Skip to content
2000
image of Stimuli-Responsive Porphyrin-Based Nano Drugs for Cancer Therapy

Abstract

The potential of nanomedicine in cancer treatment is highlighted through the development of novel carriers for delivering anticancer drugs. By using advanced drug delivery techniques, nanomedicine, a rapidly developing therapeutic strategy, aims to maximize therapeutic efficacy while reducing adverse effects on healthy tissues. With significant benefits in targetability, stability, drug loading efficiency, and safety, nanomedicine has great potential to improve treatment outcomes and reduce off-target toxicity. More effective drugs are required for the treatment of cancer, given the annual number of new cases and millions of deaths due to the disease worldwide. Traditional cancer treatments are still not very effective against advanced metastatic cancers, despite their success in treating early-stage cancers. Thus, a vital path towards enhancing patient outcomes and lowering death rates in cancer remains a promising strategy. Porphyrin-derived nanomedicines play a crucial role in cancer treatment. Because of their specific characteristics—such as higher singlet-oxygen quantum yields and precise targeting—porphyrin-based nanomaterials have attracted significant interest. Such nanomaterials have great potential to maximize therapeutic effectiveness while reducing the side effects of cancer treatment. The most recent advancements in the use of porphyrin-based nanomedicine for drug delivery, imaging, and phototherapy are analyzed in this review. Drawing on a comprehensive analysis of current research, this review offers significant insights into the prospective applications of porphyrin-based nanomedicine as a flexible and potent weapon in the fight against cancer.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128390040251124093958
2026-01-02
2026-02-21
Loading full text...

Full text loading...

References

  1. Markman J.L. Rekechenetskiy A. Holler E. Ljubimova J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev. 2013 65 13-14 1866 1879 10.1016/j.addr.2013.09.01924120656
    [Google Scholar]
  2. Han Y. Wen P. Li J. Kataoka K. Targeted nanomedicine in cisplatin-based cancer therapeutics. J. Control. Release 2022 345 709 720 10.1016/j.jconrel.2022.03.04935367476
    [Google Scholar]
  3. Sung H. Ferlay J. Siegel R.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.2166033538338
    [Google Scholar]
  4. Gotwals P. Cameron S. Cipolletta D. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer 2017 17 5 286 301 10.1038/nrc.2017.1728338065
    [Google Scholar]
  5. Riley R.S. June C.H. Langer R. Mitchell M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019 18 3 175 196 10.1038/s41573‑018‑0006‑z30622344
    [Google Scholar]
  6. Fan D. Cao Y. Cao M. Wang Y. Cao Y. Gong T. Nanomedicine in cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 293 10.1038/s41392‑023‑01536‑y37544972
    [Google Scholar]
  7. Shi J. Kantoff P.W. Wooster R. Farokhzad O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 2017 17 1 20 37 10.1038/nrc.2016.10827834398
    [Google Scholar]
  8. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  9. Manzari M.T. Shamay Y. Kiguchi H. Rosen N. Scaltriti M. Heller D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021 6 4 351 370 10.1038/s41578‑020‑00269‑634950512
    [Google Scholar]
  10. Kremer M. Value of tumor markers in immature dysembryomas of the mediastinum. Ann. Chir. 1986 40 2 130 132
    [Google Scholar]
  11. Xue X. Qu H. Li Y. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration 2022 2 6 20210134 10.1002/EXP.2021013437324805 PMC10190936
    [Google Scholar]
  12. Murugan A. Sugumaran P.J. Ravikumar C.K. Raman N. Yadav H.S. Arasu P.T. Porphysomes and Porphyrin-Based Nanomaterials for Drug Delivery System. Pharmaceutical Nanobiotechnology for Targeted Therapy. Cham Springer International Publishing 2022 281 312 10.1007/978‑3‑031‑12658‑1_10
