Skip to content
2000
image of The Impact of Artificial Intelligence Techniques and Machine Learning on Colorectal Cancer Management

Abstract

Bowel cancer, known as colorectal cancer (CRC), is among the most common types of newly diagnosed cancers and a leading cause of cancer-related deaths. Despite advances in medical technology and screening programs, gaps in the detection of colorectal cancer patients persist, leading to delayed diagnoses and poorer outcomes. Therefore, new approaches using artificial intelligence-based analysis with gene panels and traditional risk factors for risk prediction and identification of cases at high risk are urgently warranted. Artificial Intelligence (AI) has emerged as a promising tool to enhance early detection and screening efficacy. Moreover, early detection is crucial for successful treatment and improved survival rates. However, conventional screening methods, such as colonoscopy and fecal occult blood tests (FOBT), have their limitations, including cost, invasiveness, and patient compliance. As a result, many individuals go undiagnosed until the disease has progressed to an advanced stage. In aggregate, the integration of AI in CRC detection holds great promise for bridging the existing gaps and improving patient outcomes. As technology continues to evolve, AI algorithms will become even more sophisticated, accurate, and scalable. Collaboration between clinicians, researchers, and AI developers is essential to harness the full potential of AI for earlier detection and better management of CRC, ultimately saving lives and reducing the global burden of disease.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128377312250827213457
2025-09-15
2025-12-17
Loading full text...

Full text loading...

References

  1. Koteluk O. Wartecki A. Mazurek S. Kołodziejczak I. Mackiewicz A. How Do machines learn? Artificial intelligence as a new era in medicine. J. Pers. Med. 2021 11 1 32 10.3390/jpm11010032 33430240
    [Google Scholar]
  2. Yu K.H. Beam A.L. Kohane I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018 2 10 719 731 10.1038/s41551‑018‑0305‑z 31015651
    [Google Scholar]
  3. Mansur A. Saleem Z. Elhakim T. Daye D. Role of artificial intelligence in risk prediction, prognostication, and therapy response assessment in colorectal cancer: Current state and future directions. Front. Oncol. 2023 13 1065402 10.3389/fonc.2023.1065402 36761957
    [Google Scholar]
  4. Schootman M. Hendren S. Ratnapradipa K. Stringer L. Davidson N.O. Adoption of robotic technology for treating colorectal cancer. Dis. Colon Rectum 2016 59 11 1011 1018 10.1097/DCR.0000000000000688 27749475
    [Google Scholar]
  5. Shrestha Y.R. Krishna V. von Krogh G. Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges. J. Bus. Res. 2021 123 588 603 10.1016/j.jbusres.2020.09.068
    [Google Scholar]
  6. Janiesch C. Zschech P. Heinrich K. Machine learning and deep learning. Electron. Mark. 2021 31 3 685 695 10.1007/s12525‑021‑00475‑2
    [Google Scholar]
  7. Camacho D.M. Collins K.M. Powers R.K. Costello J.C. Collins J.J. Next-generation machine learning for biological networks. Cell 2018 173 7 1581 1592 10.1016/j.cell.2018.05.015 29887378
    [Google Scholar]
  8. Karthikeyan A. Jothilakshmi S. Suthir S. Colorectal cancer detection based on convolutional neural networks (CNN) and ranking algorithm. Meas. Sensors 2023 2023 100976
    [Google Scholar]
  9. Celotto F. Capelli G. Ferrari S. Scarpa M. Pucciarelli S. Spolverato G. Application and use of artificial intelligence in colorectal cancer surgery: where are we? Artif. Intell. Surg. 2024 4 4 348 363 10.20517/ais.2024.26
    [Google Scholar]
