Skip to content
2000
image of Technological Advancements in Drug Formulation and Delivery: Revolutionizing Therapeutic Outcomes

Abstract

Integrating the most advanced technologies in drug formulation and delivery systems is revolutionizing modern healthcare, leading to improved treatment efficacy and patient outcomes. This study explains how new technologies are transforming the way drugs are manufactured and delivered. They include the use of advanced materials, nanotechnology, and biotechnology. Nanotechnology has also enabled the fabrication of targeted drug-delivery particles. Such particles would guarantee that drugs reach a specific tissue or cell, with notable minimization of side effects. The precise targeting of drugs is found to significantly enhance the effectiveness of treatment in fields, such as oncology and personalized medicine, among others. Breakthroughs can also be observed in the design of biologics, gene therapies, and monoclonal antibodies, resulting in highly targeted treatments for a wide range of diseases. Besides novel drug formulations, smart delivery devices have also been designed that not only control the location and rate of drug release, but also the timing of drug release. These include implantable pumps, which ensure more controlled and sustained drug release, bio-responsive hydrogels, medication-eluting stents, which ensure controlled and sustained drug release, and many more devices. This reduces the number of readjustments and increases the likelihood of patient compliance with the treatment plan. This study also discusses the role of digital technologies, such as wearables and AI-driven drug delivery systems, which continue to track patient responses and dosages to improve the outcomes of therapy. Such developments have marked a significant paradigm shift in pharmaceutical research, bringing highly personalized, secure, and effective treatment options to patients worldwide.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128388316251001042422
2025-10-28
2025-12-18
Loading full text...

Full text loading...

References

  1. Ezike T.C. Okpala U.S. Onoja U.L. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  2. Tambe S. Jain D. Meruva S.K. Recent advances in amorphous solid dispersions: Preformulation, formulation strategies, technological advancements and characterization. Pharmaceutics 2022 14 10 2203 10.3390/pharmaceutics14102203 36297638
    [Google Scholar]
  3. Alqahtani M.S. Kazi M. Alsenaidy M.A. Ahmad M.Z. Advances in oral drug delivery. Front. Pharmacol. 2021 12 618411 10.3389/fphar.2021.618411 33679401
    [Google Scholar]
  4. Liu J. Grohganz H. Löbmann K. Rades T. Hempel N.J. Co-amorphous drug formulations in numbers: Recent advances in co-amorphous drug formulations with focus on co-formability, molar ratio, preparation methods, physical stability, in vitro and in vivo performance, and new formulation strategies. Pharmaceutics 2021 13 3 389 10.3390/pharmaceutics13030389 33804159
    [Google Scholar]
  5. Mishra V. Nayak P. Yadav N. Singh M. Tambuwala M.M. Aljabali A.A.A. Orally administered self-emulsifying drug delivery system in disease management: advancement and patents. Expert Opin. Drug Deliv. 2021 18 3 315 332 10.1080/17425247.2021.1856073 33232184
    [Google Scholar]
  6. Noorain S.V. Srivastava V. Parveen B. Parveen R. Artificial intelligence in drug formulation and development: applications and future prospects. Curr. Drug Metab. 2023 24 9 622 634 10.2174/0113892002265786230921062205 37779408
    [Google Scholar]
  7. Elmowafy M. Al-Sanea M.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm. J. 2021 29 9 999 1012 10.1016/j.jsps.2021.07.015 34588846
    [Google Scholar]
  8. Bannigan P. Aldeghi M. Bao Z. Häse F. Aspuru-Guzik A. Allen C. Machine learning directed drug formulation development. Adv. Drug Deliv. Rev. 2021 175 113806 10.1016/j.addr.2021.05.016 34019959
    [Google Scholar]
  9. More M.P. Pardeshi S.R. Pardeshi C.V. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. Med Drug Discov 2021 10 100082 10.1016/j.medidd.2021.100082
    [Google Scholar]
  10. Baral K.C. Bajracharya R. Lee S.H. Han H.K. Advancements in the pharmaceutical applications of probiotics: Dosage forms and formulation technology. Int. J. Nanomedicine 2021 16 7535 7556 10.2147/IJN.S337427 34795482
    [Google Scholar]
  11. He M. Zhu L. Yang N. Li H. Yang Q. Recent advances of oral film as platform for drug delivery. Int. J. Pharm. 2021 604 120759 10.1016/j.ijpharm.2021.120759 34098053
    [Google Scholar]
  12. Salahshoori I. Golriz M. Nobre M.A.L. Simulation-based approaches for drug delivery systems: Navigating advancements, opportunities, and challenges. J. Mol. Liq. 2024 395 123888 10.1016/j.molliq.2023.123888
    [Google Scholar]
  13. Park H. Otte A. Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J. Control. Release 2022 342 53 65 10.1016/j.jconrel.2021.12.030 34971694
    [Google Scholar]
  14. Mohammed Y. Holmes A. Kwok P.C.L. Advances and future perspectives in epithelial drug delivery. Adv. Drug Deliv. Rev. 2022 186 114293 10.1016/j.addr.2022.114293 35483435
    [Google Scholar]
  15. Osmałek T. Froelich A. Jadach B. Recent advances in polymer-based vaginal drug delivery systems. Pharmaceutics 2021 13 6 884 10.3390/pharmaceutics13060884 34203714
