizes the need for further research to optimize ChABC's potential. The future of ChABC in regenerative medicine depends on overcoming these barriers, improving delivery methods, and exploring synergistic treatments for enhanced recovery outcomes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128392818251012115510
2025-10-28
2026-02-21
Loading full text...

Full text loading...

References

  1. Prabhakar V. Raman R. Capila I. Bosques C.J. Pojasek K. Sasisekharan R. Biochemical characterization of the chondroitinase ABC I active site. Biochem. J. 2005 390 2 395 405 10.1042/BJ20050532 16108757
    [Google Scholar]
  2. Yamagata T. Saito H. Habuchi O. Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 1968 243 7 1523 1535 10.1016/S0021‑9258(18)93574‑X 5647268
    [Google Scholar]
  3. Tom V.J. Kadakia R. Santi L. Houlé J.D. Administration of chondroitinase ABC rostral or caudal to a spinal cord injury site promotes anatomical but not functional plasticity. J. Neurotrauma 2009 26 12 2323 2333 10.1089/neu.2009.1047 19659409
    [Google Scholar]
  4. Takashima M. Watanabe I. Miyanaga A. Eguchi T. Substrate specificity of Chondroitinase ABC I based on analyses of biochemical reactions and crystal structures in complex with disaccharides. Glycobiology 2021 31 11 1571 1581 10.1093/glycob/cwab086 34392362
    [Google Scholar]
  5. Prabhakar V. Capila I. Bosques C.J. Pojasek K. Sasisekharan R. Chondroitinase ABC I from Proteus vulgaris: Cloning, recombinant expression and active site identification. Biochem. J. 2005 386 1 103 112 10.1042/BJ20041222 15691229
    [Google Scholar]
  6. Pramanik S Kharche S More N Ranglani D Singh G Kapusetti G Natural biopolymers for bone tissue engineering: A brief review. Eng Regen 2022 4 2 10.1016/j.engreg.2022.12.002
    [Google Scholar]
  7. Abourehab M.A.S. Pramanik S. Abdelgawad M.A. Recent advances of chitosan formulations in biomedical applications. Int. J. Mol. Sci. 2022 23 18 10975 10.3390/ijms231810975 36142887
    [Google Scholar]
  8. Abourehab M.A.S. Baisakhiya S. Aggarwal A. Chondroitin sulfate-based composites: A tour d’horizon of their biomedical applications. J. Mater. Chem. B Mater. Biol. Med. 2022 10 44 9125 9178 10.1039/D2TB01514E 36342328
    [Google Scholar]
  9. Snow D.M. Brown E.M. Letourneau P.C. Growth cone behavior in the presence of soluble chondroitin sulfate proteoglycan (CSPG), compared to behavior on CSPG bound to laminin or fibronectin. Int. J. Dev. Neurosci. 1996 14 3 331 349 10.1016/0736‑5748(96)00017‑2 8842808
    [Google Scholar]
  10. Haylock-Jacobs S. Keough M.B. Lau L. Yong V.W. Chondroitin sulphate proteoglycans: Extracellular matrix proteins that regulate immunity of the central nervous system. Autoimmun. Rev. 2011 10 12 766 772 10.1016/j.autrev.2011.05.019 21664302
    [Google Scholar]
  11. Fawcett JW The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Amsterdam, Netherlands: Elsevier 2015 213 26 10.1016/bs.pbr.2015.02.001
    [Google Scholar]
  12. Galtrey C.M. Fawcett J.W. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Brain Res. Rev. 2007 54 1 1 18 10.1016/j.brainresrev.2006.09.006 17222456
    [Google Scholar]
  13. Harlow D.E. Macklin W.B. Inhibitors of myelination: ECM changes, CSPGs and PTPs. Exp. Neurol. 2014 251 39 46 10.1016/j.expneurol.2013.10.017 24200549
    [Google Scholar]
  14. García-Alías G. Lin R. Akrimi S.F. Story D. Bradbury E.J. Fawcett J.W. Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Exp. Neurol. 2008 210 2 331 338 10.1016/j.expneurol.2007.11.002 18158149
    [Google Scholar]
  15. Lee H. McKeon R.J. Bellamkonda R.V. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc. Natl. Acad. Sci. USA 2010 107 8 3340 3345 10.1073/pnas.0905437106 19884507
    [Google Scholar]
  16. Hyatt A.J.T. Wang D. Kwok J.C. Fawcett J.W. Martin K.R. Controlled release of chondroitinase ABC from fibrin gel reduces the level of inhibitory glycosaminoglycan chains in lesioned spinal cord. J. Control. Release 2010 147 1 24 29 10.1016/j.jconrel.2010.06.026 20620180
    [Google Scholar]
  17. Li H.P. Komuta Y. Kimura-Kuroda J. van Kuppevelt T.H. Kawano H. Roles of chondroitin sulfate and dermatan sulfate in the formation of a lesion scar and axonal regeneration after traumatic injury of the mouse brain. J. Neurotrauma 2013 30 5 413 425 10.1089/neu.2012.2513 23438307
    [Google Scholar]
  18. Kigerl K.A. Gensel J.C. Ankeny D.P. Alexander J.K. Donnelly D.J. Popovich P.G. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 2009 29 43 13435 13444 10.1523/JNEUROSCI.3257‑09.2009 19864556
    [Google Scholar]
  19. Bradbury E.J. Moon L.D.F. Popat R.J. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002 416 6881 636 640 10.1038/416636a 11948352
    [Google Scholar]
  20. Zuo J. Neubauer D. Dyess K. Ferguson T.A. Muir D. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol. 1998 154 2 654 662 10.1006/exnr.1998.6951 9878200
