Skip to content
2000
image of Emerging Biomarkers for Early Detection and Prognosis of Liver Diseases

Abstract

Introduction

The purpose of this research is to review and evaluate both traditional and emerging biomarkers used in the diagnosis, monitoring, and treatment of liver diseases. The study aims to highlight how these biomarkers—such as liver enzymes, microRNAs, exosomes, and fibrosis-related proteins—can improve early detection, track disease progression, and support personalized treatment strategies for better patient outcomes.

Materials and Methods

This study uses a literature review to analyze both traditional (ALT, AST, ALP, bilirubin, .) and emerging biomarkers (microRNAs, exosomes, CRP, IL-6, MMPs, TIMPs) in liver disease. It focuses on their role in diagnosis, disease monitoring, and personalized treatment planning.

Results

Traditional biomarkers (ALT, AST, ALP, bilirubin, albumin) are key for liver function assessment. Emerging markers like microRNAs, exosomes, MMPs, and TIMPs improve early detection and disease monitoring. Together, they enhance diagnostic accuracy and support personalized treatment.

Discussion

The combination of traditional and novel biomarkers improves early detection, accurate diagnosis, and personalized treatment of liver diseases. New biomarkers, such as microRNAs and exosomes, offer higher sensitivity and specificity, enabling non-invasive diagnostics. The findings align with current research trends that promote the use of molecular and extracellular markers. These biomarkers provide deeper insights into liver disease mechanisms, particularly in fibrosis and hepatocellular carcinoma.

Conclusion

Traditional biomarkers are essential for liver assessment, while new ones like microRNAs, exosomes, MMPs, and TIMPs improve early diagnosis and monitoring. They support personalized care but need further validation for routine use.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128384721250924030943
2025-10-16
2025-12-16
Loading full text...

Full text loading...

References

  1. Ganem D. Schneider R.J. Hepadnaviridae and their replication. Fields Virology 1996 4 2923 2969
    [Google Scholar]
  2. Hollinger F.B. Hepatitis B virus. In: Fields Virology. 4th Edition. Philadelphia 2001
    [Google Scholar]
  3. McMahon B.J. Alward W.L.M. Hall D.B. Acute hepatitis B virus infection: Relation of age to the clinical expression of disease and subsequent development of the carrier state. J. Infect. Dis. 1985 151 4 599 603 10.1093/infdis/151.4.599 3973412
    [Google Scholar]
  4. Barker L.F. Murray R. Relationship of virus dose to incubation time of clinical hepatitis and time of appearance of hepatitis--associated antigen. Am. J. Med. Sci. 1972 263 1 27 33 10.1097/00000441‑197201000‑00005
    [Google Scholar]
  5. Marcellin P. Hepatitis C. The clinical spectrum of the disease. J. Hepatol. 1999 31 9 16 10.1016/S0168‑8278(99)80368‑7 10622554
    [Google Scholar]
  6. Hoofnagle J.H. Carithers R.L. Shapiro C. Ascher N. Fulminant hepatic failure: Summary of a workshop. Hepatology 1995 21 1 240 252 7806160
    [Google Scholar]
  7. Anthony P.P. Ishak K.G. Nayak N.C. Poulsen H.E. Scheuer P.J. Sobin L.H. The morphology of cirrhosis. Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization. J. Clin. Pathol. 1978 31 5 395 414 10.1136/jcp.31.5.395 649765
