Skip to content
2000
image of The Protective Effect and Mechanisms of Maxing Kugan Decoction Against Oleic Acid-Induced Acute Lung Injury via Inhibition of Inflammatory Factors, Oxidative Damage, and Modulation of Intestinal Microbiota and Metabolites

Abstract

Introduction

Acute Lung Injury (ALI) is a serious complication of many diseases and can progress to Acute Respiratory Distress Syndrome (ARDS) without intervention. The current study aimed to determine the effect of Maxing Kugan Decoction (MXKGD) on an Oleic Acid (OA)-induced rat model of ALI while also exploring the regulatory effects of MXKGD on the PI3K/AKT signaling pathway and gut microbiota.

Methods

Ultra-Performance Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry (UPLC-QTOF/MS) was employed to determine the chemical ingredients of MXKGD. The therapeutic effects of different doses of MXKGD in treating OA-induced ALI were investigated using histopathology, ELISA assays, and immunofluorescence analysis. Additionally, network pharmacology and 16S rRNA sequencing were utilized to explore the underlying mechanisms of MXKGD in ALI treatment.

Results

Through UPLC-QTOF/MS analysis, a total of 104 compounds were identified in MXKGD, including flavonoids, alkaloids, triterpenoids, glycosides, organic acids, and cyclic peptides. Pharmacodynamic results demonstrated that MXKGD could mitigate histomorphological changes in OA-induced ALI, suppress inflammation and oxidative stress, while promoting the proliferation and differentiation of alveolar type II (AT II) cells to repair the alveolar epithelial-microvascular endothelial barrier. Network pharmacology, molecular docking, and subsequent experimental validation revealed that MXKGD upregulates the expression of -PI3K and -AKT proteins, thereby activating the PI3K/AKT signaling pathway. Furthermore, MXKGD rebalanced the disturbance of gut microbiota and associated metabolic levels of short-chain fatty acids (SCFAs) to regulate the inflammatory response.

Discussion

This study suggests that MXKGD exerts anti-inflammatory effects and protects the alveolar epithelial-microvascular endothelial barrier in ALI models by activating the PI3K/AKT signaling pathway and modulating the abundance of beneficial gut bacteria. However, further metabolomic experiments are required to confirm its precise mechanism of action.

Conclusion

The data indicate that MXKGD can effectively inhibit the development of ALI by reducing inflammation and regulating the balance of intestinal microbiota. MXKGD may serve as a potential new therapeutic option for treating ALI.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128383495251119071534
2026-01-14
2026-01-27
Loading full text...

Full text loading...