    [Google Scholar]
  21. Barritt A.W. Davies M. Marchand F. Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J. Neurosci. 2006 26 42 10856 10867 10.1523/JNEUROSCI.2980‑06.2006 17050723
    [Google Scholar]
  22. Zhao R.R. Fawcett J.W. Combination treatment with chondroitinase ABC in spinal cord injury—breaking the barrier. Neurosci. Bull. 2013 29 4 477 483 10.1007/s12264‑013‑1359‑2 23839053
    [Google Scholar]
  23. Jongkees S.A.K. Withers S.G. Glycoside cleavage by a new mechanism in unsaturated glucuronyl hydrolases. J. Am. Chem. Soc. 2011 133 48 19334 19337 10.1021/ja209067v 22047074
    [Google Scholar]
  24. Shirdel A. Khalifeh K. Chapter 25 Chondroitinase ABC I as a novel candidate for reducing damage in spinal cord injury. Diagnosis and treatment of spinal cord injury. In: Rajendram R, Preedy VR, Martin CR, Eds. Rajendram R. Preedy V.R. Martin C.R. United States Academic Press 2022 325 335 10.1016/B978‑0‑12‑822498‑4.00025‑7
    [Google Scholar]
  25. Mikami T. Kitagawa H. Immunochemical detection and glycosaminoglycan disaccharide-based characterization of chondroitin sulfate proteoglycans. In: Karamanos NK, Ed. Proteoglycans: Methods and Protocols. Karamanos N.K. New York, NY Springer US 2023 25 38 10.1007/978‑1‑0716‑2946‑8_2
    [Google Scholar]
  26. Vieira F.A.C. Baccarin R.Y.A. Aguiar J.A.K. Michelacci Y.M. Urinary excretion of glycosaminoglycans in horses: Changes with age, training, and osteoarthritis. J. Equine Vet. Sci. 2005 25 9 387 400 10.1016/j.jevs.2005.08.012
    [Google Scholar]
  27. Reichardt L.F. Tomaselli K.J. Extracellular matrix molecules and their receptors: Functions in neural development. Annu. Rev. Neurosci. 1991 14 1 531 570 10.1146/annurev.ne.14.030191.002531 1851608
    [Google Scholar]
  28. Letourneau P.C. Condic M.L. Snow D.M. Interactions of developing neurons with the extracellular matrix. J. Neurosci. 1994 14 3 915 928 10.1523/JNEUROSCI.14‑03‑00915.1994 8120634
    [Google Scholar]
  29. Laabs T. Carulli D. Geller H.M. Fawcett J.W. Chondroitin sulfate proteoglycans in neural development and regeneration. Curr. Opin. Neurobiol. 2005 15 1 116 120 10.1016/j.conb.2005.01.014 15721753
    [Google Scholar]
  30. Siebert J.R. Conta Steencken A. Osterhout D.J. Chondroitin sulfate proteoglycans in the nervous system: Inhibitors to repair. BioMed Res. Int. 2014 2014 1 15 10.1155/2014/845323 25309928
    [Google Scholar]
  31. Viapiano M.S. Matthews R.T. From barriers to bridges: Chondroitin sulfate proteoglycans in neuropathology. Trends Mol. Med. 2006 12 10 488 496 10.1016/j.molmed.2006.08.007 16962376
    [Google Scholar]
  32. Massey J.M. Amps J. Viapiano M.S. Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp. Neurol. 2008 209 2 426 445 10.1016/j.expneurol.2007.03.029 17540369
    [Google Scholar]
  33. Mizuno H. Warita H. Aoki M. Itoyama Y. Accumulation of chondroitin sulfate proteoglycans in the microenvironment of spinal motor neurons in amyotrophic lateral sclerosis transgenic rats. J. Neurosci. Res. 2008 86 11 2512 2523 10.1002/jnr.21702 18438943
    [Google Scholar]
  34. Mencio C.P. Hussein R.K. Yu P. Geller H.M. The role of chondroitin sulfate proteoglycans in nervous system development. J. Histochem. Cytochem. 2021 69 1 61 80 10.1369/0022155420959147 32936033
    [Google Scholar]
  35. Muir E. Raza M. Ellis C. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC. PLoS One 2017 12 11 0186759 10.1371/journal.pone.0186759 29121057
    [Google Scholar]
  36. Novotna I. Slovinska L. Vanicky I. Cizek M. Radonak J. Cizkova D. IT delivery of ChABC modulates NG2 and promotes GAP-43 axonal regrowth after spinal cord injury. Cell. Mol. Neurobiol. 2011 31 8 1129 1139 10.1007/s10571‑011‑9714‑1 21630006
    [Google Scholar]
  37. Huang W.C. Kuo W.C. Cherng J.H. Chondroitinase ABC promotes axonal re-growth and behavior recovery in spinal cord injury. Biochem. Biophys. Res. Commun. 2006 349 3 963 968 10.1016/j.bbrc.2006.08.136 16965762
    [Google Scholar]
  38. Zhang Y. Xue R. Yao M. A systematic review and meta-analysis of chondroitinase ABC promotes functional recovery in rat models of spinal cord injury. Nutr. Neurosci. 2024 27 9 917 933 10.1080/1028415X.2023.2278867 37950873
    [Google Scholar]
  39. Nakamae T. Tanaka N. Nakanishi K. Chondroitinase ABC promotes corticospinal axon growth in organotypic cocultures. Spinal Cord 2009 47 2 161 165 10.1038/sc.2008.74 18542086
    [Google Scholar]
  40. Wang X. Hasan O. Arzeno A. Benowitz L.I. Cafferty W.B.J. Strittmatter S.M. Axonal regeneration induced by blockade of glial inhibitors coupled with activation of intrinsic neuronal growth pathways. Exp. Neurol. 2012 237 1 55 69 10.1016/j.expneurol.2012.06.009 22728374
    [Google Scholar]
  41. Hu J. Rodemer W. Zhang G. Jin L.Q. Li S. Selzer M.E. Chondroitinase ABC promotes axon regeneration and reduces retrograde apoptosis signaling in lamprey. Front. Cell Dev. Biol. 2021 9 653638 10.3389/fcell.2021.653638 33842481