    [Google Scholar]
  8. Gh M.S. Cirrhosis: An appraisal. In: Liver and biliary disease. 1985 821 860
    [Google Scholar]
  9. Wanless I.R. Nakashima E. Sherman M. Regression of human cirrhosis. Morphologic features and the genesis of incomplete septal cirrhosis. Arch. Pathol. Lab. Med. 2000 124 11 1599 1607 10.5858/2000‑124‑1599‑ROHC 11079009
    [Google Scholar]
  10. Ferrell L. Liver pathology: Cirrhosis, hepatitis, and primary liver tumors. Update and diagnostic problems. Mod. Pathol. 2000 13 6 679 704 10.1038/modpathol.3880119 10874674
    [Google Scholar]
  11. Elsharkawy A.M. Oakley F. Mann D.A. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 2005 10 5 927 939 10.1007/s10495‑005‑1055‑4 16151628
    [Google Scholar]
  12. Asrani SK Larson JJ Yawn B Therneau TM Kim WR Underestimation of liver-related mortality in the United States. Gastroenterology 2013 145 2 375 382 10.1053/j.gastro.2013.04.005 23583430
    [Google Scholar]
  13. HAMPERL L. About peculiar circulatory changes in the liver; Anemic spots, fatty infarction, granular fat. Swiss J Pathol Bacteriol 1950 13 1 65 72
    [Google Scholar]
  14. Sberna A.L. Bouillet B. Rouland A. European association for the study of the liver (EASL), european association for the study of diabetes (EASD) and european association for the study of obesity (EASO) clinical practice recommendations for the management of non‐alcoholic fatty liver disease: Evaluation of their application in people with Type 2 diabetes. Diabet. Med. 2018 35 3 368 375 10.1111/dme.13565 29247558
    [Google Scholar]
  15. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. Obes. Facts 2016 9 2 65 90 10.1159/000443344 27055256
    [Google Scholar]
  16. Sumida Y. Yoneda M. Seko Y. Surveillance of hepatocellular carcinoma in nonalcoholic fatty liver disease. Diagnostics 2020 10 8 579 10.3390/diagnostics10080579 32785100
    [Google Scholar]
  17. Iredale J.P. Models of liver fibrosis: Exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest. 2007 117 3 539 548 10.1172/JCI30542 17332881
    [Google Scholar]
  18. Elpek G.Ö. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J. Gastroenterol. 2014 20 23 7260 7276 10.3748/wjg.v20.i23.7260 24966597
    [Google Scholar]
  19. Popper H. Udenfriend S. Hepatic fibrosis. Am. J. Med. 1970 49 5 707 721 10.1016/S0002‑9343(70)80135‑8 4924592
    [Google Scholar]
  20. Campana L. Iredale J.P. Regression of liver fibrosis. In: Seminars in liver disease. Thieme Medical Publishers 2017 1 10
    [Google Scholar]
  21. Ramachandran P. Pellicoro A. Vernon M.A. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl. Acad. Sci. USA 2012 109 46 E3186 E3195 10.1073/pnas.1119964109 23100531
    [Google Scholar]
  22. Natarajan V. Harris E.N. Kidambi S. SECs (sinusoidal endothelial cells), liver microenvironment, and fibrosis. BioMed Res. Int. 2017 2017 1 1 9 10.1155/2017/4097205 28293634
    [Google Scholar]
  23. Nieto N. Friedman S.L. Cederbaum A.I. Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells. J. Biol. Chem. 2002 277 12 9853 9864 10.1074/jbc.M110506200 11782477
    [Google Scholar]
  24. Svegliati-Baroni G. Inagaki Y. Rincon-Sanchez A.R. Early response of α2(I) collagen to acetaldehyde in human hepatic stellate cells is TGF‐β independent. Hepatology 2005 42 2 343 352 10.1002/hep.20798 16025520