    [Google Scholar]
  16. Phan H. Taresco V. Penelle J. Couturaud B. Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: Recent advances. Biomater. Sci. 2021 9 1 38 50 10.1039/D0BM01406K 33179646
    [Google Scholar]
  17. Jampilek J. Kralova K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials 2021 14 5 1059 10.3390/ma14051059 33668271
    [Google Scholar]
  18. Huang S. Lu H. Chen J. Advances in drug delivery-based therapeutic strategies for renal fibrosis treatment. J. Mater. Chem. B Mater. Biol. Med. 2024 12 27 6532 6549 10.1039/D4TB00737A 38913013
    [Google Scholar]
  19. Ghourichay M.P. Kiaie S.H. Nokhodchi A. Javadzadeh Y. Formulation and quality control of orally disintegrating tablets (ODTs): Recent advances and perspectives. BioMed Res. Int. 2021 2021 1 6618934 10.1155/2021/6618934 34977245
    [Google Scholar]
  20. Trushina D.B. Borodina T.N. Belyakov S. Antipina M.N. Calcium carbonate vaterite particles for drug delivery: Advances and challenges. Mater Today Adv 2022 14 100214 10.1016/j.mtadv.2022.100214 36785703
    [Google Scholar]
  21. Alsaab H.O. Alharbi F.D. Alhibs A.S. PLGA-based nanomedicine: History of advancement and development in clinical applications of multiple diseases. Pharmaceutics 2022 14 12 2728 10.3390/pharmaceutics14122728 36559223
    [Google Scholar]
  22. Dutta B. Barick K.C. Hassan P.A. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv. Colloid Interface Sci. 2021 296 102509 10.1016/j.cis.2021.102509 34455211
    [Google Scholar]
  23. Jacob S. Nair A.B. Shah J. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy: An overview on recent advances. Pharmaceutics 2022 14 3 533 10.3390/pharmaceutics14030533 35335909
    [Google Scholar]
  24. Abourehab M.A.S. Pramanik S. Abdelgawad M.A. Recent advances of chitosan formulations in biomedical applications. Int. J. Mol. Sci. 2022 23 18 10975 10.3390/ijms231810975 36142887
    [Google Scholar]
  25. Yasamineh S. Yasamineh P. Ghafouri Kalajahi H. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int. J. Pharm. 2022 624 121878 10.1016/j.ijpharm.2022.121878 35636629
    [Google Scholar]
  26. Verma D. Sharma S.K. Recent advances in guar gum based drug delivery systems and their administrative routes. Int. J. Biol. Macromol. 2021 181 653 671 10.1016/j.ijbiomac.2021.03.087 33766594
    [Google Scholar]
  27. Awad A. Fina F. Goyanes A. Gaisford S. Basit A.W. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv. Drug Deliv. Rev. 2021 174 406 424 10.1016/j.addr.2021.04.025 33951489
    [Google Scholar]
  28. Witika B.A. Bassey K.E. Demana P.H. Siwe-Noundou X. Poka M.S. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications. Int. J. Mol. Sci. 2022 23 17 9668 10.3390/ijms23179668 36077066
    [Google Scholar]
  29. Paroha S. Verma J. Dubey R.D. Recent advances and prospects in gemcitabine drug delivery systems. Int. J. Pharm. 2021 592 120043 10.1016/j.ijpharm.2020.120043 33152476
    [Google Scholar]
  30. Yousuf I. Bashir M. Arjmand F. Tabassum S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord. Chem. Rev. 2021 445 214104 10.1016/j.ccr.2021.214104
    [Google Scholar]
  31. Bouz G. Doležal M. Advances in antifungal drug development: An up-to-date mini review. Pharmaceuticals 2021 14 12 1312 10.3390/ph14121312 34959712
    [Google Scholar]
  32. Tewabe A. Abate A. Tamrie M. Seyfu A. Abdela Siraj E. Targeted drug delivery—from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J. Multidiscip. Healthc. 2021 14 1711 1724 10.2147/JMDH.S313968 34267523
    [Google Scholar]
  33. de Menezes B.R.C. Rodrigues K.F. Schatkoski V.M. Current advances in drug delivery of nanoparticles for respiratory disease treatment. J. Mater. Chem. B Mater. Biol. Med. 2021 9 7 1745 1761 10.1039/D0TB01783C 33508058
    [Google Scholar]
  34. Singh V. Kesharwani P. Recent advances in microneedles-based drug delivery device in the diagnosis and treatment of cancer. J. Control. Release 2021 338 394 409 10.1016/j.jconrel.2021.08.054 34481019
    [Google Scholar]
  35. Yaghmur A. Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm. Sin. B 2021 11 4 871 885 10.1016/j.apsb.2021.02.013 33996404
    [Google Scholar]
  36. Vlachopoulos A. Karlioti G. Balla E. Poly (lactic acid)-based microparticles for drug delivery applications: An overview of recent advances. Pharmaceutics 2022 14 2 359 10.3390/pharmaceutics14020359 35214091
    [Google Scholar]
  37. Emad N.A. Ahmed B. Alhalmi A. Alzobaidi N. Al-Kubati S.S. Recent progress in nanocarriers for direct nose to brain drug delivery. J. Drug Deliv. Sci. Technol. 2021 64 102642 10.1016/j.jddst.2021.102642
    [Google Scholar]
  38. Md S. Mustafa G. Baboota S. Ali J. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev. Ind. Pharm. 2015 41 12 1922 1934 10.3109/03639045.2015.1052081 26057769
    [Google Scholar]
  39. Mikušová V. Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int. J. Mol. Sci. 2021 22 17 9652 10.3390/ijms22179652 34502560
    [Google Scholar]
  40. Edis Z. Wang J. Waqas M.K. Ijaz M. Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int. J. Nanomedicine 2021 16 1313 1330 10.2147/IJN.S289443 33628022
    [Google Scholar]