References

  1. Bos L.D.J. Ware L.B. Acute respiratory distress syndrome: Causes, pathophysiology, and phenotypes. Lancet 2022 400 10358 1145 1156 10.1016/S0140‑6736(22)01485‑4 36070787
    [Google Scholar]
  2. Fukuda S. Lopez E. Ihara K. Superior effects of nebulized epinephrine to nebulized albuterol and phenylephrine in burn and smoke inhalation-induced acute lung injury. Shock 2020 54 6 774 782 10.1097/SHK.0000000000001590 32590700
    [Google Scholar]
  3. Ge P. Luo Y. Okoye C.S. Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: A troublesome trio for acute pancreatitis. Biomed. Pharmacother. 2020 132 110770 10.1016/j.biopha.2020.110770 33011613
    [Google Scholar]
  4. Long M.E. Mallampalli R.K. Horowitz J.C. Pathogenesis of pneumonia and acute lung injury. Clin. Sci. 2022 136 10 747 769 10.1042/CS20210879 35621124
    [Google Scholar]
  5. Reilly J.P. Zhao Z. Shashaty M.G.S. Exposure to ambient air pollutants and acute respiratory distress syndrome risk in sepsis. Intensive Care Med. 2023 49 8 957 965 10.1007/s00134‑023‑07148‑y 37470831
    [Google Scholar]
  6. Zalucky A.A. Matthay M.A. Ware L.B. Biomarkers of acute respiratory distress syndrome. Clin. Chest Med. 2024 45 4 809 820 10.1016/j.ccm.2024.08.003 39442999
    [Google Scholar]
  7. Toy P. Looney M.R. Popovsky M. Transfusion-related acute lung injury: 36 years of progress (1985–2021). Ann. Am. Thorac. Soc. 2022 19 5 705 712 10.1513/AnnalsATS.202108‑963CME 35045272
    [Google Scholar]
  8. Eworuke E. Major J.M. Gilbert McClain L.I. National incidence rates for Acute Respiratory Distress Syndrome (ARDS) and ARDS cause-specific factors in the United States (2006–2014). J. Crit. Care 2018 47 192 197 10.1016/j.jcrc.2018.07.002 30015289
    [Google Scholar]
  9. Kerr N.A. de Rivero Vaccari J.P. Weaver C. Dietrich W.D. Ahmed T. Keane R.W. Enoxaparin attenuates acute lung injury and inflammasome activation after traumatic brain injury. J. Neurotrauma 2021 38 5 646 654 10.1089/neu.2020.7257 32669032
    [Google Scholar]
  10. Bellani G. Laffey J.G. Pham T. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016 315 8 788 800 10.1001/jama.2016.0291 26903337
    [Google Scholar]
  11. Dhlamini Q. Wang W. Feng G. FGF1 alleviates LPS-induced acute lung injury via suppression of inflammation and oxidative stress. Mol. Med. 2022 28 1 73 10.1186/s10020‑022‑00502‑8 35764933
    [Google Scholar]
  12. Wu G. Xu G. Chen D.W. Hypoxia exacerbates inflammatory acute lung injury via the toll-like receptor 4 signaling pathway. Front. Immunol. 2018 9 1667 10.3389/fimmu.2018.01667 30083155
    [Google Scholar]
  13. Thorley A.J. Ford P.A. Giembycz M.A. Goldstraw P. Young A. Tetley T.D. Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide-stimulated primary human lung alveolar type II epithelial cells and macrophages. J. Immunol. 2007 178 1 463 473 10.4049/jimmunol.178.1.463 17182585
    [Google Scholar]
  14. Dupuis J. Sirois M.G. Rhéaume E. Colchicine reduces lung injury in experimental acute respiratory distress syndrome. PLoS One 2020 15 12 e0242318 10.1371/journal.pone.0242318 33264297
    [Google Scholar]
  15. Zheng J. Li Y. Kong X. Guo J. Exploring immune-related pathogenesis in lung injury: Providing new insights Into ALI/ARDS. Biomed. Pharmacother. 2024 175 116773 10.1016/j.biopha.2024.116773 38776679
    [Google Scholar]
  16. Kouhpayeh H. Clinical features predicting COVID-19 mortality risk. Eur. J. Transl. Myol. 2022 32 2 32 10.4081/ejtm.2022.10268 35421918
    [Google Scholar]