  10. Kolbinger F.R. Bodenstedt S. Carstens M. Artificial intelligence for context-aware surgical guidance in complex robot-assisted oncological procedures: An exploratory feasibility study. Eur. J. Surg. Oncol. 2024 50 12 106996 10.1016/j.ejso.2023.106996 37591704
    [Google Scholar]
  11. Jiang L. Wu Z. Xu X. Opportunities and challenges of artificial intelligence in the medical field: current application, emerging problems, and problem-solving strategies. J. Int. Med. Res. 2021 49 3 03000605211000157 10.1177/03000605211000157 33771068
    [Google Scholar]
  12. Bajwa J. Munir U. Nori A. Williams B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021 8 2 e188 e194 10.7861/fhj.2021‑0095 34286183
    [Google Scholar]
  13. Cortes C. Vapnik V. Support-vector networks. Mach. Learn. 1995 20 3 273 297 10.1007/BF00994018
    [Google Scholar]
  14. Ahmed F.E. Artificial neural networks for diagnosis and survival prediction in colon cancer. Mol. Cancer 2005 4 1 29 10.1186/1476‑4598‑4‑29 16083507
    [Google Scholar]
  15. Cover T. Hart P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967 13 1 21 27 10.1109/TIT.1967.1053964
    [Google Scholar]
  16. Breiman L. Random Forests. Mach. Learn. 2001 45 1 5 32 10.1023/A:1010933404324
    [Google Scholar]
  17. LeCun Y. Bengio Y. Hinton G. Deep learning. Nature 2015 521 7553 436 444 10.1038/nature14539 26017442
    [Google Scholar]
  18. Lu F. Lei T. Zhou J. Using gut microbiota as a diagnostic tool for colorectal cancer: Machine learning techniques reveal promising results. J. Med. Microbiol. 2023 72 6 10.1099/jmm.0.001699 37288545
    [Google Scholar]
  19. Chowdhury M.R. Hone K. Prévost K. Balthazar P. Avino M. Arguin M. Optimizing Fecal Occult Blood Test (FOBT) colorectal cancer screening using gut bacteriome as a biomarker. Clin. Colorectal Cancer 2023 37980216
    [Google Scholar]
  20. Zhou Y.H. Sun G. Improve the colorectal cancer diagnosis using gut microbiome data. Front. Mol. Biosci. 2022 9 921945 10.3389/fmolb.2022.921945 36032686
    [Google Scholar]
  21. Hammad A. Elshaer M. Tang X. Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning. Math. Biosci. Eng. 2021 18 6 8997 9015 10.3934/mbe.2021443 34814332
    [Google Scholar]
  22. Wan N. Weinberg D. Liu T.Y. Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA. BMC Cancer 2019 19 1 832 10.1186/s12885‑019‑6003‑8 31443703
    [Google Scholar]
  23. Kel A. Boyarskikh U. Stegmaier P. Walking pathways with positive feedback loops reveal DNA methylation biomarkers of colorectal cancer. BMC Bioinformatics 2019 20 S4 119 10.1186/s12859‑019‑2687‑7 30999858
    [Google Scholar]
  24. Zhao D. Liu H. Zheng Y. He Y. Lu D. Lyu C. A reliable method for colorectal cancer prediction based on feature selection and support vector machine. Med. Biol. Eng. Comput. 2019 57 4 901 912 10.1007/s11517‑018‑1930‑0 30478811
    [Google Scholar]
  25. Xu J.F. Kang Q. Ma X.Y. A novel method to detect early colorectal cancer based on chromosome copy number variation in plasma. Cell. Physiol. Biochem. 2018 45 4 1444 1454 10.1159/000487571 29466793
    [Google Scholar]
  26. Zhou B. Guo R. Integrative analysis of significant RNA‐binding proteins in colorectal cancer metastasis. J. Cell. Biochem. 2018 119 12 9730 9741 10.1002/jcb.27290 30132996
    [Google Scholar]
  27. Khazaee Fadafen M. Rezaee K. Ensemble-based multi-tissue classification approach of colorectal cancer histology images using a novel hybrid deep learning framework. Sci. Rep. 2023 13 1 8823 10.1038/s41598‑023‑35431‑x 37258631
    [Google Scholar]
  28. Guo J. Cao W. Nie B. Qin Q. Unsupervised learning composite network to reduce training cost of deep learning model for colorectal cancer diagnosis. IEEE J. Transl. Eng. Health Med. 2023 11 54 59 10.1109/JTEHM.2022.3224021 36544891
    [Google Scholar]