  41. Sabbagh F. Kim B.S. Recent advances in polymeric transdermal drug delivery systems. J. Control. Release 2022 341 132 146 10.1016/j.jconrel.2021.11.025 34813879
    [Google Scholar]
  42. Badkar A.V. Gandhi R.B. Davis S.P. LaBarre M.J. Subcutaneous delivery of high-dose/volume biologics: current status and prospect for future advancements. Drug Des. Devel. Ther. 2021 15 159 170 10.2147/DDDT.S287323 33469268
    [Google Scholar]
  43. Jash A. Ubeyitogullari A. Rizvi S.S.H. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. J. Mater. Chem. B Mater. Biol. Med. 2021 9 24 4773 4792 10.1039/D1TB00126D 34027542
    [Google Scholar]
  44. Barenholz Y.C. The first FDA-approved nano-drug: From an idea to a product. In: Handbook of harnessing biomaterials in nanomedicine. Jenny Stanford Publishing 2021 463 528
    [Google Scholar]
  45. Miguel R.A. Hirata A.S. Jimenez P.C. Lopes L.B. Costa-Lotufo L.V. Beyond formulation: Contributions of nanotechnology for translation of anticancer natural products into new drugs. Pharmaceutics 2022 14 8 1722 10.3390/pharmaceutics14081722 36015347
    [Google Scholar]
  46. Gan J. Juang V. Wang K. Reverse engineering of Onivyde® – Irinotecan liposome injection. Int. J. Pharm. 2025 669 125000 10.1016/j.ijpharm.2024.125000 39608586
    [Google Scholar]
  47. Mishra N. Shaikh M.S. Solanki K.D. Savle A.M. Coumes F. Kadam Y.K. Nanotechnology in cancer therapy: Targeted drug delivery systems. In: Exploring nanomaterial synthesis, characterization, and applications. IGI Global 2025 413 440
    [Google Scholar]
  48. Zadeh Mehrizi T. Mosaffa N. Vodjgani M. Ebrahimi Shahmabadi H. Advances in nanotechnology for improving the targeted delivery and activity of amphotericin B (2011-2023): A systematic review. Nanotoxicology 2024 18 3 231 258 10.1080/17435390.2024.2340467 38646931
    [Google Scholar]
  49. Avanu A.E. Ciubotariu A.M. Ciornei A.M. Cozmîncă A.D. Dodi G. Nano-steps in altered opioid pharmacokinetics: A perspective on potential drug delivery post-bariatric surgery applications. RSC Pharmaceutics 2024 1 5 864 878 10.1039/D4PM00187G
    [Google Scholar]
  50. Chambial P. Thakur N. Preethi L. Mehta P. Anti-cancer nanotherapeutics. In: Nanoparticles in Cancer Therapy: Innovations and Clinical Applications. Boca Raton CRC Press 2024 10.1201/9781003515630
    [Google Scholar]
  51. Aza M.K. Suberu A. Balogun M. Nanotheranostics for gynecological cancers: A path forward for Africa. Med. Oncol. 2024 42 1 34 10.1007/s12032‑024‑02582‑4 39704911
    [Google Scholar]
  52. Sung D. Sanchez A. Tward J.D. Successful salvage brachytherapy after infusion of gold auroshell nanoshells for localized prostate cancer in a human patient. Adv. Radiat. Oncol. 2023 8 4 101202 10.1016/j.adro.2023.101202 37082724
    [Google Scholar]
  53. Sahin A. Ceylan C. Ertan-Ahmed S. Clinical trials of targeted nanoparticulate drug delivery systems. In: Drug delivery with targeted nanoparticles. Jenny Stanford Publishing 2021 615 10.1201/9781003164739‑22
    [Google Scholar]
  54. Bashir R. Khan N.A. Advances in nanomaterials: Fabrication of targeted drug delivery system. In: Sustainable nanomaterials for biomedical engineering: Impacts, challenges, and future pr ospects. Apple Academic Press 2023
    [Google Scholar]
  55. Maier-Hauff K. Ulrich F. Nestler D. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 2011 103 2 317 324 10.1007/s11060‑010‑0389‑0 20845061
    [Google Scholar]
  56. Losada-Barreiro S. Celik S. Sezgin-Bayindir Z. Bravo-Fernández S. Bravo-Díaz C. Carrier systems for advanced drug delivery: Improving drug solubility/bioavailability and administration routes. Pharmaceutics 2024 16 7 852 10.3390/pharmaceutics16070852 39065549
    [Google Scholar]
  57. Rai S. Singh N. Bhattacharya S. Concepts on smart nano-based drug delivery system. Recent Pat. Nanotechnol. 2022 16 1 67 89 10.2174/1872210515666210120113738 33494685
    [Google Scholar]
  58. Madani F. Esnaashari S.S. Webster T.J. Khosravani M. Adabi M. Polymeric nanoparticles for drug delivery in glioblastoma: State of the art and future perspectives. J. Control. Release 2022 349 649 661 10.1016/j.jconrel.2022.07.023 35878729
    [Google Scholar]
  59. Coco G. Buffon G. Taloni A. Giannaccare G. Recent advances in nanotechnology for the treatment of dry eye disease. Nanomaterials 2024 14 8 669 10.3390/nano14080669 38668163
    [Google Scholar]
  60. Rahiman N. Markina Y.V. Kesharwani P. Johnston T.P. Sahebkar A. Curcumin-based nanotechnology approaches and therapeutics in restoration of autoimmune diseases. J. Control. Release 2022 348 264 286 10.1016/j.jconrel.2022.05.046 35649486
    [Google Scholar]
  61. Bhalani D.V. Nutan B. Kumar A. Singh Chandel A.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines 2022 10 9 2055 10.3390/biomedicines10092055 36140156
    [Google Scholar]
  62. Morris A.H. Hughes K.R. Shea L.D. Nanotechnology and biomaterials for immune modulation and monitoring. In: Immunomodulatory Biomaterials. Woodhead Publishing 2021 41 65 10.1016/B978‑0‑12‑821440‑4.00001‑3
    [Google Scholar]
  63. Sangaiya P. Jayaprakash R. A review on iron oxide nanoparticles and their biomedical applications. J. Supercond. Nov. Magn. 2018 31 3397 3413 10.1007/s10948‑018‑4841‑2
    [Google Scholar]