  17. Maddali M.V. Churpek M. Pham T. Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: An observational, multicohort, retrospective analysis. Lancet Respir. Med. 2022 10 4 367 377 10.1016/S2213‑2600(21)00461‑6 35026177
    [Google Scholar]
  18. Chang A.L. Ulrich A. Suliman H.B. Piantadosi C.A. Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis. Free Radic. Biol. Med. 2015 78 179 189 10.1016/j.freeradbiomed.2014.10.582 25450328
    [Google Scholar]
  19. Joffre J. Hellman J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid. Redox Signal. 2021 35 15 1291 1307 10.1089/ars.2021.0027 33637016
    [Google Scholar]
  20. Knudsen L. Hummel B. Wrede C. Zimmermann R. Perlman C.E. Smith B.J. Acinar micromechanics in health and lung injury: What we have learned from quantitative morphology. Front. Physiol. 2023 14 1142221 10.3389/fphys.2023.1142221 37025383
    [Google Scholar]
  21. Meyer N.J. Gattinoni L. Calfee C.S. Acute respiratory distress syndrome. Lancet 2021 398 10300 622 637 10.1016/S0140‑6736(21)00439‑6 34217425
    [Google Scholar]
  22. Cai K. Cao X.Y. Chen F. Xianlian Jiedu Decoction alleviates colorectal cancer by regulating metabolic profiles, intestinal microbiota and metabolites. Phytomedicine 2024 128 155385 10.1016/j.phymed.2024.155385 38569292
    [Google Scholar]
  23. Enaud R. Prevel R. Ciarlo E. The gut-lung axis in health and respiratory diseases: A place for inter-organ and inter-kingdom crosstalks. Front. Cell. Infect. Microbiol. 2020 10 9 10.3389/fcimb.2020.00009 32140452
    [Google Scholar]
  24. McQuade R.M. Bandara M. Diwakarla S. Gastrointestinal consequences of lipopolysaccharide-induced lung inflammation. Inflamm. Res. 2023 72 1 57 74 10.1007/s00011‑022‑01657‑0 36322182
    [Google Scholar]
  25. Li L. Fu W. Wu R. Protective effect of Ganoderma atrum polysaccharides in acute lung injury rats and its metabolomics. Int. J. Biol. Macromol. 2020 142 693 704 10.1016/j.ijbiomac.2019.10.010 31739063
    [Google Scholar]
  26. Tang R. Zhang J. Zhang R. Huoxiang zhengqi oral liquid attenuates LPS‐induced acute lung injury by modulating short‐chain fatty acid levels and TLR4/NF‐κ B p65 pathway. BioMed Res. Int. 2023 2023 1 6183551 10.1155/2023/6183551 36845637
    [Google Scholar]
  27. Cao X.Y. Elucidation of the material basis and in vivo processes of Maxing Shigan decoction in treating acute lung injury [dissertation]. Nanjing (China): Nanjing University of Chinese Medicine 2024
    [Google Scholar]
  28. Zacharias W.J. Frank D.B. Zepp J.A. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 2018 555 7695 251 255 10.1038/nature25786 29489752
    [Google Scholar]
  29. Košutova P. Mikolka P. Aspiration syndromes and associated lung injury: incidence, pathophysiology and management. Physiol. Res. 2021 70 S4 S567 S583 10.33549//physiolres.934767 35199544
    [Google Scholar]
  30. Zhang J. Guo Y. Mak M. Tao Z. Translational medicine for acute lung injury. J. Transl. Med. 2024 22 1 25 10.1186/s12967‑023‑04828‑7 38183140
    [Google Scholar]
  31. Gaver D.P. Kollisch-Singule M. Nieman G. Satalin J. Habashi N. Bates J.H.T. Mechanical ventilation energy analysis: Recruitment focuses injurious power in the ventilated lung. Proc. Natl. Acad. Sci. USA 2025 122 10 e2419374122 10.1073/pnas.2419374122 40030025
    [Google Scholar]
  32. Joelsson J.P. Karason S. Ventilator-induced lung injury in rat models: Are they all equal in the race? Lab. Anim. Res. 2025 41 1 14 10.1186/s42826‑025‑00240‑y 40390135
    [Google Scholar]