    [Google Scholar]
  42. Gherardini L. Gennaro M. Pizzorusso T. Perilesional treatment with chondroitinase ABC and motor training promote functional recovery after stroke in rats. Cereb. Cortex 2015 25 1 202 212 10.1093/cercor/bht217 23960208
    [Google Scholar]
  43. García-Alías G. Barkhuysen S. Buckle M. Fawcett J.W. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 2009 12 9 1145 1151 10.1038/nn.2377 19668200
    [Google Scholar]
  44. Wang D. Ichiyama R.M. Zhao R. Andrews M.R. Fawcett J.W. Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J. Neurosci. 2011 31 25 9332 9344 10.1523/JNEUROSCI.0983‑11.2011 21697383
    [Google Scholar]
  45. Howell M.D. Bailey L.A. Cozart M.A. Gannon B.M. Gottschall P.E. Hippocampal administration of chondroitinase ABC increases plaque-adjacent synaptic marker and diminishes amyloid burden in aged APPswe/PS1dE9 mice. Acta Neuropathol. Commun. 2015 3 1 54 10.1186/s40478‑015‑0233‑z 26337292
    [Google Scholar]
  46. Cafferty W.B.J. Bradbury E.J. Lidierth M. Chondroitinase ABC-mediated plasticity of spinal sensory function. J. Neurosci. 2008 28 46 11998 12009 10.1523/JNEUROSCI.3877‑08.2008 19005065
    [Google Scholar]
  47. Bosch K.D. Bradbury E.J. Verhaagen J. Fawcett J.W. McMahon S.B. Chondroitinase ABC promotes plasticity of spinal reflexes following peripheral nerve injury. Exp. Neurol. 2012 238 1 64 78 10.1016/j.expneurol.2012.08.003 22917776
    [Google Scholar]
  48. Kilcoyne M. Sharma S. McDevitt N. O’Leary C. Joshi L. McMahon S.S. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments. Biochem. Biophys. Res. Commun. 2012 420 3 616 622 10.1016/j.bbrc.2012.03.047 22465128
    [Google Scholar]
  49. Chan C.C.M. Wong A.K. Liu J. Steeves J.D. Tetzlaff W. ROCK inhibition with Y27632 activates astrocytes and increases their expression of neurite growth-inhibitory chondroitin sulfate proteoglycans. Glia 2007 55 4 369 384 10.1002/glia.20466 17136770
    [Google Scholar]
  50. Warren P.M. Alilain W.J. Plasticity induced recovery of breathing occurs at chronic stages after cervical contusion. J. Neurotrauma 2019 36 12 1985 1999 10.1089/neu.2018.6186 30565484
    [Google Scholar]
  51. Lee H.J. Bian S. Jakovcevski I. Wu B. Irintchev A. Schachner M. Delayed applications of L1 and chondroitinase ABC promote recovery after spinal cord injury. J. Neurotrauma 2012 29 10 1850 1863 10.1089/neu.2011.2290 22497349
    [Google Scholar]
  52. Karimi-Abdolrezaee S. Eftekharpour E. Wang J. Schut D. Fehlings M.G. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J. Neurosci. 2010 30 5 1657 1676 10.1523/JNEUROSCI.3111‑09.2010 20130176
    [Google Scholar]
  53. Lee S.H. Kim Y. Rhew D. Effect of the combination of mesenchymal stromal cells and chondroitinase ABC on chronic spinal cord injury. Cytotherapy 2015 17 10 1374 1383 10.1016/j.jcyt.2015.05.012 26188966
    [Google Scholar]
  54. Wang Y. Jia H. Li W.Y. Tong X.J. Liu G.B. Kang S.W. Synergistic effects of bone mesenchymal stem cells and chondroitinase ABC on nerve regeneration after acellular nerve allograft in rats. Cell. Mol. Neurobiol. 2012 32 3 361 371 10.1007/s10571‑011‑9764‑4 22095068
    [Google Scholar]
  55. Mingorance A. Solé M. Munetón V. Regeneration of lesioned entorhino-hippocampal axons in vitro by combined degradation of inhibitory proteoglycans and blockade of Nogo-66/NgR signaling. FASEB J. 2006 20 3 491 493 10.1096/fj.05‑5121fje 16407455
    [Google Scholar]
  56. Ohtake Y. Li S. Molecular mechanisms of scar-sourced axon growth inhibitors. Brain Res. 2015 1619 22 35 10.1016/j.brainres.2014.08.064 25192646
    [Google Scholar]
  57. Udina E. Ladak A. Furey M. Brushart T. Tyreman N. Gordon T. Rolipram-induced elevation of cAMP or chondroitinase ABC breakdown of inhibitory proteoglycans in the extracellular matrix promotes peripheral nerve regeneration. Exp. Neurol. 2010 223 1 143 152 10.1016/j.expneurol.2009.08.026 19733561
    [Google Scholar]
  58. Wilems T.S. Sakiyama-Elbert S.E. Sustained dual drug delivery of anti-inhibitory molecules for treatment of spinal cord injury. J. Control. Release 2015 213 103 111 10.1016/j.jconrel.2015.06.031 26122130
    [Google Scholar]
  59. Ni S. Xia T. Li X. Sustained delivery of chondroitinase ABC by poly(propylene carbonate)-chitosan micron fibers promotes axon regeneration and functional recovery after spinal cord hemisection. Brain Res. 2015 1624 469 478 10.1016/j.brainres.2015.08.018 26315376
    [Google Scholar]
  60. Burnside E.R. Bradbury E.J. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol. Appl. Neurobiol. 2014 40 1 26 59 10.1111/nan.12114 24438519
    [Google Scholar]
  61. Milbreta U. von Boxberg Y. Mailly P. Nothias F. Soares S. Astrocytic and vascular remodeling in the injured adult rat spinal cord after chondroitinase ABC treatment. J. Neurotrauma 2014 31 9 803 818 10.1089/neu.2013.3143 24380419