  64. Chan J.C.N. Chan A.T.C. Biologics and biosimilars: What, why and how? ESMO Open 2017 2 1 e000180 10.1136/esmoopen‑2017‑000180
    [Google Scholar]
  65. Haider R. Pharmaceutical and biopharmaceuticals industries:Revolutionizing healthcare. Asian J Nat Sci 2023 2 2 10.55927/ajns.v2i2.4179
    [Google Scholar]
  66. Tsuruta L.R. Lopes dos Santos M. Moro A.M. Biosimilars advancements: Moving on to the future. Biotechnol. Prog. 2015 31 5 1139 1149 10.1002/btpr.2066 25708573
    [Google Scholar]
  67. Watson J. Advances in Drug Medicine. Int. J. Collab. Res. Intern. Med. Public Health 2024 16 1 1 2
    [Google Scholar]
  68. Askari S. Ghofrani A. Taherdoost H. Transforming drug design: Innovations in computer-aided discovery for biosimilar agents. BioMedInformatics 2023 3 4 1178 1196 10.3390/biomedinformatics3040070
    [Google Scholar]
  69. Rao G. Role of biomolecules and biologics in precision medicine, personalized medicine, and emerging therapies. Int. J. Biom. 2022 12 1 70 81 10.21103/Article12(1)_GE
    [Google Scholar]
  70. Prajapati R.N. Bhushan B. Singh K. Recent advances in pharmaceutical design: Unleashing the potential of novel therapeutics. Curr. Pharm. Biotechnol. 2024 25 16 2060 2077 10.2174/0113892010275850240102105033 38288793
    [Google Scholar]
  71. Makurvet F.D. Biologics vs. small molecules: Drug costs and patient access. Med Drug Discov 2021 9 100075 10.1016/j.medidd.2020.100075
    [Google Scholar]
  72. Sung J. Regulatory considerations in the development of biosimilars. RR Int Pharm J 2024 2 2 7 12
    [Google Scholar]
  73. Ramzan I. Biologics, Biosimilars, and Biobetters: An Introduction for Pharmacists, Physicians and Other Health Practitioners. John Wiley & Sons 2021
    [Google Scholar]
  74. Rao N. Kini R. Maniyar D. Amin R. Journey from Serendipity to Biologics. Pharm. Chem. J. 2022 55 12 1329 1337 10.1007/s11094‑022‑02579‑1
    [Google Scholar]
  75. Alhadi T.M. Albager A.H. Alotaibi W.F. Biopharmaceuticals: Unlocking the potential of biological therapies. J Namib Stud 2023 36 149 157
    [Google Scholar]
  76. Udeabor S.E. Monoclonal antibodies in modern medicine: Their therapeutic potential and future directions. Trend Pharm Biotechnol 2024 2 2 15 23
    [Google Scholar]
  77. Duan S. Buxton I.L.O. Evolution of medical approaches and prominent therapies in breast cancer. Cancers 2022 14 10 2450 10.3390/cancers14102450 35626053
    [Google Scholar]
  78. Casak S.J. Donoghue M. Fashoyin-Aje L. FDA approval summary: Atezolizumab plus bevacizumab for the treatment of patients with advanced unresectable or metastatic hepatocellular carcinoma. Clin. Cancer Res. 2021 27 7 1836 1841 10.1158/1078‑0432.CCR‑20‑3407 33139264
    [Google Scholar]
  79. Mittal S. Naidu G.S.R.S.N.K. Jha S. Experience with similar biologic rituximab in 77 patients of granulomatosis with polyangiitis—a real-life experience. Clin. Rheumatol. 2021 40 2 645 651 10.1007/s10067‑020‑05261‑7 32656662
    [Google Scholar]
  80. Awad A. Goyanes A. Orlu M. Gaisford S. Basit A.W. 3D printed infliximab Suppositories for rectal biologic delivery. Int. J. Pharm. X 2023 5 100176 10.1016/j.ijpx.2023.100176 37396625
    [Google Scholar]
  81. Gascón P. Harbeck N. Rapoport B.L. Filgrastim biosimilar (EP2006): A review of 15 years’ post-approval evidence. Crit. Rev. Oncol. Hematol. 2024 196 104306 10.1016/j.critrevonc.2024.104306 38401695
    [Google Scholar]
  82. Hu R. Yuan T. Wang H. Efficacy, safety and immunogenicity of etanercept biosimilars versus reference biologics in patients with rheumatoid arthritis: A meta-analysis. Front. Pharmacol. 2023 14 1089272 10.3389/fphar.2023.1089272 36874005
    [Google Scholar]
  83. Humphreys S.Z. Geller R.B. Walden P. Pegfilgrastim biosimilars in US Supportive oncology: A narrative review of administration options and economic considerations to maximize patient benefit. Oncol. Ther. 2022 10 2 351 361 10.1007/s40487‑022‑00207‑2 36114331
    [Google Scholar]
  84. Matli M.C. Wilson A.B. Rappsilber L.M. Sheffield F.P. Farlow M.L. Johnson J.L. The first interchangeable biosimilar insulin: insulin glargine-yfgn. J. Diabetes Sci. Technol. 2023 17 2 490 494 10.1177/19322968211067511 34971335
    [Google Scholar]
  85. Gascón P. Goldsmith D. Aapro M. Dellanna F. Esmael A. Zabransky M. Epoetin alfa biosimilar (HX575): A review of 15 years’ post-approval clinical experience. Crit. Rev. Oncol. Hematol. 2023 181 103894 10.1016/j.critrevonc.2022.103894 36481307
    [Google Scholar]
  86. Rodríguez-Pombo L. Awad A. Basit A.W. Alvarez-Lorenzo C. Goyanes A. Innovations in chewable formulations: the novelty and applications of 3D printing in drug product design. Pharmaceutics 2022 14 8 1732 10.3390/pharmaceutics14081732 36015355
    [Google Scholar]
  87. Quodbach J. Bogdahn M. Breitkreutz J. Quality of FDM 3D printed medicines for pediatrics: considerations for formulation development, filament extrusion, printing process and printer design. Ther. Innov. Regul. Sci. 2021 1 9 [PMID: 34826120
    [Google Scholar]
  88. Tagami T. Ito E. Kida R. Hirose K. Noda T. Ozeki T. 3D printing of gummy drug formulations composed of gelatin and an HPMC-based hydrogel for pediatric use. Int. J. Pharm. 2021 594 120118 10.1016/j.ijpharm.2020.120118 33326827
    [Google Scholar]