  33. El-Saber Batiha G. Magdy Beshbishy A. El-Mleeh A. Abdel-Daim M.M. Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020 10 3 19 10.3390/biom10030352 32106571
    [Google Scholar]
  34. Figurová D. Tokárová K. Greifová H. Knížatová N. Kolesárová A. Lukáč N. Inflammation, it’s regulation and antiphlogistic effect of the cyanogenic glycoside amygdalin. Molecules 2021 26 19 5972 10.3390/molecules26195972 34641516
    [Google Scholar]
  35. Li X. Tang Z. Wen L. Jiang C. Feng Q. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches. J. Ethnopharmacol. 2021 269 113682 10.1016/j.jep.2020.113682 33307055
    [Google Scholar]
  36. Miao S.M. Zhang Q. Bi X.B. Cui J.L. Wang M.L. A review of the phytochemistry and pharmacological activities of Ephedra herb. Chin. J. Nat. Med. 2020 18 5 321 344 10.1016/S1875‑5364(20)30040‑6 32451091
    [Google Scholar]
  37. Zheng Q. Mu X. Pan S. Luan R. Zhao P. Ephedrae herba: A comprehensive review of its traditional uses, phytochemistry, pharmacology, and toxicology. J. Ethnopharmacol. 2023 307 116153 10.1016/j.jep.2023.116153 36641108
    [Google Scholar]
  38. Morikawa T. Sun B. Matsuda H. Wu L.J. Harima S. Yoshikawa M. Bioactive constituents from Chinese natural medicines. XIV. New glycosides of β-carboline-type alkaloid, neolignan, and phenylpropanoid from Stellaria dichotoma L. var. lanceolata and their antiallergic activities. Chem. Pharm. Bull. 2004 52 10 1194 1199 10.1248/cpb.52.1194 15467234
    [Google Scholar]
  39. Gonçalves-de-Albuquerque C.F. Silva A.R. Burth P. Castro-Faria M.V. Castro-Faria-Neto H.C. Acute respiratory distress syndrome: Role of oleic acid‐triggered lung injury and inflammation. Mediators Inflamm. 2015 2015 1 260465 10.1155/2015/260465 26640323
    [Google Scholar]
  40. Stohs S.J. Shara M. Ray S.D. p ‐Synephrine, ephedrine, p ‐octopamine and m ‐synephrine: Comparative mechanistic, physiological and pharmacological properties. Phytother. Res. 2020 34 8 1838 1846 10.1002/ptr.6649 32101364
    [Google Scholar]
  41. Wu Y. Zeng M. Cao B. Zhang B. Zheng X. Feng W. Material basis and mechanism of Ephedra sinica in interfering with wind-chill cold. Int. Immunopharmacol. 2025 152 114432 10.1016/j.intimp.2025.114432 40058103
    [Google Scholar]
  42. Zhou B. Zhao K. Xue J. Ephedrine attenuates LPS‐induced acute lung injury in mice by inhibiting OTUB1 and promoting K48 ubiquitination of HIF1α. J. Cell. Mol. Med. 2025 29 10 e70598 10.1111/jcmm.70598
    [Google Scholar]
  43. Wang H.L. Chen F.Q. Wu L.J. Ephedrine ameliorates chronic obstructive pulmonary disease (COPD) through restraining endoplasmic reticulum (ER) stress in vitro and in vivo. Int. Immunopharmacol. 2022 103 107842 10.1016/j.intimp.2021.107842 34953449
    [Google Scholar]
  44. He X. Liu J. Gong Y. Amygdalin ameliorates alopecia areata on C3H/HeJ mice by inhibiting inflammation through JAK2/] STAT3 pathway. J. Ethnopharmacol. 2024 331 118317 10.1016/j.jep.2024.118317 38723918
    [Google Scholar]
  45. Wang Z. Du H. Wan H. Yang J. Wan H. Amygdalin prevents multidrug-resistant Staphylococcus aureus-induced lung epithelial cell injury by regulating inflammation and oxidative stress. PLoS One 2024 19 9 e0310253 10.1371/journal.pone.0310253 39283878
    [Google Scholar]
  46. Kung Y.L. Lu C.Y. Badrealam K.F. Cardioprotective potential of amygdalin against angiotensin II induced cardiac hypertrophy, oxidative stress and inflammatory responses through modulation of Nrf2 and NF‐κB activation. Environ. Toxicol. 2021 36 5 926 934 10.1002/tox.23094 33448586
    [Google Scholar]