    [Google Scholar]
  25. Greenwel P. Domínguez-Rosales J.A. Mavi G. Rivas-Estilla A.M. Rojkind M. Hydrogen peroxide: A link between acetaldehyde-elicited α1(i) collagen gene up-regulation and oxidative stress in mouse hepatic stellate cells. Hepatology 2000 31 1 109 116 10.1002/hep.510310118 10613735
    [Google Scholar]
  26. Natori S. Rust C. Stadheim L.M. Srinivasan A. Burgart L.J. Gores G.J. Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis. J. Hepatol. 2001 34 2 248 253 10.1016/S0168‑8278(00)00089‑1 11281553
    [Google Scholar]
  27. Faouzi S. Burckhardt B.E. Hanson J.C. Anti-Fas induces hepatic chemokines and promotes inflammation by an NF-κ B-independent, caspase-3-dependent pathway. J. Biol. Chem. 2001 276 52 49077 49082 10.1074/jbc.M109791200 11602613
    [Google Scholar]
  28. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001 69 3 89 95 10.1067/mcp.2001.113989 11240971
    [Google Scholar]
  29. Kumar C. van Gool A.J. Introduction: Biomarkers in translational and personalized medicine. Comprehensive Biomarker Discovery and Validation for Clinical Application. The Royal Society of Chemistry 2013 3 39 10.1039/9781849734363‑00003
    [Google Scholar]
  30. Thapa B.R. Walia A. Liver function tests and their interpretation. Indian J. Pediatr. 2007 74 7 663 671 10.1007/s12098‑007‑0118‑7 17699976
    [Google Scholar]
  31. Green R.M. Flamm S. AGA technical review on the evaluation of liver chemistry tests. Gastroenterology 2002 123 4 1367 1384 10.1053/gast.2002.36061 12360498
    [Google Scholar]
  32. Lamerz R. Are biomarkers still helpful in hepatocellular carcinoma? Digestion 2013 87 2 118 120 10.1159/000346282 23406724
    [Google Scholar]
  33. Saengsirisuwan V. Phadungkij S. Pholpramool C. Renal and liver functions and muscle injuries during training and after competition in Thai boxers. Br. J. Sports Med. 1998 32 4 304 308 10.1136/bjsm.32.4.304 9865402
    [Google Scholar]
  34. Fallon K.E. Sivyer G. Sivyer K. Dare A. The biochemistry of runners in a 1600 km ultramarathon. Br. J. Sports Med. 1999 33 4 264 269 10.1136/bjsm.33.4.264 10450482
    [Google Scholar]
  35. Pollock G. Minuk G.Y. Diagnostic considerations for cholestatic liver disease. J. Gastroenterol. Hepatol. 2017 32 7 1303 1309 10.1111/jgh.13738 28106928
    [Google Scholar]
  36. Diana Nicoll C. How to diagnose an acutely inflamed appendix: A systematic review of the latest evidence. Int. J. Surg. 2017 40 155 162 10.1016/j.ijsu.2017.03.013
    [Google Scholar]
  37. Brunt E.M. Histological assessment of nonalcoholic fatty liver disease in adults and children. Clin. Liver Dis. 2012 1 4 108 111 10.1002/cld.31 31186862
    [Google Scholar]
  38. Pantsari M.W. Harrison S.A. Nonalcoholic fatty liver disease presenting with an isolated elevated alkaline phosphatase. J. Clin. Gastroenterol. 2006 40 7 633 635 10.1097/00004836‑200608000‑00015 16917408
    [Google Scholar]
  39. Whitfield J.B. Gamma glutamyl transferase. Crit. Rev. Clin. Lab. Sci. 2001 38 4 263 355 10.1080/20014091084227 11563810
    [Google Scholar]
  40. Neuman M.G. Malnick S. Chertin L. Gamma glutamyl transferase - An underestimated marker for cardiovascular disease and the metabolic syndrome. J. Pharm. Pharm. Sci. 2020 23 1 65 74 10.18433/jpps30923 32310756