  89. Cui M. Pan H. Su Y. Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm. Sin. B 2021 11 8 2488 2504 10.1016/j.apsb.2021.03.015 34567958
    [Google Scholar]
  90. Muñiz Castro B. Elbadawi M. Ong J.J. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J. Control. Release 2021 337 530 545 10.1016/j.jconrel.2021.07.046 34339755
    [Google Scholar]
  91. Tagami T. Goto E. Kida R. Hirose K. Noda T. Ozeki T. Lyophilized ophthalmologic patches as novel corneal drug formulations using a semi-solid extrusion 3D printer. Int. J. Pharm. 2022 617 121448 10.1016/j.ijpharm.2022.121448 35066116
    [Google Scholar]
  92. Boniatti J. Januskaite P. Fonseca L.B. Direct powder extrusion 3D printing of praziquantel to overcome neglected disease formulation challenges in paediatric populations. Pharmaceutics 2021 13 8 1114 10.3390/pharmaceutics13081114 34452075
    [Google Scholar]
  93. Deruyver L. Rigaut C. Lambert P. Haut B. Goole J. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery. Adv. Drug Deliv. Rev. 2021 175 113826 10.1016/j.addr.2021.113826 34119575
    [Google Scholar]
  94. Zhang B. Belton P. Teoh X.Y. Gleadall A. Bibb R. Qi S. An investigation into the effects of ink formulations of semi-solid extrusion 3D printing on the performance of printed solid dosage forms. J. Mater. Chem. B Mater. Biol. Med. 2023 12 1 131 144 10.1039/D3TB01868G 38050731
    [Google Scholar]
  95. Ballacchino G. Weaver E. Mathew E. Manufacturing of 3D-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations. Int. J. Mol. Sci. 2021 22 15 8064 10.3390/ijms22158064 34360832
    [Google Scholar]
  96. Malebari A.M. Kara A. Khayyat A.N. Mohammad K.A. Serrano D.R. Development of advanced 3D-printed solid dosage pediatric formulations for HIV treatment. Pharmaceuticals 2022 15 4 435 10.3390/ph15040435 35455431
    [Google Scholar]
  97. Preis M. Öblom H. 3D-printed drugs for children—are we ready yet? AAPS PharmSciTech 2017 18 2 303 308 10.1208/s12249‑016‑0704‑y 28078628
    [Google Scholar]
  98. Melnyk LA Oyewumi MO Integration of 3D printing technology in pharmaceutical compounding: Progress, prospects, and challenges. Annals of 3D Printed Medicine 2021 4 100035. 10.1016/j.stlm.2021.100035
    [Google Scholar]
  99. Zhang Z. Feng S. Almotairy A. Bandari S. Repka M.A. Development of multifunctional drug delivery system via hot-melt extrusion paired with fused deposition modeling 3D printing techniques. Eur. J. Pharm. Biopharm. 2023 183 102 111 10.1016/j.ejpb.2023.01.004 36632906
    [Google Scholar]
  100. Wang S. Chen X. Han X. A review of 3D printing technology in pharmaceutics: Technology and applications, now and future. Pharmaceutics 2023 15 2 416 10.3390/pharmaceutics15020416 36839738
    [Google Scholar]
  101. Gebeyehu A. Surapaneni S.K. Huang J. Polysaccharide hydrogel based 3D printed tumor models for chemotherapeutic drug screening. Sci. Rep. 2021 11 1 372 10.1038/s41598‑020‑79325‑8 33431915
    [Google Scholar]
  102. Kocabas L.I. Ayyoubi S. Tajqurishi M. Quodbach J. Vermonden T. Kok R.J. 3D-printed prednisolone phosphate Suppositories with tunable dose and rapid release for the treatment of inflammatory bowel disease. Int. J. Pharm. 2024 649 123639 10.1016/j.ijpharm.2023.123639 38042381
    [Google Scholar]
  103. Mendibil X. Tena G. Duque A. Uranga N. Campanero M.Á. Alonso J. Direct powder extrusion of paracetamol loaded mixtures for 3D printed pharmaceutics for personalized medicine via low temperature thermal processing. Pharmaceutics 2021 13 6 907 10.3390/pharmaceutics13060907 34205280
    [Google Scholar]
  104. Madžarević M. Ibrić S. Evaluation of exposure time and visible light irradiation in LCD 3D printing of ibuprofen extended release tablets. Eur. J. Pharm. Sci. 2021 158 105688 10.1016/j.ejps.2020.105688 33359483
    [Google Scholar]
  105. Lafeber I. Tichem J.M. Ouwerkerk N. 3D printed furosemide and sildenafil tablets: Innovative production and quality control. Int. J. Pharm. 2021 603 120694 10.1016/j.ijpharm.2021.120694 33984452
    [Google Scholar]
  106. Tasevska T. Adamov I. Geskovski N. Ibrić S. Goracinova K. Crcarevska M.S. 3D printed extended-release hydrochlorothiazide tablets. Eur. J. Pharm. Sci. 2025 206 106998 10.1016/j.ejps.2024.106998 39725334
    [Google Scholar]
  107. Rouaz-El Hajoui K. Herrada-Manchón H. Rodríguez-González D. Pellets and gummies: Seeking a 3D printed gastro-resistant omeprazole dosage for paediatric administration. Int. J. Pharm. 2023 643 123289 10.1016/j.ijpharm.2023.123289 37536640
    [Google Scholar]
  108. Lim S.H. Park S. Lee C.C. Ho P.C.L. Kwok P.C.L. Kang L. A 3D printed human upper respiratory tract model for particulate deposition profiling. Int. J. Pharm. 2021 597 120307 10.1016/j.ijpharm.2021.120307 33540019
    [Google Scholar]
  109. Seoane-Viaño I. Ong J.J. Luzardo-Álvarez A. 3D printed tacrolimus Suppositories for the treatment of ulcerative colitis. Asian J Pharm Sci 2021 16 1 110 119 10.1016/j.ajps.2020.06.003 33613734
    [Google Scholar]
  110. Khan M.I. Hossain M.I. Hossain M.K. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Appl. Bio Mater. 2022 5 3 971 1012 10.1021/acsabm.2c00002 35226465
    [Google Scholar]
  111. Wang X. Li C. Wang Y. Smart drug delivery systems for precise cancer therapy. Acta Pharm. Sin. B 2022 12 11 4098 4121 10.1016/j.apsb.2022.08.013 36386470