  29. Hosseinzadeh Kassani S. Hosseinzadeh Kassani P. Wesolowski M.J. Schneider K.A. Deters R. Deep transfer learning based model for colorectal cancer histopathology segmentation: A comparative study of deep pre-trained models. Int. J. Med. Inform. 2022 159 104669 10.1016/j.ijmedinf.2021.104669 34979435
    [Google Scholar]
  30. Ho C. Zhao Z. Chen X.F. A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer. Sci. Rep. 2022 12 1 2222 10.1038/s41598‑022‑06264‑x 35140318
    [Google Scholar]
  31. Pataki B.Á. Olar A. Ribli D. HunCRC: Annotated pathological slides to enhance deep learning applications in colorectal cancer screening. Sci. Data 2022 9 1 370 10.1038/s41597‑022‑01450‑y 35764660
    [Google Scholar]
  32. Zhang J.K. Fanous M. Sobh N. Kajdacsy-Balla A. Popescu G. Automatic colorectal cancer screening using deep learning in spatial light interference microscopy data. Cells 2022 11 4 716 10.3390/cells11040716 35203365
    [Google Scholar]
  33. Oliveira S.P. Neto P.C. Fraga J. CAD systems for colorectal cancer from WSI are still not ready for clinical acceptance. Sci. Rep. 2021 11 1 14358 10.1038/s41598‑021‑93746‑z 34257363
    [Google Scholar]
  34. Yu G. Sun K. Xu C. Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images. Nat. Commun. 2021 12 1 6311 10.1038/s41467‑021‑26643‑8 34728629
    [Google Scholar]
  35. Jansen-Winkeln B. Barberio M. Chalopin C. Feedforward artificial neural network-based colorectal cancer detection using hyperspectral imaging: A step towards automatic optical biopsy. Cancers (Basel) 2021 13 5 967 10.3390/cancers13050967 33669082
    [Google Scholar]
  36. Cui M. Zhao Y. Zhang Z. IL-8, MSPa, MIF, FGF-9, ANG-2 and AgRP collection were identified for the diagnosis of colorectal cancer based on the support vector machine model. Cell Cycle 2021 20 8 781 791 10.1080/15384101.2021.1903208 33779485
    [Google Scholar]
  37. Zhou C. Jin Y. Chen Y. Histopathology classification and localization of colorectal cancer using global labels by weakly supervised deep learning. Comput. Med. Imaging Graph. 2021 88 101861 10.1016/j.compmedimag.2021.101861 33497891
    [Google Scholar]
  38. Zhou D. Tian F. Tian X. Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer. Nat. Commun. 2020 11 1 2961 10.1038/s41467‑020‑16777‑6 32528084
    [Google Scholar]
  39. Yang K. Zhou B. Yi F. Chen Y. Chen Y. Colorectal Cancer diagnostic algorithm based on sub-patch weight color histogram in combination of improved least squares support vector machine for pathological image. J. Med. Syst. 2019 43 9 306 10.1007/s10916‑019‑1429‑8 31410693
    [Google Scholar]
  40. Ito N. Kawahira H. Nakashima H. Uesato M. Miyauchi H. Matsubara H. Endoscopic diagnostic support system for cT1b colorectal cancer using deep learning. Oncology 2019 96 1 44 50 10.1159/000491636 30130758
    [Google Scholar]
  41. Blanes-Vidal V. Baatrup G. Nadimi E.S. Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning. Acta Oncol. 2019 58 1 S29 S36 10.1080/0284186X.2019.1584404
    [Google Scholar]
  42. Takeda K. Kudo S. Mori Y. Accuracy of diagnosing invasive colorectal cancer using computer-aided endocytoscopy. Endoscopy 2017 49 8 798 802 10.1055/s‑0043‑105486 28472832
    [Google Scholar]
  43. Redd D.F. Shao Y. Zeng-Treitler Q. Identification of colorectal cancer using structured and free text clinical data. Health Informatics J. 2022 28 4 14604582221134406 10.1177/14604582221134406 36300566
    [Google Scholar]
  44. Schneider J.L. Layefsky E. Udaltsova N. Levin T.R. Corley D.A. Validation of an algorithm to identify patients at risk for colorectal cancer based on laboratory test and demographic data in diverse, community-based population. Clin. Gastroenterol. Hepatol. 2020 18 12 2734 2741.e6 10.1016/j.cgh.2020.04.054 32360824
    [Google Scholar]