  47. Zhou B. Xue J. Wang J. Amygdalin alleviates LPS-induced acute lung injury in mice by targeting CD5L/iNOS pathway. Mol. Immunol. 2024 176 22 29 10.1016/j.molimm.2024.11.003 39561489
    [Google Scholar]
  48. Jin H. Zhao K. Li J. Xu Z. Liao S. Sun S. Matrine alleviates oxidative stress and ferroptosis in severe acute pancreatitis-induced acute lung injury by activating the UCP2/SIRT3/PGC1α pathway. Int. Immunopharmacol. 2023 117 109981 10.1016/j.intimp.2023.109981
    [Google Scholar]
  49. Yang L. Zhang Y. Guo M.N. Matrine attenuates lung injury by modulating macrophage polarization and suppressing apoptosis. J. Surg. Res. 2023 281 264 274 10.1016/j.jss.2022.08.003 36219938
    [Google Scholar]
  50. Zhao J. Gong Z. Bao W. Matrine alleviates Staphylococcus aureus-induced acute lung injury in mice by inhibiting MLKL and NLRP3-mediated inflammatory activity. Eur. J. Pharmacol. 2025 993 177385 10.1016/j.ejphar.2025.177385 39956265
    [Google Scholar]
  51. Zhou X. Quan H. Zang L. Dong L. Dichotomine B. Dichotomine B attenuates neuroinflammatory responses by regulating TLR4/MyD88-mTOR signaling pathway in BV2 cells. Neurochem. Res. 2023 48 8 2451 2462 10.1007/s11064‑023‑03920‑0 37010732
    [Google Scholar]
  52. Guo B. Wang H. Zhang Y. Wang C. Qin J. Glycyrrhizin alleviates varicellovirus bovinealpha 1-induced oxidative stress, inflammation, and apoptosis in MDBK cells by inhibiting NF-κB/NLRP3 axis through the Nrf2 signalling pathway. Vet. Res. Commun. 2024 48 2 749 759 10.1007/s11259‑023‑10242‑7 37889426
    [Google Scholar]
  53. Han S. Sun L. He F. Che H. Anti-allergic activity of glycyrrhizic acid on IgE-mediated allergic reaction by regulation of allergy-related immune cells. Sci. Rep. 2017 7 1 7222 10.1038/s41598‑017‑07833‑1 28775294
    [Google Scholar]
  54. Wang G. Hiramoto K. Ma N. Glycyrrhizin attenuates carcinogenesis by inhibiting the inflammatory response in a murine model of colorectal cancer. Int. J. Mol. Sci. 2021 22 5 2609 10.3390/ijms22052609 33807620
    [Google Scholar]
  55. Guo P. Jin L. Zhou H. Glycyrrhetinic acid protects against Multidrug-resistant Acinetobacter baumannii-induced lung epithelial cells injury by regulating inflammation and oxidative stress. BMC Pharmacol. Toxicol. 2023 24 1 5 10.1186/s40360‑023‑00648‑z 36717837
    [Google Scholar]
  56. Richard S.A. Exploring the pivotal immunomodulatory and anti-inflammatory potentials of glycyrrhizic and glycyrrhetinic acids. Mediators Inflamm. 2021 2021 1 15 10.1155/2021/6699560 33505216
    [Google Scholar]
  57. Wang K. Zhang Y. Cao Y. Glycyrrhetinic acid alleviates acute lung injury by PI3K/AKT suppressing macrophagic Nlrp3 inflammasome activation. Biochem. Biophys. Res. Commun. 2020 532 4 555 562 10.1016/j.bbrc.2020.08.044 32900490
    [Google Scholar]
  58. Kim B. Huang Y. Ko K.P. PCLAF-DREAM drives alveolar cell plasticity for lung regeneration. Nat. Commun. 2024 15 1 9169 10.1038/s41467‑024‑53330‑1 39448571
    [Google Scholar]
  59. Wu A. Song H. Regulation of alveolar type 2 stem/progenitor cells in lung injury and regeneration. Acta Biochim. Biophys. Sin. 2020 52 7 716 722 10.1093/abbs/gmaa052 32445469
    [Google Scholar]
  60. Hogan B.L.M. Barkauskas C.E. Chapman H.A. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 2014 15 2 123 138 10.1016/j.stem.2014.07.012 25105578
    [Google Scholar]
  61. Jones-Freeman B. Starkey M.R. Bronchioalveolar stem cells in lung repair, regeneration and disease. J. Pathol. 2020 252 3 219 226 10.1002/path.5527 32737996
    [Google Scholar]