    [Google Scholar]
  112. Bordbar-Khiabani A. Gasik M. Smart hydrogels for advanced drug delivery systems. Int. J. Mol. Sci. 2022 23 7 3665 10.3390/ijms23073665 35409025
    [Google Scholar]
  113. Meng Q. Zhong S. Xu L. Review on design strategies and considerations of polysaccharide-based smart drug delivery systems for cancer therapy. Carbohydr. Polym. 2022 279 119013 10.1016/j.carbpol.2021.119013 34980356
    [Google Scholar]
  114. Tian B. Liu Y. Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr. Polym. 2021 251 116871 10.1016/j.carbpol.2020.116871 33142550
    [Google Scholar]
  115. Sanchez-Moreno P. Ortega-Vinuesa J.L. Peula-Garcia J.M. Marchal J.A. Boulaiz H. Smart drug-delivery systems for cancer nanotherapy. Curr. Drug Targets 2018 19 4 339 359 10.2174/1389450117666160527142544 27231107
    [Google Scholar]
  116. Ngandeu Neubi G.M. Opoku-Damoah Y. Gu X. Han Y. Zhou J. Ding Y. Bio-inspired drug delivery systems: An emerging platform for targeted cancer therapy. Biomater. Sci. 2018 6 5 958 973 10.1039/C8BM00175H 29564432
    [Google Scholar]
  117. Domingo-Lopez D.A. Lattanzi G.H.J. Schreiber L. Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Adv. Drug Deliv. Rev. 2022 185 114280 10.1016/j.addr.2022.114280 35405298
    [Google Scholar]
  118. Modi D. Hussain M.S. Ainampudi S. Prajapati B.G. Long acting injectables for the treatment of prostate cancer. J. Drug Deliv. Sci. Technol. 2024 100 105996 10.1016/j.jddst.2024.105996
    [Google Scholar]
  119. Satapathy M.K. Yen T.L. Jan J.S. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics 2021 13 8 1183 10.3390/pharmaceutics13081183 34452143
    [Google Scholar]
  120. Li L. Zhan Q. Yi K. Engineering Lipusu with lysophosphatidylcholine for improved tumor cellular uptake and anticancer efficacy. J. Mater. Chem. B Mater. Biol. Med. 2022 10 11 1833 1842 10.1039/D1TB02823E 35212350
    [Google Scholar]
  121. Xia Z. Liu Y. Lu Z. The impact of product quality attributes on in vivo performance of bupivacaine multivesicular liposomes. Drug Deliv. Transl. Res. 2025 2 1 3 10.1007/s13346‑025‑01806‑y 40035967
    [Google Scholar]
  122. Sathyamala C. Injectable contraceptives: Technologies of power and language of rights. In: Birth controlled. Manchester University Press 2022 131 155 10.7765/9781526160553.00016
    [Google Scholar]
  123. Kailasam V. Sai Veda Koduganti S. Dasgupta O. Garg P. Nirmal J. Ocular delivery of Amphotericin B: Current challenges and future perspectives. Expert Opin. Drug Deliv. 2024 21 12 1793 1805 10.1080/17425247.2024.2420750 39436406
    [Google Scholar]
  124. Beloqui A. Solinís M.Á. Rodríguez-Gascón A. Almeida A.J. Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016 12 1 143 161 10.1016/j.nano.2015.09.004 26410277
    [Google Scholar]
  125. Sun Y. Davis E. Nanoplatforms for targeted stimuli-responsive drug delivery: A review of platform materials and stimuli-responsive release and targeting mechanisms. Nanomaterials 2021 11 3 746 10.3390/nano11030746 33809633
    [Google Scholar]
  126. Bami M.S. Raeisi Estabragh M.A. Khazaeli P. Ohadi M. Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. J. Drug Deliv. Sci. Technol. 2022 70 102987 10.1016/j.jddst.2021.102987
    [Google Scholar]
  127. Wang Y. Yu Z. Xiong J. Yan K. Lu X. Temperature‐responsive polyoxometalates‐based materials: From underlying mechanism to promising applications. Adv. Funct. Mater. 2024 34 40 2405880 10.1002/adfm.202405880 39712653
    [Google Scholar]
  128. Fang N. Wu C. Zhang Y. Li Z. Zhou Z. Perspectives: Light control of magnetism and device development. ACS Nano 2024 18 12 8600 8625 10.1021/acsnano.3c13002 38469753
    [Google Scholar]
  129. Lawrencia D. Wong S.K. Low D.Y.S. Controlled release fertilizers: A review on coating materials and mechanism of release. Plants 2021 10 2 238 10.3390/plants10020238 33530608
    [Google Scholar]
  130. Manzari M.T. Shamay Y. Kiguchi H. Rosen N. Scaltriti M. Heller D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021 6 4 351 370 10.1038/s41578‑020‑00269‑6 34950512
    [Google Scholar]
  131. Mohammadi-Samani S. Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018 13 4 288 303 10.4103/1735‑5362.235156 30065762
    [Google Scholar]
  132. Najjari Z. Sadri F. Varshosaz J. Smart stimuli-responsive drug delivery systems in spotlight of COVID-19. Asian J Pharm Sci 2023 18 6 100873 10.1016/j.ajps.2023.100873 38173712
    [Google Scholar]
  133. Chandrakala V. Aruna V. Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater 2022 5 6 1593 1615 10.1007/s42247‑021‑00335‑x 35005431
    [Google Scholar]
  134. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  135. Hu Q. Lu Y. Luo Y. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications. Carbohydr. Polym. 2021 264 117999 10.1016/j.carbpol.2021.117999 33910733
    [Google Scholar]
  136. van der Koog L. Gandek T.B. Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: A comparison of composition, pharmacokinetics, and functionalization. Adv. Healthc. Mater. 2022 11 5 2100639 10.1002/adhm.202100639 34165909
    [Google Scholar]
  137. Hoffman A.S. The origins and evolution of “controlled” drug delivery systems. J. Control. Release 2008 132 3 153 163 10.1016/j.jconrel.2008.08.012 18817820