    [Google Scholar]
  41. Diehl A.M. Goodman Z. Ishak K.G. Alcohollike liver disease in nonalcoholics. Gastroenterology 1988 95 4 1056 1062 10.1016/0016‑5085(88)90183‑7 3410220
    [Google Scholar]
  42. Kalas M.A. Chavez L. Leon M. Taweesedt P.T. Surani S. Abnormal liver enzymes: A review for clinicians. World J. Hepatol. 2021 13 11 1688 1698 10.4254/wjh.v13.i11.1688 34904038
    [Google Scholar]
  43. Berk P.D. Rodkey F.L. Blaschke T.F. Collison H.A. Waggoner J.G. Comparison of plasma bilirubin turnover and carbon monoxide production in man. J. Lab. Clin. Med. 1974 83 1 29 37 4808654
    [Google Scholar]
  44. Jangi S. Otterbein L. Robson S. The molecular basis for the immunomodulatory activities of unconjugated bilirubin. Int. J. Biochem. Cell Biol. 2013 45 12 2843 2851 10.1016/j.biocel.2013.09.014 24144577
    [Google Scholar]
  45. de Fraga R.S. Van Vaisberg V. Mendes L.C.A. Carrilho F.J. Ono S.K. Adverse events of nucleos(t)ide analogues for chronic hepatitis B: A systematic review. J. Gastroenterol. 2020 55 5 496 514 10.1007/s00535‑020‑01680‑0 32185517
    [Google Scholar]
  46. Sleep D. Albumin and its application in drug delivery. Expert Opin. Drug Deliv. 2015 12 5 793 812 10.1517/17425247.2015.993313 25518870
    [Google Scholar]
  47. Jalan R. Bernardi M. Effective albumin concentration and cirrhosis mortality: From concept to reality. J. Hepatol. 2013 59 5 918 920 10.1016/j.jhep.2013.08.001 23954671
    [Google Scholar]
  48. Koruk M. Tayşi S. Savaş M.C. Yilmaz O. Akçay F. Karakök M. Serum levels of acute phase proteins in patients with nonalcoholic steatohepatitis. Turk. J. Gastroenterol. 2003 14 1 12 17 14593532
    [Google Scholar]
  49. Chiang C.H. Huang C.C. Chan W.L. Chen J.W. Leu H.B. The severity of non-alcoholic fatty liver disease correlates with high sensitivity C-reactive protein value and is independently associated with increased cardiovascular risk in healthy population. Clin. Biochem. 2010 43 18 1399 1404 10.1016/j.clinbiochem.2010.09.003 20846522
    [Google Scholar]
  50. Zimmermann E. Anty R. Tordjman J. C-reactive protein levels in relation to various features of non-alcoholic fatty liver disease among obese patients. J. Hepatol. 2011 55 3 660 665 10.1016/j.jhep.2010.12.017 21238518
    [Google Scholar]
  51. Mauri T. Bombino M. Bertoli E. Role of pentraxin 3 (PTX3) and C reactive protein as markers of inflammation in ARDS. Intensive Care Med. 2005 31 S1 S216
    [Google Scholar]
  52. Abiru S. Migita K. Maeda Y. Serum cytokine and soluble cytokine receptor levels in patients with non‐alcoholic steatohepatitis. Liver Int. 2006 26 1 39 45 10.1111/j.1478‑3231.2005.01191.x 16420507
    [Google Scholar]
  53. Berzigotti A. Tsochatzis E. Boursier J. EASL clinical practice guidelines on non-invasive tests for evaluation of liver disease severity and prognosis - 2021 update. J. Hepatol. 2021 75 3 659 689 10.1016/j.jhep.2021.05.025 34166721
    [Google Scholar]
  54. Duarte S. Baber J. Fujii T. Coito A.J. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol. 2015 44-46 147 156 10.1016/j.matbio.2015.01.004 25599939
    [Google Scholar]
  55. Sternlicht M.D. Werb Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 2001 17 1 463 516 10.1146/annurev.cellbio.17.1.463 11687497