    [Google Scholar]
  13. Rabiee N. Yaraki M.T. Garakani S.M. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 2020 232 119707 10.1016/j.biomaterials.2019.11970731874428
    [Google Scholar]
  14. Smith R.A. The colours of life: An introduction to the chemistry of porphyrins and related compounds (Milgrom, Lionel R.). J. Chem. Educ. 1998 75 4 420 10.1021/ed075p420.1
    [Google Scholar]
  15. Sessler J.L. Lawrence C.M. Jayawickramarajah J. Molecular recognition via base-pairing. Chem. Soc. Rev. 2007 36 2 314 325 10.1039/B604119C17264932
    [Google Scholar]
  16. Ptaszyńska A.A. Trytek M. Borsuk G. Buczek K. Rybicka-Jasińska K. Gryko D. Porphyrins inactivate Nosema spp. microsporidia. Sci. Rep. 2018 8 1 5523 10.1038/s41598‑018‑23678‑829615690
    [Google Scholar]
  17. DeVries L.D. Choe W. Classification of structural motifs in porphyrinic coordination polymers assembled from porphyrin building units, 5, 10, 15, 20-tetrapyridylporphyrin and its derivatives. J. Chem. Crystallogr. 2009 39 4 229 240 10.1007/s10870‑008‑9474‑z
    [Google Scholar]
  18. Sehgal P. Narula A.K. Metal substituted metalloporphyrins as efficient photosensitizers for enhanced solar energy conversion. J. Photochem. Photobiol. Chem. 2019 375 91 99 10.1016/j.jphotochem.2019.02.003
    [Google Scholar]
  19. Wójtowicz H. Bielecki M. Wojaczyński J. Olczak M. Smalley J.W. Olczak T. The Porphyromonas gingivalis HmuY haemophore binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX. Metallomics 2013 5 4 343 351 10.1039/c3mt20215a23392445
    [Google Scholar]
  20. Chen H. Zhao X. Halimov A. Phototheranostic zinc porphyrin nanoparticles triggered by an 808 NM laser: NIR-II fluorescence/photoacoustic imaging-guided combined photothermal/] photodynamic/no therapy. Bioconjug. Chem. 2025 36 4 838 845 10.1021/acs.bioconjchem.5c0008640194279
    [Google Scholar]
  21. Yang S. Yu Y. Gao X. Zhang Z. Wang F. Recent advances in electrocatalysis with phthalocyanines. Chem. Soc. Rev. 2021 50 23 12985 13011 10.1039/D0CS01605E34751683
    [Google Scholar]
  22. Zhang Y. Lovell J.F. Recent applications of phthalocyanines and naphthalocyanines for imaging and therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017 9 1 e1420 10.1002/wnan.142027439671
    [Google Scholar]
  23. de la Torre G. Claessens C.G. Torres T. Phthalocyanines: The need for selective synthetic approaches. Eur. J. Org. Chem. 2000 2000 16 2821 2830 10.1002/1099‑0690(200008)2000:16<2821:AID‑EJOC2821>3.0.CO;2‑2
    [Google Scholar]
  24. Shao J. Xue J. Dai Y. Inhibition of human hepatocellular carcinoma hepg2 by phthalocyanine photosensitiser photocyanine: ROS production, apoptosis, cell cycle arrest. Eur. J. Cancer 2012 48 13 2086 2096 10.1016/j.ejca.2011.10.01322265427
    [Google Scholar]
  25. Saito S. Osuka A. Expanded porphyrins: Intriguing structures, electronic properties, and reactivities. Angew. Chem. Int. Ed. 2011 50 19 4342 4373 10.1002/anie.20100390921491551
    [Google Scholar]
  26. Cissell J.A. Vaid T.P. Yap G.P.A. Reversible oxidation state change in germanium(tetraphenylporphyrin) induced by a dative ligand: aromatic GeII(TPP) and antiaromatic GeIV(TPP)(pyridine)2. J. Am. Chem. Soc. 2007 129 25 7841 7847 10.1021/ja070794i17550248
    [Google Scholar]
  27. Weiss A. Hodgson M.C. Boyd P.D.W. Siebert W. Brothers P.J. Diboryl and diboranyl porphyrin complexes: Synthesis, structural motifs, and redox chemistry: Diborenyl porphyrin or diboranyl isophlorin? Chemistry 2007 13 21 5982 5993 10.1002/chem.20070004617570718
    [Google Scholar]
  28. Sessler J.L. Seidel D. Synthetic expanded porphyrin chemistry. Angew. Chem. Int. Ed. 2003 42 42 5134 5175 10.1002/anie.20020056114601164
    [Google Scholar]
  29. Jasat A. Dolphin D. Expanded porphyrins and their heterologs. Chem. Rev. 1997 97 6 2267 2340 10.1021/cr950078b11848901
    [Google Scholar]