  45. Soares F. Becker K. Anzanello M.J. A hierarchical classifier based on human blood plasma fluorescence for non-invasive colorectal cancer screening. Artif. Intell. Med. 2017 82 1 10 10.1016/j.artmed.2017.09.004 28939302
    [Google Scholar]
  46. Villamanca J.J. Hermogino L.J. Ong K.D. Predicting the likelihood of colorectal cancer with artificial intelligence tools using fourier transform infrared signals obtained from tumor samples. Appl. Spectrosc. 2022 76 12 1412 1428 10.1177/00037028221116083 35821580
    [Google Scholar]
  47. Kuwabara H. Katsumata K. Iwabuchi A. Salivary metabolomics with machine learning for colorectal cancer detection. Cancer Sci. 2022 113 9 3234 3243 10.1111/cas.15472 35754317
    [Google Scholar]
  48. Kinar Y. Kalkstein N. Akiva P. Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts: A binational retrospective study. J. Am. Med. Inform. Assoc. 2016 23 5 879 890 10.1093/jamia/ocv195 26911814
    [Google Scholar]
  49. Long N.P. Park S. Anh N.H. High-Throughput Omics and Statistical Learning Integration for the Discovery and Validation of Novel Diagnostic Signatures in Colorectal Cancer. Int. J. Mol. Sci. 2019 20 2 296 10.3390/ijms20020296 30642095
    [Google Scholar]
  50. Abdul Rahman H. Ottom M.A. Dinov I.D. Machine learning-based colorectal cancer prediction using global dietary data. BMC Cancer 2023 23 1 144 10.1186/s12885‑023‑10587‑x 36765299
    [Google Scholar]
  51. Rubio-Mangas D. García-Arranz M. Torres-Rodriguez Y. León-Arellano M. Suela J. García-Olmo D. Differential presence of exons (DPE): sequencing liquid biopsy by NGS. A new method for clustering colorectal Cancer patients. BMC Cancer 2023 23 1 2 10.1186/s12885‑022‑10459‑w 36593457
    [Google Scholar]
  52. Xu Y. Jiang L. Chen W. Huang S. Liu Z. Zhang J. Computer-aided detection and prognosis of colorectal cancer on whole slide images using dual resolution deep learning. J. Cancer Res. Clin. Oncol. 2023 149 1 91 101 10.1007/s00432‑022‑04435‑x 36331654
    [Google Scholar]
  53. Ren J.X. Chen L. Guo W. Feng K.Y. Huang T. Cai Y.D. Patterns of gene expression profiles associated with colorectal cancer in colorectal mucosa by using machine learning methods. Comb. Chem. High Throughput Screen. 2023 37957897
    [Google Scholar]
  54. Zhao R. Xia D. Chen Y. Improved diagnosis of colorectal cancer using combined biomarkers including Fusobacterium nucleatum, fecal occult blood, transferrin, CEA, CA19 ‐9, gender, and age. Cancer Med. 2023 12 13 14636 14645 10.1002/cam4.6067 37162269
    [Google Scholar]
  55. Nemlander E. Ewing M. Abedi E. A machine learning tool for identifying non-metastatic colorectal cancer in primary care. Eur. J. Cancer 2023 182 100 106 10.1016/j.ejca.2023.01.011 36758474
    [Google Scholar]
  56. Maurya N.S. Kushwaha S. Vetukuri R.R. Mani A. Unlocking the potential of the CA2, CA7, and ITM2C gene signatures for the early detection of colorectal cancer: A comprehensive analysis of RNA-seq data by utilizing machine learning algorithms. Genes (Basel) 2023 14 10 1836 10.3390/genes14101836 37895185
    [Google Scholar]
  57. Krishnan S.T. Winkler D. Creek D. Staging of colorectal cancer using lipid biomarkers and machine learning. Metabolomics 2023 19 10 84 10.1007/s11306‑023‑02049‑z 37731020
    [Google Scholar]
  58. Luo H. Li S. Zeng Y. Human colorectal cancer tissue assessment using optical coherence tomography catheter and deep learning. J. Biophotonics 2022 15 6 e202100349 10.1002/jbio.202100349 35150067
    [Google Scholar]
  59. Yang C. Zhou S. Zhu J. Plasma lipid-based machine learning models provides a potential diagnostic tool for colorectal cancer patients. Clin. Chim. Acta 2022 536 191 199 10.1016/j.cca.2022.09.002 36191612
    [Google Scholar]