    [Google Scholar]
  138. Xu L. Wang X. Liu Y. Yang G. Falconer R.J. Zhao C.X. Lipid nanoparticles for drug delivery. Adv. NanoBiomed Res. 2022 2 2 2100109 10.1002/anbr.202100109 35179344
    [Google Scholar]
  139. Herrmann I.K. Wood M.J.A. Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021 16 7 748 759 10.1038/s41565‑021‑00931‑2 34211166
    [Google Scholar]
  140. Niculescu A.G. Chircov C. Grumezescu A.M. Magnetite nanoparticles: Synthesis methods: A comparative review. Methods 2022 199 16 27 10.1016/j.ymeth.2021.04.018 33915292
    [Google Scholar]
  141. Liu P. Chen G. Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  142. Wang J. Chen D. Ho E.A. Challenges in the development and establishment of exosome-based drug delivery systems. J. Control. Release 2021 329 894 906 10.1016/j.jconrel.2020.10.020 33058934
    [Google Scholar]
  143. Ho B.N. Pfeffer C.M. Singh A.T.K. Update on nanotechnology-based drug delivery systems in cancer treatment. Anticancer Res. 2017 37 11 5975 5981 [PMID: 29061776
    [Google Scholar]
  144. Supe S. Takudage P. Methods for evaluating penetration of drug into the skin: A review. Skin Res. Technol. 2021 27 3 299 308 10.1111/srt.12968 33095948
    [Google Scholar]
  145. Niu W. Xiao Q. Wang X. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett. 2021 21 3 1484 1492 10.1021/acs.nanolett.0c04753 33475372
    [Google Scholar]
  146. Sultana A. Zare M. Thomas V. Kumar T.S.S. Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Med Drug Discov 2022 15 100134 10.1016/j.medidd.2022.100134
    [Google Scholar]
  147. Yusuf A. Almotairy A.R.Z. Henidi H. Alshehri O.Y. Aldughaim M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023 15 7 1596 10.3390/polym15071596 37050210
    [Google Scholar]
  148. Fan Y. Marioli M. Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal. 2021 192 113642 10.1016/j.jpba.2020.113642 33011580
    [Google Scholar]
  149. Alkilani A.Z. Nasereddin J. Hamed R. Beneath the skin: A review of current trends and future prospects of transdermal drug delivery systems. Pharmaceutics 2022 14 6 1152 10.3390/pharmaceutics14061152 35745725
    [Google Scholar]
  150. Patra J.K. Das G. Fraceto L.F. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  151. Gao J. Karp J.M. Langer R. Joshi N. The future of drug delivery. Chem. Mater. 2023 35 2 359 363 10.1021/acs.chemmater.2c03003 37799624
    [Google Scholar]
  152. Martinho N. Damgé C. Reis C.P. Recent advances in drug delivery systems. J. Biomater. Nanobiotechnol. 2011 2 5 510 526 10.4236/jbnb.2011.225062
    [Google Scholar]
  153. Ashique S. Sandhu N.K. Chawla V. Chawla P.A. Targeted drug delivery: trends and perspectives. Curr. Drug Deliv. 2021 18 10 1435 1455 10.2174/1567201818666210609161301 34151759
    [Google Scholar]
  154. Kakkar A. Traverso G. Farokhzad O.C. Weissleder R. Langer R. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 2017 1 8 63 10.1038/s41570‑017‑0063
    [Google Scholar]
  155. Wang J. Zhang Y. Aghda N.H. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv. Drug Deliv. Rev. 2021 174 294 316 10.1016/j.addr.2021.04.019 33895212
    [Google Scholar]
  156. Ramadon D. McCrudden M.T. Courtenay A.J. Donnelly R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res. 2021 1 34 [PMID: 33474709
    [Google Scholar]
  157. Thang N.H. Chien T.B. Cuong D.X. Polymer-based hydrogels applied in drug delivery: An overview. Gels 2023 9 7 523 10.3390/gels9070523 37504402
    [Google Scholar]
  158. Egorov E. Pieters C. Korach-Rechtman H. Shklover J. Schroeder A. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Deliv. Transl. Res. 2021 11 2 345 352 10.1007/s13346‑021‑00929‑2 33585972
    [Google Scholar]
  159. Ma W.C. Yeong W.Y. 3D printing and electronics: Future trend in smart drug delivery devices. Mater. Today Proc. 2022 70 162 167 10.1016/j.matpr.2022.09.012
    [Google Scholar]
  160. Thananukul K. Kaewsaneha C. Opaprakasit P. Lebaz N. Errachid A. Elaissari A. Smart gating porous particles as new carriers for drug delivery. Adv. Drug Deliv. Rev. 2021 174 425 446 10.1016/j.addr.2021.04.023 33930490
    [Google Scholar]
  161. Zhang J. Jiao J. Niu M. Ten years of knowledge of nano-carrier based drug delivery systems in ophthalmology: current evidence, challenges, and future prospective. Int. J. Nanomedicine 2021 16 6497 6530 10.2147/IJN.S329831 34588777
    [Google Scholar]
  162. Turner J.G. White L.R. Estrela P. Leese H.S. Hydrogel‐forming microneedles: current advancements and future trends. Macromol. Biosci. 2021 21 2 2000307 10.1002/mabi.202000307 33241641
    [Google Scholar]
  163. Cardoso R.V. Pereira P.R. Freitas C.S. Paschoalin V.M.F. Trends in drug delivery systems for natural bioactive molecules to treat health disorders: The importance of nano-liposomes. Pharmaceutics 2022 14 12 2808 10.3390/pharmaceutics14122808 36559301
    [Google Scholar]
  164. Manikkath J. Subramony J.A. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Adv. Drug Deliv. Rev. 2021 179 113997 10.1016/j.addr.2021.113997 34634396
    [Google Scholar]
  165. Tharmatt A. Malhotra D. Sharma H. Bedi N. Pharmaceutical perspective in wearable drug delivery systems. Assay Drug Dev. Technol. 2021 19 6 386 401 10.1089/adt.2021.008 34339259