  30. Koide T. Kashiwazaki G. Suzuki M. A stable radical species from facile oxygenation of meso-free 5,10,20,25-tetrakis(pentafluorophenyl)-substituted [26]hexaphyrin(1.1.1.1.1.1). Angew. Chem. Int. Ed. 2008 47 50 9661 9665 10.1002/anie.20080457019003844
    [Google Scholar]
  31. Li X. Wang H. Ma Y. Redox-sensitive nanogels co-loaded with porphyrins for enhanced photodynamic therapy. J. Control. Release 2022 345 622 634
    [Google Scholar]
  32. Zhao Y. Wang W. He X. pH-sensitive porphyrin-doxorubicin conjugates for synergistic chemo-photodynamic therapy. Biomater. Sci. 2021 9 5 1723 1735
    [Google Scholar]
  33. Wang Y. Chen R. Sun Z. Hypoxia-activated porphyrin platforms for tumor-selective photodynamic therapy. Adv. Funct. Mater. 2023 33 7 2209153
    [Google Scholar]
  34. Chen W. Zhou J. Wang Y. Enzyme-responsive porphyrin nanohybrids for precise cancer therapy. ACS Appl. Mater. Interfaces 2020 12 18 20148 20157
    [Google Scholar]
  35. Motamarry A. Asemani D. Haemmerich D. Thermosensitive liposomes. IntechOpen 2017 10.5772/intechopen.68159
    [Google Scholar]
  36. Xia H. Yang D. He W. Ultrasound-mediated microbubbles cavitation enhanced chemotherapy of advanced prostate cancer by increasing the permeability of blood-prostate barrier. Transl. Oncol. 2021 14 10 101177 10.1016/j.tranon.2021.10117734271256
    [Google Scholar]
  37. Sun H. Cao D. Zhang S. Photoresponsive porphyrin nanoplatforms for light-triggered drug delivery and photodynamic therapy. Chem. Eng. J. 2021 426 131752
    [Google Scholar]
  38. Graham W. Torbett-Dougherty M. Islam A. Soleimani S. Bruce-Tagoe T.A. Johnson J.A. Magnetic nanoparticles and drug delivery systems for anti-cancer applications: A review. Nanomaterials (Basel) 2025 15 4 285 10.3390/nano1504028539997849
    [Google Scholar]
  39. Wu M. Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol. 2017 7 5 738 746 10.3892/mco.2017.139929075487
    [Google Scholar]
  40. Tian J. Huang B. Nawaz M.H. Zhang W. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord. Chem. Rev. 2020 420 213410 10.1016/j.ccr.2020.213410
    [Google Scholar]
  41. Gomes ATPC Neves MGPMS Cavaleiro JAS Cancer, photodynamic therapy and porphyrin-type derivatives. An Acad Bras Cienc 2018 90 1 suppl 2 993 1026 (Suppl. 2) 10.1590/0001‑3765201820170811 29873666
    [Google Scholar]
  42. Kumari P. Gautam R. Milhotra A. Application of porphyrin nanomaterials in photodynamic therapy. Chem Biol Lett 2016 3 2 32 37
    [Google Scholar]
  43. Kou J. Dou D. Yang L. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget 2017 8 46 81591 81603 10.18632/oncotarget.2018929113417
    [Google Scholar]
  44. Lu K. He C. Lin W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014 136 48 16712 16715 10.1021/ja508679h25407895
    [Google Scholar]
  45. Penon O. Marín M.J. Russell D.A. Pérez-García L. Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy. J. Colloid Interface Sci. 2017 496 100 110 10.1016/j.jcis.2017.02.00628214620
    [Google Scholar]
  46. Xing C. Liu L. Tang H. Design guidelines for conjugated polymers with light-activated anticancer activity. Adv. Funct. Mater. 2011 21 21 4058 4067 10.1002/adfm.201100840
    [Google Scholar]
  47. Chang K. Tang Y. Fang X. Yin S. Xu H. Wu C. Incorporation of porphyrin to π-conjugated backbone for polymer-dot-sensitized photodynamic therapy. Biomacromolecules 2016 17 6 2128 2136 10.1021/acs.biomac.6b0035627219282
    [Google Scholar]
  48. Yu G. Yu S. Saha M.L. A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nat. Commun. 2018 9 1 4335 10.1038/s41467‑018‑06574‑730337535
    [Google Scholar]
  49. Li J. Wei D. Fu Q. Anatase TiO 2− x and zwitterionic porphyrin polymer-based nanocomposite for enhanced cancer photodynamic therapy. Nanoscale 2023 15 36 14790 14799 10.1039/D3NR03012A37642471
    [Google Scholar]
  50. Park J. Feng D. Yuan S. Zhou H.C. Photochromic metal-organic frameworks: Reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. 2015 54 2 430 435 10.1002/anie.20140886225476702
    [Google Scholar]