  60. Narasimha Raju A.S. Jayavel K. Rajalakshmi T. ColoRectalCADx: Expeditious recognition of colorectal cancer with integrated convolutional neural networks and visual explanations using mixed dataset evidence. Comput. Math. Methods Med. 2022 2022 1 27 10.1155/2022/8723957 36404909
    [Google Scholar]
  61. Pawelka D. Laczmanska I. Karpinski P. Machine-learning-based analysis identifies miRNA expression profile for diagnosis and prediction of colorectal cancer: A preliminary study. Cancer Genomics Proteomics 2022 19 4 503 511 10.21873/cgp.20336 35732322
    [Google Scholar]
  62. Wang L. Predicting Colorectal cancer using residual deep learning with nursing care. Contrast Media Mol. Imaging 2022 2022 1 7996195 10.1155/2022/7996195 35291423
    [Google Scholar]
  63. Pan Z. Hu Z. Guan L. Diagnostic value of serum sphingolipids in patients with colorectal cancer. Analyst (Lond.) 2022 147 10 2189 2197 10.1039/D1AN02239C 35441613
    [Google Scholar]
  64. Guo C. Xie B. Liu Q. Weighted gene co-expression network analysis combined with machine learning validation to identify key hub biomarkers in colorectal cancer. Funct. Integr. Genomics 2023 23 1 24 10.1007/s10142‑022‑00949‑2 36576616
    [Google Scholar]
  65. Deshpande S. Minhas F. Graham S. Rajpoot N. SAFRON: Stitching across the frontier network for generating colorectal cancer histology images. Med. Image Anal. 2022 77 102337 10.1016/j.media.2021.102337 35016078
    [Google Scholar]
  66. Nogueira M.S. Maryam S. Amissah M. Evaluation of wavelength ranges and tissue depth probed by diffuse reflectance spectroscopy for colorectal cancer detection. Sci. Rep. 2021 11 1 798 10.1038/s41598‑020‑79517‑2 33436684
    [Google Scholar]
  67. Kim H. Yoon H. Thakur N. Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain. Sci. Rep. 2021 11 1 22520 10.1038/s41598‑021‑01905‑z 34795365
    [Google Scholar]
  68. Li H. Lin J. Xiao Y. Colorectal cancer detected by machine learning models using conventional laboratory test data. Technol. Cancer Res. Treat. 2021 20 15330338211058352 10.1177/15330338211058352 34806496
    [Google Scholar]
  69. Fernandes L. Carvalho S. Carneiro I. Diffuse reflectance and machine learning techniques to differentiate colorectal cancer ex vivo. Chaos 2021 31 5 053118 10.1063/5.0052088 34240956
    [Google Scholar]
  70. Lorenzovici N. Dulf E.H. Mocan T. Mocan L. Artificial intelligence in colorectal cancer diagnosis using clinical data: Non-invasive approach. Diagnostics (Basel) 2021 11 3 514 10.3390/diagnostics11030514 33799452
    [Google Scholar]
  71. Battista A. Battista R.A. Battista F. Iovane G. Landi R.E. BH-index: A predictive system based on serum biomarkers and ensemble learning for early colorectal cancer diagnosis in mass screening. Comput. Methods Programs Biomed. 2021 212 106494 10.1016/j.cmpb.2021.106494 34740064
    [Google Scholar]
  72. Konishi Y. Okumura S. Matsumoto T. Development and evaluation of a colorectal cancer screening method using machine learning‐based gut microbiota analysis. Cancer Med. 2022 11 16 3194 3206 10.1002/cam4.4671 35318827
    [Google Scholar]
  73. Maurya N.S. Kushwaha S. Chawade A. Mani A. Transcriptome profiling by combined machine learning and statistical R analysis identifies TMEM236 as a potential novel diagnostic biomarker for colorectal cancer. Sci. Rep. 2021 11 1 14304 10.1038/s41598‑021‑92692‑0 34253750
    [Google Scholar]
  74. Zeng Y. Xu S. Chapman W.C. Real-time colorectal cancer diagnosis using PR-OCT with deep learning. Theranostics 2020 10 6 2587 2596 10.7150/thno.40099 32194821
    [Google Scholar]
  75. Luo H. Zhao Q. Wei W. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci. Transl. Med. 2020 12 524 eaax7533 10.1126/scitranslmed.aax7533 31894106
    [Google Scholar]
  76. Yang G. Amidi E. Chapman W. Co-registered photoacoustic and ultrasound imaging of human colorectal cancer. J. Biomed. Opt. 2019 24 12 1 13 31746155