    [Google Scholar]
  56. Löffek S. Schilling O. Franzke C-W. Biological role of matrix metalloproteinases: A critical balance. Eur. Respir. J. 2011 38 1 191 208 10.1183/09031936.00146510 21177845
    [Google Scholar]
  57. Okamoto K. Mimura K. Murawaki Y. Yuasa I. Association of functional gene polymorphisms of matrix metalloproteinase (MMP)‐1, MMP‐3 and MMP‐9 with the progression of chronic liver disease. J. Gastroenterol. Hepatol. 2005 20 7 1102 1108 10.1111/j.1440‑1746.2005.03860.x 15955221
    [Google Scholar]
  58. Giannandrea M. Parks W.C. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model. Mech. 2014 7 2 193 203 10.1242/dmm.012062 24713275
    [Google Scholar]
  59. Nobili V. Siotto M. Bedogni G. Levels of serum ceruloplasmin associate with pediatric nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 2013 56 4 370 375 10.1097/MPG.0b013e31827aced4 23154483
    [Google Scholar]
  60. Terentiev A.A. Moldogazieva N.T. Alpha-fetoprotein: A renaissance. Tumour Biol. 2013 34 4 2075 2091 10.1007/s13277‑013‑0904‑y 23765762
    [Google Scholar]
  61. Zhao Y.J. Ju Q. Li G.C. Tumor markers for hepatocellular carcinoma. Mol. Clin. Oncol. 2013 1 4 593 598 10.3892/mco.2013.119 24649215
    [Google Scholar]
  62. Kajiyama Y. Tian J. Locker J. Characterization of distant enhancers and promoters in the albumin-α-fetoprotein locus during active and silenced expression. J. Biol. Chem. 2006 281 40 30122 30131 10.1074/jbc.M603491200 16893898
    [Google Scholar]
  63. Shen H. Luan F. Liu H. ZHX2 is a repressor of α‐fetoprotein expression in human hepatoma cell lines. J. Cell. Mol. Med. 2008 12 6b 2772 2780 10.1111/j.1582‑4934.2008.00233.x 18194454
    [Google Scholar]
  64. Peterson M.L. Ma C. Spear B.T. Zhx2 and Zbtb20: Novel regulators of postnatal alpha-fetoprotein repression and their potential role in gene reactivation during liver cancer. Semin. Cancer Biol. 2011 21 1 21 27 10.1016/j.semcancer.2011.01.001
    [Google Scholar]
  65. Kojima K. Takata A. Vadnais C. MicroRNA122 is a key regulator of α-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma. Nat. Commun. 2011 2 1 338 10.1038/ncomms1345 21654638
    [Google Scholar]
  66. Marchio A. Bertani S. Rojas Rojas T. A peculiar mutation spectrum emerging from young peruvian patients with hepatocellular carcinoma. PLoS One 2014 9 12 e114912 10.1371/journal.pone.0114912 25502816
    [Google Scholar]
  67. Ferlay J. Soerjomataram I. Dikshit R. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015 136 5 E359 E386 10.1002/ijc.29210 25220842
    [Google Scholar]
  68. Yang J.D. Roberts L.R. Hepatocellular carcinoma: A global view. Nat. Rev. Gastroenterol. Hepatol. 2010 7 8 448 458 10.1038/nrgastro.2010.100 20628345
    [Google Scholar]
  69. McGlynn K.A. London W.T. Epidemiology and natural history of hepatocellular carcinoma. Best Pract. Res. Clin. Gastroenterol. 2005 19 1 3 23 10.1016/j.bpg.2004.10.004 15757802
    [Google Scholar]
  70. Goss P.E. Lee B.L. Badovinac-Crnjevic T. Planning cancer control in Latin America and the Caribbean. Lancet Oncol. 2013 14 5 391 436 10.1016/S1470‑2045(13)70048‑2 23628188
    [Google Scholar]
  71. Ruiz E. Sanchez J. Celis J. Short and long-term results of liver resection for hepatocarcinoma in Peru: A Peruvian single center experience on 232 cases. Rev. Gastroenterol. Peru 2007 27 3 223 237 17934536