  51. Li B. Wang X. Chen L. Ultrathin Cu-TCPP MOF nanosheets: A new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers. Theranostics 2018 8 15 4086 4096 10.7150/thno.2543330128038
    [Google Scholar]
  52. Ma Y. Li X. Li A. Yang P. Zhang C. Tang B. H2S‐activable MOF nanoparticle photosensitizer for effective photodynamic therapy against cancer with controllable singlet-oxygen release. Angew. Chem. Int. Ed. 2017 56 44 13752 13756 10.1002/anie.20170800528856780
    [Google Scholar]
  53. Chen J. Zhu Y. Kaskel S. Porphyrin-based metal-organic frameworks for biomedical applications. Angew. Chem. Int. Ed. 2021 60 10 5010 5035 10.1002/anie.20190988031989749
    [Google Scholar]
  54. Zhang W. Lu J. Gao X. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with CuII as the active center. Angew. Chem. Int. Ed. 2018 57 18 4891 4896 10.1002/anie.20171080029451722
    [Google Scholar]
  55. Wang C. Cao F. Ruan Y. Jia X. Zhen W. Jiang X. Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by Cu-TCPP nanosheets for cancer therapy. Angew. Chem. Int. Ed. 2019 58 29 9846 9850 10.1002/anie.20190398131077533
    [Google Scholar]
  56. Zeng J.Y. Zou M.Z. Zhang M. π-Extended benzoporphyrin-based metal-organic framework for inhibition of tumor metastasis. ACS Nano 2018 12 5 4630 4640 10.1021/acsnano.8b0118629584395
    [Google Scholar]
  57. Park J. Jiang Q. Feng D. Mao L. Zhou H.C. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016 138 10 3518 3525 10.1021/jacs.6b0000726894555
    [Google Scholar]
  58. Li Y. Di Z. Gao J. Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 2017 139 39 13804 13810 10.1021/jacs.7b0730228899098
    [Google Scholar]
  59. He L. Brasino M. Mao C. DNA-Assembled core-satellite upconverting-metal-organic framework nanoparticle superstructures for efficient photodynamic therapy. Small 2017 13 24 1700504 10.1002/smll.20170050428481463
    [Google Scholar]
  60. Ghosh S. Carter K.A. Lovell J.F. Liposomal formulations of photosensitizers. Biomaterials 2019 218 119341 10.1016/j.biomaterials.2019.11934131336279
    [Google Scholar]
  61. Managa M. Achadu O.J. Nyokong T. Photophysical studies of graphene quantum dots - Pyrene-derivatized porphyrins conjugates when encapsulated within Pluronic F127 micelles. Dyes Pigments 2018 148 405 416 10.1016/j.dyepig.2017.09.031
    [Google Scholar]
  62. Maranho D.S. De Lima R.G. Primo F.L. Da Silva R.S. Tedesco A.C. Photoinduced nitric oxide and singlet oxygen release from ZnPC liposome vehicle associated with the nitrosyl ruthenium complex: Synergistic effects in photodynamic therapy application. Photochem. Photobiol. 2009 85 3 705 713 10.1111/j.1751‑1097.2008.00481.x19076310
    [Google Scholar]
  63. Hiraka K. Kanehisa M. Tamai M. Preparation of pH-sensitive liposomes retaining SOD mimic and their anticancer effect. Colloids Surf. B Biointerfaces 2008 67 1 54 58 10.1016/j.colsurfb.2008.07.01418775654
    [Google Scholar]
  64. Dai Z. Advances in nanotheranostics II: Cancer theranostic nanomedicine. Springer 2016 10.1007/978‑981‑10‑0063‑8
    [Google Scholar]
  65. Liang X. Li X. Yue X. Dai Z. Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer. Angew. Chem. Int. Ed. 2011 50 49 11622 11627 10.1002/anie.20110355722002770
    [Google Scholar]
  66. Jin C.S. Lovell J.F. Chen J. Zheng G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 2013 7 3 2541 2550 10.1021/nn305864223394589
    [Google Scholar]
  67. Biswas S. Ahn H.Y. Bondar M.V. Belfield K.D. Two-photon absorption enhancement of polymer-templated porphyrin-based J-aggregates. Langmuir 2012 28 2 1515 1522 10.1021/la203883k22188399
    [Google Scholar]
  68. Aggad D. Jimenez C.M. Dib S. Gemcitabine delivery and photodynamic therapy in cancer cells via porphyrin-ethylene-based periodic mesoporous organosilica nanoparticles. ChemNanoMat 2018 4 1 46 51 10.1002/cnma.201700264
    [Google Scholar]