    [Google Scholar]
  62. Sirko S. von Holst A. Weber A. Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny. Stem Cells 2010 28 4 775 787 10.1002/stem.309 20087964
    [Google Scholar]
  63. Guo Y. Klüppel M. Tang H. Tan S. Zhang P. Chen Z. Lentivirus-mediated transfection of chondroitinase ABC gene without the bacterial leader sequence enables long-term secretion of functional chondroitinase ABC in human bone marrow stromal cells. Biotechnol. Lett. 2016 38 5 893 900 10.1007/s10529‑016‑2046‑y 26910777
    [Google Scholar]
  64. Wu J.H. Li M. Liang Y. Lu T. Duan C.Y. Qiang S. Migration of adipose-derived mesenchymal stem cells stably expressing chondroitinase ABC in vitro. Chin. Med. J. 2016 129 13 1592 1599 10.4103/0366‑6999.184464 27364797
    [Google Scholar]
  65. Kai Y. Tomoda K. Yoneyama H. Yoshikawa M. Kimura H. RNA interference targeting carbohydrate sulfotransferase 3 diminishes macrophage accumulation, inhibits MMP-9 expression and promotes lung recovery in murine pulmonary emphysema. Respir. Res. 2015 16 1 146 10.1186/s12931‑015‑0310‑7 26646821
    [Google Scholar]
  66. Kai Y. Yoneyama H. Koyama J. Hamada K. Kimura H. Matsushima K. Treatment with chondroitinase ABC alleviates bleomycin-induced pulmonary fibrosis. Med. Mol. Morphol. 2007 40 3 128 140 10.1007/s00795‑007‑0370‑y 17874045
    [Google Scholar]
  67. Khatri I.A. Bhaskar K.R. Lamont J.T. Sajjan S.U. Ho C.K.Y. Forstner J. Effect of chondroitinase ABC on purulent sputum from cystic fibrosis and other patients. Pediatr. Res. 2003 53 4 619 627 10.1203/01.PDR.0000054780.11755.B9 12612214
    [Google Scholar]
  68. Mikami T. Koyama S. Yabuta Y. Kitagawa H. Chondroitin sulfate is a crucial determinant for skeletal muscle development/regeneration and improvement of muscular dystrophies. J. Biol. Chem. 2012 287 46 38531 38542 10.1074/jbc.M111.336925 23007393
    [Google Scholar]
  69. Silva N.A. Sousa N. Reis R.L. Salgado A.J. From basics to clinical: A comprehensive review on spinal cord injury. Prog. Neurobiol. 2014 114 25 57 10.1016/j.pneurobio.2013.11.002 24269804
    [Google Scholar]
  70. McDonald J.W. Sadowsky C. Spinal-cord injury. Lancet 2002 359 9304 417 425 10.1016/S0140‑6736(02)07603‑1 11844532
    [Google Scholar]
  71. Sharifi A. Zandieh A. Behroozi Z. Sustained delivery of chABC improves functional recovery after a spine injury. BMC Neurosci. 2022 23 1 60 10.1186/s12868‑022‑00734‑8 36307768
    [Google Scholar]
  72. Jevans B. James N.D. Burnside E. Combined treatment with enteric neural stem cells and chondroitinase ABC reduces spinal cord lesion pathology. Stem Cell Res. Ther. 2021 12 1 10 10.1186/s13287‑020‑02031‑9 33407795
    [Google Scholar]
  73. Prager J. Ito D. Carwardine D.R. Delivery of chondroitinase by canine mucosal olfactory ensheathing cells alongside rehabilitation enhances recovery after spinal cord injury. Exp. Neurol. 2021 340 113660 10.1016/j.expneurol.2021.113660 33647272
    [Google Scholar]
  74. Qu W. Wu X. Wu W. Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury. Neural Regen. Res. 2025 20 5 1467 1482 10.4103/NRR.NRR‑D‑23‑01338 39075913
    [Google Scholar]
  75. Takiguchi M. Miyashita K. Yamazaki K. Funakoshi K. Chondroitinase ABC administration facilitates serotonergic innervation of motoneurons in rats with complete spinal cord transection. Front. Integr. Neurosci. 2022 16 881632 10.3389/fnint.2022.881632
    [Google Scholar]
  76. Wu T. Li Y. Wu Z. Enzyme-immobilized nanoclay hydrogel simultaneously reduces inflammation and scar deposition to treat spinal cord injury. Chem. Eng. J. 2024 484 149642 10.1016/j.cej.2024.149642
    [Google Scholar]
  77. Hu J. Zhang G. Rodemer W. Jin L.Q. Selzer M.E. Combined RhoA morpholino and ChABC treatment protects identified lamprey neurons from retrograde apoptosis after spinal cord injury. Front. Cell. Neurosci. 2023 17 1292012 10.3389/fncel.2023.1292012 38179205
    [Google Scholar]
  78. Prager J. Fenn J. Plested M. Transplantation of encapsulated autologous olfactory ensheathing cell populations expressing chondroitinase for spinal cord injury: A safety and feasibility study in companion dogs. J. Tissue Eng. Regen. Med. 2022 16 9 788 798 10.1002/term.3328 35686704
    [Google Scholar]
  79. Khalil A.S. Hellenbrand D. Reichl K. A localized materials-based strategy to non-virally deliver chondroitinase abc mrna improves hindlimb function in a rat spinal cord injury model. Adv. Healthc. Mater. 2022 11 19 2200206 10.1002/adhm.202200206 35882512
    [Google Scholar]
  80. Warren P.M. Fawcett J.W. Kwok J.C.F. Substrate specificity and biochemical characteristics of an engineered mammalian chondroitinase ABC. ACS Omega 2021 6 17 11223 11230 10.1021/acsomega.0c06262 34056277
    [Google Scholar]