    [Google Scholar]
  72. Bertani S. Pineau P. Loli S. An atypical age-specific pattern of hepatocellular carcinoma in Peru: A threat for Andean populations. PLoS One 2013 8 6 e67756 10.1371/journal.pone.0067756 23840771
    [Google Scholar]
  73. Sakata N. Kaneko S. Ikeno S. TGF- β signaling cooperates with AT motif-binding factor-1 for repression of the α -fetoprotein promoter. J. Signal Transduct. 2014 2014 1 970346 10.1155/2014/970346 25105025
    [Google Scholar]
  74. Sawadaishi K. Morinaga T. Tamaoki T. Interaction of a hepatoma-specific nuclear factor with transcription-regulatory sequences of the human α-fetoprotein and albumin genes. Mol. Cell. Biol. 1988 8 12 5179 5187 10.1128/mcb.8.12.5179‑5187.1988 2468995
    [Google Scholar]
  75. Nakabayashi H. Koyama Y. Suzuki H. Functional mapping of tissue-specific elements of the human α-fetoprotein gene enhancer. Biochem. Biophys. Res. Commun. 2004 318 3 773 785 10.1016/j.bbrc.2004.04.096 15144905
    [Google Scholar]
  76. Morinaga T. Yasuda H. Hashimoto T. Higashio K. Tamaoki T. A human α-fetoprotein enhancer-binding protein, ATBF1, contains four homeodomains and seventeen zinc fingers. Mol. Cell. Biol. 1991 11 12 6041 6049 10.1128/mcb.11.12.6041‑6049.1991 1719379
    [Google Scholar]
  77. Kataoka H. Miura Y. Joh T. Alpha-fetoprotein producing gastric cancer lacks transcription factor ATBF1. Oncogene 2001 20 7 869 873 10.1038/sj.onc.1204160 11314020
    [Google Scholar]
  78. Huang J. Qiu M. Wan L. TGF-β1 promotes hepatocellular carcinoma invasion and metastasis via ERK pathway-mediated FGFR4 expression. Cell. Physiol. Biochem. 2018 45 4 1690 1699 10.1159/000487737 29490293
    [Google Scholar]
  79. Ninomiya T. Mihara K. Fushimi K. Hayashi Y. Hashimoto-Tamaoki T. Tamaoki T. Regulation of the α-fetoprotein gene by the isoforms of ATBF1 transcription factor in human hepatoma. Hepatology 2002 35 1 82 87 10.1053/jhep.2002.30420 11786962
    [Google Scholar]
  80. Kaspar P. Dvoráková M. Králová J. Pajer P. Kozmik Z. Dvorák M. Myb-interacting protein, ATBF1, represses transcriptional activity of Myb oncoprotein. J. Biol. Chem. 1999 274 20 14422 14428 10.1074/jbc.274.20.14422 10318867
    [Google Scholar]
  81. Sun X. Frierson H.F. Chen C. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat. Genet. 2005 37 4 407 412 10.1038/ng1528 15750593
    [Google Scholar]
  82. Sun X. Zhou Y. Otto K.B. Infrequent mutation of ATBF1 in human breast cancer. J. Cancer Res. Clin. Oncol. 2006 133 2 103 105 10.1007/s00432‑006‑0148‑y 16932943
    [Google Scholar]
  83. Laderoute M.P. Pilarski L.M. The inhibition of apoptosis by alpha-fetoprotein (AFP) and the role of AFP receptors in anti-cellular senescence. Anticancer Res. 1994 14 6B 2429 2438 7532927
    [Google Scholar]
  84. Semenkova L.N. Dudich E.I. Dudich I.V. Shingarova L.N. Korobko V.G. Alpha-fetoprotein as a TNF resistance factor for the human hepatocarcinoma cell line HepG2. Tumour Biol. 1997 18 1 30 40 10.1159/000218013 8989923
    [Google Scholar]
  85. Li M.S. Li P.F. He S.P. Du G.G. Li G. The promoting molecular mechanism of alpha-fetoprotein on the growth of human hepatoma Bel7402 cell line. World J. Gastroenterol. 2002 8 3 469 475 10.3748/wjg.v8.i3.469 12046072
    [Google Scholar]