  62. Olajuyin A.M. Zhang X. Ji H.L. Alveolar type 2 progenitor cells for lung injury repair. Cell Death Discov. 2019 5 1 63 10.1038/s41420‑019‑0147‑9
    [Google Scholar]
  63. Purev E. Bahmed K. Kosmider B. Alveolar organoids in lung disease modeling. Biomolecules 2024 14 1 115 10.3390/biom14010115 38254715
    [Google Scholar]
  64. Chen J. Wu H. Yu Y. Tang N. Pulmonary alveolar regeneration in adult COVID-19 patients. Cell Res. 2020 30 8 708 710 10.1038/s41422‑020‑0369‑7 32632255
    [Google Scholar]
  65. Jiang P. Gil de Rubio R. Hrycaj S.M. Ineffectual type 2–to–type 1 alveolar epithelial cell differentiation in idiopathic pulmonary fibrosis: Persistence of the KRT8hi transitional state. Am. J. Respir. Crit. Care Med. 2020 201 11 1443 1447 10.1164/rccm.201909‑1726LE 32073903
    [Google Scholar]
  66. Kobayashi Y. Tata A. Konkimalla A. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 2020 22 8 934 946 10.1038/s41556‑020‑0542‑8 32661339
    [Google Scholar]
  67. Wu H. Yu Y. Huang H. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell 2020 180 1 107 121.e17 10.1016/j.cell.2019.11.027 31866069
    [Google Scholar]
  68. Toba H. Wang Y. Bai X. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration. Oncotarget 2015 6 31 30803 30817 10.18632/oncotarget.5062 26360608
    [Google Scholar]
  69. Li M. Zhang R. Li J. Li J. The role of C-type lectin receptor signaling in the intestinal microbiota-inflammation-cancer axis. Front. Immunol. 2022 13 894445 10.3389/fimmu.2022.894445 35619716
    [Google Scholar]
  70. Spiljar M. Merkler D. Trajkovski M. The immune system bridges the gut microbiota with systemic energy homeostasis: Focus on TLRs, mucosal barrier, and SCFAs. Front. Immunol. 2017 8 1353 10.3389/fimmu.2017.01353 29163467
    [Google Scholar]
  71. Li Z. Shen Y. Xin J. Cryptotanshinone alleviates radiation‐induced lung fibrosis via modulation of gut microbiota and bile acid metabolism. Phytother. Res. 2023 37 10 4557 4571 10.1002/ptr.7926 37427974
    [Google Scholar]
  72. Liu J. Zong C. Yu X. Alanyl-glutamine (Ala-Gln) Ameliorates Dextran Sulfate Sodium (DSS)-induced acute colitis by regulating the gut microbiota, PI3K-Akt/NF-κB/STAT3 signaling, and associated pulmonary injury. ACS Infect. Dis. 2023 9 4 979 992 10.1021/acsinfecdis.3c00014 36917734
    [Google Scholar]
  73. Wang J. Zhao K. Kang Z. The multi-omics analysis revealed a metabolic regulatory system of cecum in rabbit with diarrhea. Animals 2022 12 9 1194 10.3390/ani12091194 35565618
    [Google Scholar]
  74. Liang L. Liu L. Zhou W. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/] WNT/ERK signaling pathway. Clin. Sci. 2022 136 4 291 307 10.1042/CS20210778 35194640
    [Google Scholar]
  75. Zhou T. Wu J. Zeng Y. SARS‐CoV‐2 triggered oxidative stress and abnormal energy metabolism in gut microbiota. MedComm 2022 3 1 e112 10.1002/mco2.112 35281785
    [Google Scholar]
  76. Zhang Y. Zhang L. Mao L. Intestinal microbiota-derived propionic acid protects against zinc oxide nanoparticle–induced lung injury. Am. J. Respir. Cell Mol. Biol. 2022 67 6 680 694 10.1165/rcmb.2021‑0515OC 36150095
    [Google Scholar]
  77. Chen X. Tang J. Shuai W. Meng J. Feng J. Han Z. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm. Res. 2020 69 9 883 895 10.1007/s00011‑020‑01378‑2 32647933
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128383495251119071534
Loading
/content/journals/cpd/10.2174/0113816128383495251119071534
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test