  81. Sinopoulou E. Spejo A.B. Roopnarine N. Chronic muscle recordings reveal recovery of forelimb function in spinal injured female rats after cortical epidural stimulation combined with rehabilitation and chondroitinase ABC. J. Neurosci. Res. 2022 100 11 2055 2076 10.1002/jnr.25111 35916483
    [Google Scholar]
  82. Hlavac N. Seroski D.T. Agrawal N.K. Chondroitinase ABC/galectin-3 fusion proteins with hyaluronan-based hydrogels stabilize enzyme and provide targeted enzyme activity for neural applications. J. Neural Eng. 2021 18 4 046090 10.1088/1741‑2552/ac07bf 34082409
    [Google Scholar]
  83. Nori S. Khazaei M. Ahuja C.S. Human oligodendrogenic neural progenitor cells delivered with chondroitinase abc facilitate functional repair of chronic spinal cord injury. Stem Cell Reports 2018 11 6 1433 1448 10.1016/j.stemcr.2018.10.017 30472009
    [Google Scholar]
  84. Burnside E.R. De Winter F. Didangelos A. Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain 2018 141 8 2362 2381 10.1093/brain/awy158 29912283
    [Google Scholar]
  85. Xia T. Huang B. Ni S. The combination of db-cAMP and ChABC with poly(propylene carbonate) microfibers promote axonal regenerative sprouting and functional recovery after spinal cord hemisection injury. Biomed. Pharmacother. 2017 86 354 362 10.1016/j.biopha.2016.12.045 28011383
    [Google Scholar]
  86. Azizi M. Farahmandghavi F. Joghataei M.T. ChABC-loaded PLGA nanoparticles: A comprehensive study on biocompatibility, functional recovery, and axonal regeneration in animal model of spinal cord injury. Int. J. Pharm. 2020 577 119037 10.1016/j.ijpharm.2020.119037 31953081
    [Google Scholar]
  87. Liu X. Wang J. Li G. Lv H. Effect of combined chondroitinase ABC and hyperbaric oxygen therapy in a rat model of spinal cord injury. Mol. Med. Rep. 2018 18 1 25 30 10.3892/mmr.2018.8933 29749479
    [Google Scholar]
  88. Sarveazad A. Babahajian A. Bakhtiari M. The combined application of human adipose derived stem cells and Chondroitinase ABC in treatment of a spinal cord injury model. Neuropeptides 2017 61 39 47 10.1016/j.npep.2016.07.004 27484347
    [Google Scholar]
  89. Pakulska M.M. Tator C.H. Shoichet M.S. Local delivery of chondroitinase ABC with or without stromal cell-derived factor 1α promotes functional repair in the injured rat spinal cord. Biomaterials 2017 134 13 21 10.1016/j.biomaterials.2017.04.016 28453954
    [Google Scholar]
  90. Janzadeh A. Sarveazad A. Yousefifard M. Combine effect of Chondroitinase ABC and low level laser (660 nm) on spinal cord injury model in adult male rats. Neuropeptides 2017 65 90 99 10.1016/j.npep.2017.06.002 28716393
    [Google Scholar]
  91. Moon L.D.F. Bradbury E.J. ‘Chase’: In dogged pursuit of a therapy for spinal cord injury. Brain 2018 141 4 941 943 10.1093/brain/awy067 29596667
    [Google Scholar]
  92. Hettiaratchi M.H. O’Meara M.J. Teal C.J. Payne S.L. Pickering A.J. Shoichet M.S. Local delivery of stabilized chondroitinase ABC degrades chondroitin sulfate proteoglycans in stroke-injured rat brains. J. Control. Release 2019 297 14 25 10.1016/j.jconrel.2019.01.033 30690102
    [Google Scholar]
  93. Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain Pathol. 2004 14 2 215 222 10.1111/j.1750‑3639.2004.tb00056.x 15193035
    [Google Scholar]
  94. Lipton P. Ischemic cell death in brain neurons. Physiol. Rev. 1999 79 4 1431 1568 10.1152/physrev.1999.79.4.1431 10508238
    [Google Scholar]
  95. Chen X. Liao S. Ye L. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats. Brain Res. 2014 1543 324 333 10.1016/j.brainres.2013.12.002 24326094
    [Google Scholar]
  96. Soleman S. Yip P.K. Duricki D.A. Moon L.D.F. Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats. Brain 2012 135 4 1210 1223 10.1093/brain/aws027 22396394
    [Google Scholar]
  97. Wiersma A.M. Fouad K. Winship I.R. Enhancing spinal plasticity amplifies the benefits of rehabilitative training and improves recovery from stroke. J. Neurosci. 2017 37 45 10983 10997 10.1523/JNEUROSCI.0770‑17.2017 29025926
    [Google Scholar]
  98. Nolan S. Traumatic brain injury: A review. Crit. Care Nurs. Q. 2005 28 2 188 194 10.1097/00002727‑200504000‑00010 15875448
    [Google Scholar]
  99. Galgano M. Toshkezi G. Qiu X. Russell T. Chin L. Zhao L.R. Traumatic brain injury. Cell Transplant. 2017 26 7 1118 1130 10.1177/0963689717714102 28933211
    [Google Scholar]
  100. Finan J.D. Cho F.S. Kernie S.G. Morrison B. Intracerebroventricular administration of chondroitinase ABC reduces acute edema after traumatic brain injury in mice. BMC Res. Notes 2016 9 1 160 10.1186/s13104‑016‑1968‑8 26969621
    [Google Scholar]
  101. Talwalkar A. Haden G. Duncan K.A. Chondroitin sulfate proteoglycans mRNA expression and degradation in the zebra finch following traumatic brain injury. J. Chem. Neuroanat. 2024 138 102418 10.1016/j.jchemneu.2024.102418 38621597
    [Google Scholar]