  86. Dudich E. Semenkova L. Dudich I. Denesyuk A. Tatulov E. Korpela T. Alpha‐fetoprotein antagonizes X‐linked inhibitor of apoptosis protein anticaspase activity and disrupts XIAP-caspase interaction. FEBS J. 2006 273 16 3837 3849 10.1111/j.1742‑4658.2006.05391.x 16869888
    [Google Scholar]
  87. Lin B. Zhu M. Wang W. Structural basis for alpha fetoprotein‐mediated inhibition of caspase‐3 activity in hepatocellular carcinoma cells. Int. J. Cancer 2017 141 7 1413 1421 10.1002/ijc.30850 28653316
    [Google Scholar]
  88. Gotsman I. Israeli D. Alper R. Rabbani E. Engelhardt D. Ilan Y. Induction of immune tolerance toward tumor‐associated‐antigens enables growth of human hepatoma in mice. Int. J. Cancer 2002 97 1 52 57 10.1002/ijc.1576 11774243
    [Google Scholar]
  89. Toder V. Blank M. Gleicher N. Nebel L. Immunoregulatory mechanisms in pregnancy. II. Further characterization of suppressor lymphocytes induced by alpha-fetoprotein in lymphoid cell cultures. J. Clin. Lab. Immunol. 1983 11 3 149 154 6193275
    [Google Scholar]
  90. Wang X.W. Xu B. Stimulation of tumor-cell growth by alpha-fetoprotein. Int. J. Cancer 1998 75 4 596 599 10.1002/(SICI)1097‑0215(19980209)75:4<596:AID‑IJC17>3.0.CO;2‑7 9466662
    [Google Scholar]
  91. Wang X.W. Xie H. Alpha-fetoprotein enhances the proliferation of human hepatoma cells in vitro. Life Sci. 1998 64 1 17 23 10.1016/S0024‑3205(98)00529‑3 10027738
    [Google Scholar]
  92. Goossens N. Sun X. Hoshida Y. Molecular classification of hepatocellular carcinoma: Potential therapeutic implications. Hepat. Oncol. 2015 2 4 371 379 10.2217/hep.15.26 26617981
    [Google Scholar]
  93. Boyault S. Rickman D.S. de Reyniès A. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007 45 1 42 52 10.1002/hep.21467 17187432
    [Google Scholar]
  94. Hoshida Y. Nijman S.M.B. Kobayashi M. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009 69 18 7385 7392 10.1158/0008‑5472.CAN‑09‑1089 19723656
    [Google Scholar]
  95. Calderaro J. Couchy G. Imbeaud S. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J. Hepatol. 2017 67 4 727 738 10.1016/j.jhep.2017.05.014 28532995
    [Google Scholar]
  96. Llovet J.M. Montal R. Sia D. Finn R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2018 15 10 599 616 10.1038/s41571‑018‑0073‑4 30061739
    [Google Scholar]
  97. Bandiera S. Pfeffer S. Baumert T.F. Zeisel M.B. miR-122 - A key factor and therapeutic target in liver disease. J. Hepatol. 2015 62 2 448 457 10.1016/j.jhep.2014.10.004 25308172
    [Google Scholar]
  98. Rottiers V. Näär A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 2012 13 4 239 250 10.1038/nrm3313 22436747
    [Google Scholar]
  99. He L. He X. Lim L.P. A microRNA component of the p53 tumour suppressor network. Nature 2007 447 7148 1130 1134 10.1038/nature05939 17554337
    [Google Scholar]
  100. Chang T.C. Wentzel E.A. Kent O.A. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 2007 26 5 745 752 10.1016/j.molcel.2007.05.010 17540599
    [Google Scholar]
  101. Tarasov V. Jung P. Verdoodt B. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007 6 13 1586 1593 10.4161/cc.6.13.4436 17554199
    [Google Scholar]
  102. Welch C. Chen Y. Stallings R.L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007 26 34 5017 5022 10.1038/sj.onc.1210293 17297439