    [Google Scholar]
  166. Zhang J. Xu J. Lim J. Nolan J.K. Lee H. Lee C.H. Wearable glucose monitoring and implantable drug delivery systems for diabetes management. Adv. Healthc. Mater. 2021 10 17 2100194 10.1002/adhm.202100194 33930258
    [Google Scholar]
  167. Khadka B. Lee B. Kim K.T. Drug delivery systems for personal healthcare by smart wearable patch system. Biomolecules 2023 13 6 929 10.3390/biom13060929 37371509
    [Google Scholar]
  168. Kar A. Ahamad N. Dewani M. Awasthi L. Patil R. Banerjee R. Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials 2022 283 121435 10.1016/j.biomaterials.2022.121435 35227964
    [Google Scholar]
  169. Raikar A.S. Kumar P. Raikar G.V.S. Somnache S.N. Advances and challenges in IoT-based smart drug delivery systems: a comprehensive review. Appl Syst Innov 2023 6 4 62 10.3390/asi6040062
    [Google Scholar]
  170. Puccetti M. Pariano M. Schoubben A. Giovagnoli S. Ricci M. Biologics, theranostics, and personalized medicine in drug delivery systems. Pharmacol. Res. 2024 201 107086 10.1016/j.phrs.2024.107086 38295917
    [Google Scholar]
  171. Mo F. Jiang K. Zhao D. Wang Y. Song J. Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv. Drug Deliv. Rev. 2021 168 79 98 10.1016/j.addr.2020.07.018 32712197
    [Google Scholar]
  172. Raguram A. Banskota S. Liu D.R. Therapeutic in vivo delivery of gene editing agents. Cell 2022 185 15 2806 2827 10.1016/j.cell.2022.03.045 35798006
    [Google Scholar]
  173. Rani K. Paliwal S. A review on targeted drug delivery: Its entire focus on advanced therapeutics and diagnostics. Sch J App Med Sci 2014 2 1C 328 331
    [Google Scholar]
  174. Duan L. Xu L. Xu X. Exosome-mediated delivery of gene vectors for gene therapy. Nanoscale 2021 13 3 1387 1397 10.1039/D0NR07622H 33350419
    [Google Scholar]
  175. Wang S.W. Gao C. Zheng Y.M. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol. Cancer 2022 21 1 57 10.1186/s12943‑022‑01518‑8 35189910
    [Google Scholar]
  176. Song X. Liu C. Wang N. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv. Drug Deliv. Rev. 2021 168 158 180 10.1016/j.addr.2020.04.010 32360576
    [Google Scholar]
  177. Xu X. Liu C. Wang Y. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv. Drug Deliv. Rev. 2021 176 113891 10.1016/j.addr.2021.113891 34324887
    [Google Scholar]
  178. Brough C. McGinity J.W. Miller D.A. DiNunzio J.C. Williams R.O. Thermo-kinetic mixing for pharmaceutical applications. US Patent 12023343 2024
  179. Passini M.A. Hanson G.J. Exon skipping oligomer conjugates for muscular dystrophy US Patent 11000600 2021
  180. Bagaev A. Frenkel F. Ataullakhanov R. Systems and methods for identifying cancer treatments from normalized biomarker scores. US Patent 10340030 2019
  181. Duffy M.J. Crown J. A personalized approach to cancer treatment: how biomarkers can help. Clin. Chem. 2008 54 11 1770 1779 10.1373/clinchem.2008.110056 18801934
    [Google Scholar]
  182. Li B. Xue T. Xia Y. PDL-1 antibody, pharmaceutical composition thereof, and uses thereof US Patent 10465014 2019
  183. Albone E.F. Cheng X. Custar D.W. Eribulin-based antibodydrug conjugates and methods of use US Patent 10548986 2020
  184. Loftsson T. Fulop Z. Preparation of solid cyclodextrin complexes for ophthalmic active pharmaceutical ingredient delivery. US Patent 11135311 2021
  185. Sadowsky M.J. Khoruts A. Weingarden A.R. Hamilton M.J. Compositions and methods for transplantation of colon microbiota. US Patent 10251914 2019
  186. Kumar K. Montanari V. Beinborn M. Raman V. Novel polypeptides with improved proteolytic stability, and methods of preparing and using same. US Patent 15771043 2019
  187. Markovic S.N. Nevala W.K. Carrier-antibody compositions and methods of making and using the same. US Patent 10966923 2021
  188. Alessi T.R. Luskey K. Rapid establishment and/or termination of substantial steady-state drug delivery. US Patent 10231923 2019
  189. Hanina A. Kessler G. Guan L. Medication adherence monitoring system and method. US Patent 9679113 2017
  190. Zhang L. Hu C.M. Gao W. Copp J. Hydrogel toxin-absorbing or binding nanoparticles. US Patent 10098839 2018
  191. Long Y. Benzimidazole derivatives as ERBB tyrosine kinase inhibitors for the treatment of cancer. US Patent 10005765 2018
  192. Williams R.O. Johnston K.P. Sinswat P. Enhanced delivery of immunosuppressive drug compositions for pulmonary delivery. US Patent 10231955 2019
  193. Hoarty M.D. Dhamnaskar K.A. Elbaum D. Modulation of complement activity. US Patent 10106579 2018
  194. Askew B.C. Heidebrecht R.W. Furuya T. Duggan M.E. Edwards D.S. Fluorinated integrin antagonists US Patent 9518053 2016
  195. Doshi P. Medical devices including medicaments and methods of making and using same. US Patent 9931296 2018
  196. Young T. Schultz P.G. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids. US Patent 8609383 2013
  197. Williams R.O. Johnston K.P. Sinswat P. Enhanced delivery of immunosuppressive drug compositions for pulmonary delivery. US Patent 9044391 2015
/content/journals/cpd/10.2174/0113816128388316251001042422
Loading
/content/journals/cpd/10.2174/0113816128388316251001042422
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test