  102. Shi Y. Wu X. Zhou J. Single-nucleus RNA sequencing reveals that decorin expression in the amygdala regulates perineuronal nets expression and fear conditioning response after traumatic brain injury. Adv. Sci. 2022 9 7 2104112 10.1002/advs.202104112 35038242
    [Google Scholar]
  103. Li S. Duan Q. Lu M. CSPGs promote the migration of meningeal fibroblasts via p38 mitogen-activated protein kinase signaling pathway under OGD conditions. Brain Res. Bull. 2021 173 37 44 10.1016/j.brainresbull.2021.05.004 33984430
    [Google Scholar]
  104. Mutoji K.N. Sun M. Nash A. Puri S. Hascall V. Coulson-Thomas V.J. Anti-inflammatory protein TNFα-stimulated gene-6 (TSG-6) reduces inflammatory response after brain injury in mice. BMC Immunol. 2021 22 1 52 10.1186/s12865‑021‑00443‑7 34348643
    [Google Scholar]
  105. Knopman D.S. Amieva H. Petersen R.C. Alzheimer disease. Nat. Rev. Dis. Primers 2021 7 1 33 10.1038/s41572‑021‑00269‑y 33986301
    [Google Scholar]
  106. Apostolova LG Alzheimer disease. Continuum 2016 22 2 Dementia 419 34 10.1212/CON.0000000000000307
    [Google Scholar]
  107. Fawcett J.W. Fyhn M. Jendelova P. Kwok J.C.F. Ruzicka J. Sorg B.A. The extracellular matrix and perineuronal nets in memory. Mol. Psychiatry 2022 27 8 3192 3203 10.1038/s41380‑022‑01634‑3 35760878
    [Google Scholar]
  108. Yang Q. Yan C. Sun Y. Extracellular matrix remodeling alleviates memory deficits in Alzheimer’s disease by enhancing the astrocytic autophagy-lysosome pathway. Adv. Sci. 2024 11 31 2400480 10.1002/advs.202400480 38881515
    [Google Scholar]
  109. Stoyanov S. Sun W. Düsedau H.P. Attenuation of the extracellular matrix restores microglial activity during the early stage of amyloidosis. Glia 2021 69 1 182 200 10.1002/glia.23894 32865286
    [Google Scholar]
  110. Yang S. Hilton S. Alves J.N. Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration. Neurobiol. Aging 2017 59 197 209 10.1016/j.neurobiolaging.2017.08.002 28890301
    [Google Scholar]
  111. Bloem B.R. Okun M.S. Klein C. Parkinson’s disease. Lancet 2021 397 10291 2284 2303 10.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  112. Thomas B. Beal M.F. Parkinson’s disease. Hum. Mol. Genet. 2007 16 R2 R183 R194 10.1093/hmg/ddm159 17911161
    [Google Scholar]
  113. Gash D.M. Zhang Z. Gerhardt G. Neuroprotective and neurorestorative properties of GDNF. Ann. Neurol. 1998 44 3 S121 S125 9749583
    [Google Scholar]
  114. Grondin R. Zhang Z. Yi A. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 2002 125 10 2191 2201 10.1093/brain/awf234 12244077
    [Google Scholar]
  115. Moon L.D.F. Asher R.A. Rhodes K.E. Fawcett J.W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 2001 4 5 465 466 10.1038/87415 11319553
    [Google Scholar]
  116. Kauhausen J.A. Thompson L.H. Parish C.L. Chondroitinase improves midbrain pathway reconstruction by transplanted dopamine progenitors in Parkinsonian mice. Mol. Cell. Neurosci. 2015 69 22 29 10.1016/j.mcn.2015.10.002 26463051
    [Google Scholar]
  117. Fletcher E.J.R. Moon L.D.F. Duty S. Chondroitinase ABC reduces dopaminergic nigral cell death and striatal terminal loss in a 6-hydroxydopamine partial lesion mouse model of Parkinson’s disease. BMC Neurosci. 2019 20 1 61 10.1186/s12868‑019‑0543‑3 31862005
    [Google Scholar]
  118. Bowers W.J. Breakefield X.O. Sena-Esteves M. Genetic therapy for the nervous system. Hum. Mol. Genet. 2011 20 R1 R28 R41 10.1093/hmg/ddr110 21429918
    [Google Scholar]
  119. Maguire C.A. Ramirez S.H. Merkel S.F. Sena-Esteves M. Breakefield X.O. Gene therapy for the nervous system: Challenges and new strategies. Neurotherapeutics 2014 11 4 817 839 10.1007/s13311‑014‑0299‑5 25159276
    [Google Scholar]
  120. Milone M.C. O’Doherty U. Clinical use of lentiviral vectors. Leukemia 2018 32 7 1529 1541 10.1038/s41375‑018‑0106‑0 29654266
    [Google Scholar]
  121. Zhao R.R. Muir E.M. Alves J.N. Lentiviral vectors express chondroitinase ABC in cortical projections and promote sprouting of injured corticospinal axons. J. Neurosci. Methods 2011 201 1 228 238 10.1016/j.jneumeth.2011.08.003 21855577
    [Google Scholar]
  122. Carstens K.E. Gloss B.R. Alexander G.M. Dudek S.M. Modified adeno-associated virus targets the bacterial enzyme chondroitinase ABC to select mouse neuronal populations in vivo using the Cre-LoxP system. Eur. J. Neurosci. 2021 53 12 4005 4015 10.1111/ejn.15050 33220084
    [Google Scholar]
  123. Eggers R. de Winter F. Smit L. Combining timed GDNF and ChABC gene therapy to promote long-distance regeneration following ventral root avulsion and repair. FASEB J. 2020 34 8 10605 10622 10.1096/fj.202000559R 32543730
    [Google Scholar]
  124. Carwardine D. Wong L.F. Fawcett J.W. Muir E.M. Granger N. Canine olfactory ensheathing cells from the olfactory mucosa can be engineered to produce active chondroitinase ABC. J. Neurol. Sci. 2016 367 311 318 10.1016/j.jns.2016.06.011 27423610