    [Google Scholar]
  103. Chen H. Sun Y. Dong R. Mir-34a is upregulated during liver regeneration in rats and is associated with the suppression of hepatocyte proliferation. PLoS One 2011 6 5 e20238 10.1371/journal.pone.0020238 21655280
    [Google Scholar]
  104. Yoneda M. Suzuki K. Kato S. Nonalcoholic fatty liver disease: US-based acoustic radiation force impulse elastography. Radiology 2010 256 2 640 647 10.1148/radiol.10091662 20529989
    [Google Scholar]
  105. Toyoda H. Kumada T. Kiriyama S. Higher hepatic gene expression and serum levels of matrix metalloproteinase-2 are associated with steatohepatitis in non-alcoholic fatty liver diseases. Biomarkers 2013 18 1 82 87 10.3109/1354750X.2012.738249 23136827
    [Google Scholar]
  106. Osaki A. Kubota T. Suda T. Shear wave velocity is a useful marker for managing nonalcoholic steatohepatitis. World J. Gastroenterol. 2010 16 23 2918 2925 10.3748/wjg.v16.i23.2918 20556839
    [Google Scholar]
  107. Rehman A.A. Ahsan H. Khan F.H. α‐2‐macroglobulin: A physiological guardian. J. Cell. Physiol. 2013 228 8 1665 1675 10.1002/jcp.24266 23086799
    [Google Scholar]
  108. Vandooren J. Itoh Y. Alpha-2-macroglobulin in inflammation, immunity and infections. Front. Immunol. 2021 12 803244 10.3389/fimmu.2021.803244 34970276
    [Google Scholar]
  109. Ritchie R.F. Palomaki G.E. Neveux L.M. Navolotskaia O. Reference distributions for α2‐macroglobulin: A comparison of a large cohort to the world’s literature. J. Clin. Lab. Anal. 2004 18 2 148 152 10.1002/jcla.20013 15065216
    [Google Scholar]
  110. Masaki T. Chiba S. Tatsukawa H. Adiponectin protects LPS-induced liver injury through modulation of TNF-α in KK-Ay obese mice. Hepatology 2004 40 1 177 184 10.1002/hep.20282 15239101
    [Google Scholar]
  111. Handy J.A. Saxena N.K. Fu P. Adiponectin activation of AMPK disrupts leptin‐mediated hepatic fibrosis via suppressors of cytokine signaling (SOCS‐3). J. Cell. Biochem. 2010 110 5 1195 1207 10.1002/jcb.22634 20564215
    [Google Scholar]
  112. Kamada Y. Tamura S. Kiso S. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 2003 125 6 1796 1807 10.1053/j.gastro.2003.08.029 14724832
    [Google Scholar]
  113. Polyzos S.A. Kountouras J. Zavos C. Deretzi G. The potential adverse role of leptin resistance in nonalcoholic fatty liver disease: A hypothesis based on critical review of the literature. J. Clin. Gastroenterol. 2011 45 1 50 54 10.1097/MCG.0b013e3181ec5c66 20717042
    [Google Scholar]
  114. Imajo K. Fujita K. Yoneda M. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 2012 16 1 44 54 10.1016/j.cmet.2012.05.012 22768838
    [Google Scholar]
  115. Tomita M. Kami K. Cancer. Systems biology, metabolomics, and cancer metabolism. Science 2012 336 6084 990 991 10.1126/science.1223066 22628644
    [Google Scholar]
  116. Tsutsui H. Maeda T. Min J.Z. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Clin. Chim. Acta 2011 412 11-12 861 872 10.1016/j.cca.2010.12.023 21185819
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128384721250924030943
Loading
/content/journals/cpd/10.2174/0113816128384721250924030943
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: MMPs ; AST ; miR-34a ; miR-122 ; AP ; ALT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test