  69. Li S.Y. Cheng H. Qiu W.X. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials 2017 142 149 161 10.1016/j.biomaterials.2017.07.02628735175
    [Google Scholar]
  70. Li S.Y. Cheng H. Xie B.R. Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 2017 11 7 7006 7018 10.1021/acsnano.7b0253328665106
    [Google Scholar]
  71. Duchi S. Sotgiu G. Lucarelli E. Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: Effective photoinduced in vitro killing of osteosarcoma. J. Control. Release 2013 168 2 225 237 10.1016/j.jconrel.2013.03.01223524189
    [Google Scholar]
  72. Fuhrmann G. Serio A. Mazo M. Nair R. Stevens M.M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Release 2015 205 35 44 10.1016/j.jconrel.2014.11.02925483424
    [Google Scholar]
  73. Millard M. Yakavets I. Piffoux M. mTHPC-loaded extracellular vesicles outperform liposomal and free mTHPC formulations by an increased stability, drug delivery efficiency and cytotoxic effect in tridimensional model of tumors. Drug Deliv. 2018 25 1 1790 1801 10.1080/10717544.2018.151360930785308
    [Google Scholar]
  74. Bera K. Maiti S. Maity M. Mandal C. Maiti N.C. Porphyrin-gold nanomaterial for efficient drug delivery to cancerous cells. ACS Omega 2018 3 4 4602 4619 10.1021/acsomega.8b0041930023896
    [Google Scholar]
  75. Lv F. Mao L. Liu T. Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer: Preparation, characterization and fluorescence imaging in vivo. Mater. Sci. Eng. C 2014 43 221 230 10.1016/j.msec.2014.07.01925175208
    [Google Scholar]
  76. Zhang Y. Jia S. Yuan J. Porphyrin-terminated nanoscale fluorescent polyrotaxane as a biodegradable drug carrier for anticancer research. Nanotechnology 2020 31 25 255101 10.1088/1361‑6528/ab7d7132143196
    [Google Scholar]
  77. Kim H.J. Maiti P. Barrientos A. Mitochondrial ribosomes in cancer. InSeminars in Cancer Biology. Academic Press 2017 Vol. 47 67 81
    [Google Scholar]
  78. Loreni F. Mancino M. Biffo S. Translation factors and ribosomal proteins control tumor onset and progression: How? Oncogene 2014 33 17 2145 2156 10.1038/onc.2013.15323644661
    [Google Scholar]
  79. Penzo M. Montanaro L. Treré D. Derenzini M. The ribosome biogenesis—cancer connection. Cells 2019 8 1 55 10.3390/cells801005530650663
    [Google Scholar]
  80. Wang J. Yang B. Lv C. Amino porphyrin-peptide assemblies induce ribosome damage and cancer stem cell inhibition for an enhanced photodynamic therapy. Biomaterials 2022 289 121812 10.1016/j.biomaterials.2022.12181236152516
    [Google Scholar]
  81. Chi Y. Zheng Y. Pan X. Enzyme-mediated fabrication of nanocomposite hydrogel microneedles for tunable mechanical strength and controllable transdermal efficiency. Acta Biomater. 2024 174 127 140 10.1016/j.actbio.2023.11.03838042262
    [Google Scholar]
  82. Elbayoumi T.A. Pabba S. Roby A. Torchilin V.P. Antinucleosome antibody-modified liposomes and lipid-core micelles for tumor-targeted delivery of therapeutic and diagnostic agents. J. Liposome Res. 2007 17 1 1 14 10.1080/0898210060118647417454399
    [Google Scholar]
  83. Dandash F. Léger D.Y. Fidanzi-Dugas C. In vitro anticancer activity of new gold(III) porphyrin complexes in colon cancer cells. J. Inorg. Biochem. 2017 177 27 38 10.1016/j.jinorgbio.2017.08.02428923355
    [Google Scholar]
  84. Malarz K. Borzęcka W. Ziola P. pH-sensitive phthalocyanine-loaded polymeric nanoparticles as a novel treatment strategy for breast cancer. Bioorg. Chem. 2025 155 108127 10.1016/j.bioorg.2025.10812739798455
    [Google Scholar]
  85. Carter K.A. Shao S. Hoopes M.I. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat. Commun. 2014 5 1 3546 10.1038/ncomms454624699423
    [Google Scholar]
  86. Li Y. Lin T. Luo Y. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun. 2014 5 1 4712 10.1038/ncomms571225158161
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128390040251124093958
Loading
/content/journals/cpd/10.2174/0113816128390040251124093958
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test