    [Google Scholar]
  125. Warren P.M. Andrews M.R. Smith M. Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries. Sci. Rep. 2020 10 1 11262 10.1038/s41598‑020‑67526‑0 32647242
    [Google Scholar]
  126. Bartus K. James N.D. Didangelos A. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J. Neurosci. 2014 34 14 4822 4836 10.1523/JNEUROSCI.4369‑13.2014 24695702
    [Google Scholar]
  127. Alves J.N. Muir E.M. Andrews M.R. AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations. J. Neurosci. Methods 2014 227 107 120 10.1016/j.jneumeth.2014.02.010 24583077
    [Google Scholar]
  128. Tansley S. Gu N. Guzmán A.U. Microglia-mediated degradation of perineuronal nets promotes pain. Science 2022 377 6601 80 86 10.1126/science.abl6773 35617374
    [Google Scholar]
  129. Suzuki H. Ahuja C.S. Salewski R.P. Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury. PLoS One 2017 12 8 0182339 10.1371/journal.pone.0182339 28771534
    [Google Scholar]
  130. Pramanik S. Mohanto S. Manne R. Nanoparticle-based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases. Mol. Pharm. 2021 18 10 3671 3718 10.1021/acs.molpharmaceut.1c00491 34491754
    [Google Scholar]
  131. Vaidya G. Pramanik S. Kadi A. Injecting hope: Chitosan hydrogels as bone regeneration innovators. J. Biomater. Sci. Polym. Ed. 2024 35 5 756 797 10.1080/09205063.2024.2304952 38300215
    [Google Scholar]
  132. Pramanik S. Aggarwal A. Kadi A. Chitosan alchemy: Transforming tissue engineering and wound healing. RSC Advances 2024 14 27 19219 19256 10.1039/D4RA01594K 38887635
    [Google Scholar]
  133. Abourehab M.A.S. Rajendran R.R. Singh A. Alginate as a promising biopolymer in drug delivery and wound healing: A review of the state-of-the-art. Int. J. Mol. Sci. 2022 23 16 9035 10.3390/ijms23169035 36012297
    [Google Scholar]
  134. Führmann T. Anandakumaran P.N. Payne S.L. Combined delivery of chondroitinase ABC and human induced pluripotent stem cell-derived neuroepithelial cells promote tissue repair in an animal model of spinal cord injury. Biomed. Mater. 2018 13 2 024103 10.1088/1748‑605X/aa96dc 29083317
    [Google Scholar]
  135. Rossi F. Veglianese P. Santoro M. Sustained delivery of chondroitinase ABC from hydrogel system. J. Funct. Biomater. 2012 3 1 199 208 10.3390/jfb3010199 24956524
    [Google Scholar]
  136. Raspa A. Carminati L. Pugliese R. Fontana F. Gelain F. Self-assembling peptide hydrogels for the stabilization and sustained release of active Chondroitinase ABC in vitro and in spinal cord injuries. J. Control. Release 2021 330 1208 1219 10.1016/j.jconrel.2020.11.027 33229053
    [Google Scholar]
  137. Delplace V. Pickering A.J. Hettiaratchi M.H. Zhao S. Kivijärvi T. Shoichet M.S. Inverse electron-demand diels–alder methylcellulose hydrogels enable the co-delivery of chondroitinase ABC and neural progenitor cells. Biomacromolecules 2020 21 6 2421 2431 10.1021/acs.biomac.0c00357 32275141
    [Google Scholar]
  138. Rezaei S. Dabirmanesh B. Zare L. Golestani A. Javan M. Khajeh K. Enhancing myelin repair in experimental model of multiple sclerosis using immobilized chondroitinase ABC I on porous silicon nanoparticles. Int. J. Biol. Macromol. 2020 146 162 170 10.1016/j.ijbiomac.2019.12.258 31899243
    [Google Scholar]
  139. Afraei F. Daneshjou S. Dabirmanesh B. Synthesis and evaluation of nanosystem containing chondroitinase ABCI based on hydroxyapatite. AMB Express 2024 14 1 23 10.1186/s13568‑024‑01677‑5 38353777
    [Google Scholar]
  140. Sarveazad A. Yari A. Babaei-Ghazani A. Combined application of chondroitinase ABC and photobiomodulation with low-intensity laser on the anal sphincter repair in rabbit. BMC Gastroenterol. 2021 21 1 473 10.1186/s12876‑021‑02047‑2 34911454
    [Google Scholar]
  141. Janzadeh A. Sarveazad A. Hamblin M.R. Teheripak G. Kookli K. Nasirinezhad F. The effect of chondroitinase ABC and photobiomodulation therapy on neuropathic pain after spinal cord injury in adult male rats. Physiol. Behav. 2020 227 113141 10.1016/j.physbeh.2020.113141 32818524
    [Google Scholar]
  142. Pan Q. Guo Y. Kong F. Poly(glycerol sebacate) combined with chondroitinase ABC promotes spinal cord repair in rats. J. Biomed. Mater. Res. B Appl. Biomater. 2018 106 5 1770 1777 10.1002/jbm.b.33984 28901688
    [Google Scholar]
  143. Chen H. Li J. Yan H. The transplantation of human urine stem cells combined with chondroitinase ABC promotes brain-derived neurotrophic factor and nerve growth factor following spinal cord injury in rats. Int. J. Clin. Exp. Pathol. 2018 11 8 3858 3866 31949773
    [Google Scholar]
  144. Warren P.M. Steiger S.C. Dick T.E. MacFarlane P.M. Alilain W.J. Silver J. Rapid and robust restoration of breathing long after spinal cord injury. Nat. Commun. 2018 9 1 4843 10.1038/s41467‑018‑06937‑0 30482901
    [Google Scholar]
