Full text loading...
The potential of nanomedicine in cancer treatment is highlighted through the development of novel carriers for delivering anticancer drugs. By using advanced drug delivery techniques, nanomedicine, a rapidly developing therapeutic strategy, aims to maximize therapeutic efficacy while reducing adverse effects on healthy tissues. With significant benefits in targetability, stability, drug loading efficiency, and safety, nanomedicine has great potential to improve treatment outcomes and reduce off-target toxicity. More effective drugs are required for the treatment of cancer, given the annual number of new cases and millions of deaths due to the disease worldwide. Traditional cancer treatments are still not very effective against advanced metastatic cancers, despite their success in treating early-stage cancers. Thus, a vital path towards enhancing patient outcomes and lowering death rates in cancer remains a promising strategy. Porphyrin-derived nanomedicines play a crucial role in cancer treatment. Because of their specific characteristics—such as higher singlet-oxygen quantum yields and precise targeting—porphyrin-based nanomaterials have attracted significant interest. Such nanomaterials have great potential to maximize therapeutic effectiveness while reducing the side effects of cancer treatment. The most recent advancements in the use of porphyrin-based nanomedicine for drug delivery, imaging, and phototherapy are analyzed in this review. Drawing on a comprehensive analysis of current research, this review offers significant insights into the prospective applications of porphyrin-based nanomedicine as a flexible and potent weapon in the fight against cancer.
Article metrics loading...
Full text loading...
References
Data & Media loading...