  145. Alluin O. Delivet-Mongrain H. Gauthier M.K. Fehlings M.G. Rossignol S. Karimi-Abdolrezaee S. Examination of the combined effects of chondroitinase ABC, growth factors and locomotor training following compressive spinal cord injury on neuroanatomical plasticity and kinematics. PLoS One 2014 9 10 111072 10.1371/journal.pone.0111072 25350665
    [Google Scholar]
  146. Zhang Y. Gu Z. Qiu G. Song Y. Combination of chondroitinase ABC, glial cell line-derived neurotrophic factor and Nogo A antibody delayed-release microspheres promotes the functional recovery of spinal cord injury. J. Craniofac. Surg. 2013 24 6 2153 2157 10.1097/01.SCS.0000436700.65891.3b 24220426
    [Google Scholar]
  147. Lee S.H. Kim Y. Rhew D. Impact of local injection of brain-derived neurotrophic factor–expressing mesenchymal stromal cells (MSCs) combined with intravenous MSC delivery in a canine model of chronic spinal cord injury. Cytotherapy 2017 19 1 75 87 10.1016/j.jcyt.2016.09.014 28029610
    [Google Scholar]
  148. Hu R. He K. Chen B. Electroacupuncture promotes the repair of the damaged spinal cord in mice by mediating neurocan-perineuronal net. CNS Neurosci. Ther. 2024 30 1 14468 10.1111/cns.14468 37950551
    [Google Scholar]
  149. Kwon H. O’Leary S.A. Hu J.C. Athanasiou K.A. Translating the application of transforming growth factor-β1, chondroitinase-ABC, and lysyl oxidase-like 2 for mechanically robust tissue-engineered human neocartilage. J. Tissue Eng. Regen. Med. 2019 13 2 283 294 10.1002/term.2791 30557915
    [Google Scholar]
  150. Pramanik S. Muthuvijayan V. Electrospun Nanofibrous Scaffolds for Neural Tissue Engineering. In: Jayakumar R, Ed. Electrospun polymeric nanofibers: Insight into fabrication techniques and biomedical applications. Jayakumar R. Cham Springer International Publishing 2023 229 286 10.1007/12_2022_130
    [Google Scholar]
  151. Boyer R.B. Sexton K.W. Rodriguez-Feo C.L. Adjuvant neurotrophic factors in peripheral nerve repair with chondroitin sulfate proteoglycan-reduced acellular nerve allografts. J. Surg. Res. 2015 193 2 969 977 10.1016/j.jss.2014.09.023 25438961
    [Google Scholar]
  152. Tom V.J. Houlé J.D. Intraspinal microinjection of chondroitinase ABC following injury promotes axonal regeneration out of a peripheral nerve graft bridge. Exp. Neurol. 2008 211 1 315 319 10.1016/j.expneurol.2008.01.021 18353313
    [Google Scholar]
  153. Im J.H. Lee J.Y. Lee S. Lee M.G. Chung Y.G. Kim K.W. Comparison of the regeneration induced by acellular nerve allografts processed with or without chondroitinase in a rat model. Cell Tissue Bank. 2019 20 2 307 319 10.1007/s10561‑019‑09770‑x 31030290
    [Google Scholar]
  154. Donsante A. Xue J. Poth K.M. Controlling the release of neurotrophin-3 and chondroitinase ABC enhances the efficacy of nerve guidance conduits. Adv. Healthc. Mater. 2020 9 14 2000200 10.1002/adhm.202000200 32548984
    [Google Scholar]
  155. Sivak W.N. White J.D. Bliley J.M. Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration. J. Tissue Eng. Regen. Med. 2017 11 3 733 742 10.1002/term.1970 25424415
    [Google Scholar]
  156. Zhu Z. Li R. Guo W-L. Melatonin combined with chondroitin sulfate ABC promotes nerve regeneration after root-avulsion brachial plexus injury. Neural Regen. Res. 2019 14 2 328 338 10.4103/1673‑5374.244796 30531017
    [Google Scholar]
  157. Jiang L. Zheng Y. Chen O. Chu T. Ding J. Yu Q. Nerve defect repair by differentiated adipose-derived stem cells and chondroitinase ABC-treated acellular nerves. Int. J. Neurosci. 2015 126 6 1 9 10.3109/00207454.2015.1048547 26000928
    [Google Scholar]
  158. Pinto F. Santos-Ferreira L. Pinto M. Gomes C. Reis C. The extracellular small leucine-rich proteoglycan biglycan is a key player in gastric cancer aggressiveness. Cancers 2021 13 6 1330 10.3390/cancers13061330 33809543
    [Google Scholar]
  159. Sakko A.J. Ricciardelli C. Mayne K. Modulation of prostate cancer cell attachment to matrix by versican. Cancer Res. 2003 63 16 4786 4791 12941795
    [Google Scholar]
  160. Jaime-Ramirez A.C. Dmitrieva N. Yoo J.Y. Humanized chondroitinase ABC sensitizes glioblastoma cells to temozolomide. J. Gene Med. 2017 19 3 2942 10.1002/jgm.2942 28087981
    [Google Scholar]
  161. Al-Nakouzi N. Wang C.K. Oo H.Z. Reformation of the chondroitin sulfate glycocalyx enables progression of AR-independent prostate cancer. Nat. Commun. 2022 13 1 4760 10.1038/s41467‑022‑32530‑7 35963852
    [Google Scholar]
  162. Dmitrieva N. Yu L. Viapiano M. Chondroitinase ABC I-mediated enhancement of oncolytic virus spread and antitumor efficacy. Clin. Cancer Res. 2011 17 6 1362 1372 10.1158/1078‑0432.CCR‑10‑2213 21177410
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128392818251012115510
Loading
/content/journals/cpd/10.2174/0113816128392818251012115510
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test