    [Google Scholar]
  77. Ding D. Han S. Zhang H. He Y. Li Y. Predictive biomarkers of colorectal cancer. Comput. Biol. Chem. 2019 83 107106 10.1016/j.compbiolchem.2019.107106 31542707
    [Google Scholar]
  78. Wang Y.H. Nguyen P.A. Islam M.M. Li Y.C. Yang H.C. Development of deep learning algorithm for detection of colorectal cancer in EHR data. Stud. Health Technol. Inform. 2019 264 438 441 31437961
    [Google Scholar]
  79. Mozdiak E. Wicaksono A.N. Covington J.A. Arasaradnam R.P. Colorectal cancer and adenoma screening using urinary volatile organic compound (VOC) detection: early results from a single-centre bowel screening population (UK BCSP). Tech. Coloproctol. 2019 23 4 343 351 10.1007/s10151‑019‑01963‑6 30989415
    [Google Scholar]
  80. Zhao D. Liu H. Zheng Y. He Y. Lu D. Lyu C. Whale optimized mixed kernel function of support vector machine for colorectal cancer diagnosis. J. Biomed. Inform. 2019 92 103124 10.1016/j.jbi.2019.103124 30796977
    [Google Scholar]
  81. Dorani F. Hu T. Woods M.O. Zhai G. Ensemble learning for detecting gene-gene interactions in colorectal cancer. PeerJ 2018 6 e5854 10.7717/peerj.5854 30397551
    [Google Scholar]
  82. Kinar Y. Akiva P. Choman E. Performance analysis of a machine learning flagging system used to identify a group of individuals at a high risk for colorectal cancer. PLoS One 2017 12 2 e0171759 10.1371/journal.pone.0171759 28182647
    [Google Scholar]
  83. Ai L. Tian H. Chen Z. Chen H. Xu J. Fang J.Y. Systematic evaluation of supervised classifiers for fecal microbiota-based prediction of colorectal cancer. Oncotarget 2017 8 6 9546 9556 10.18632/oncotarget.14488 28061434
    [Google Scholar]
  84. Birks J. Bankhead C. Holt T.A. Fuller A. Patnick J. Evaluation of a prediction model for colorectal cancer: Retrospective analysis of 2.5 million patient records. Cancer Med. 2017 6 10 2453 2460 10.1002/cam4.1183 28941187
    [Google Scholar]
  85. Zhang B. Liang X.L. Gao H.Y. Ye L.S. Wang Y.G. Models of logistic regression analysis, support vector machine, and back-propagation neural network based on serum tumor markers in colorectal cancer diagnosis. Genet. Mol. Res. 2016 15 2 10.4238/gmr.15028643 27323037
    [Google Scholar]
  86. Kop R. Hoogendoorn M. Teije A. Predictive modeling of colorectal cancer using a dedicated pre-processing pipeline on routine electronic medical records. Comput. Biol. Med. 2016 76 30 38 10.1016/j.compbiomed.2016.06.019 27392227
    [Google Scholar]
  87. Li S. Chen G. Zhang Y. Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques. Opt. Express 2014 22 21 25895 25908 10.1364/OE.22.025895 25401621
    [Google Scholar]
  88. Suma K. Sunitha G. Galety M.G. SCRNN: A deep model for colorectal cancer classification from histological images-implementation using tensorFlow. Machine Learning Algorithms Using Scikit and TensorFlow Environments. IGI Global 2024 276 294 10.4018/978‑1‑6684‑8531‑6.ch014
    [Google Scholar]
  89. Lin J. Feng S. Zhang X. Combining urine surface-enhanced Raman spectroscopy with PCA-SVM algorithm for improving the identification of colorectal cancer at different stages. Optoelectron. Lett. 2023 19 2 101 104 10.1007/s11801‑023‑2157‑3
    [Google Scholar]
  90. Kuriyama S. Yamada T. Sonoda H. Abstract 5577: Detection of RAS mutations in colorectal cancer patients using DNA from extracellular vesicles. Cancer Res. 2023 83 7 Suppl. 5577 10.1158/1538‑7445.AM2023‑5577
    [Google Scholar]
  91. Kim S. Lee J.H. Park E.J. Prediction of microsatellite instability in colorectal cancer using a machine learning model based on PET/CT radiomics. Yonsei Med. J. 2023 64 5 320 326 10.3349/ymj.2022.0548 37114635
    [Google Scholar]
  92. Khalili-Tanha G. Mohit R. Asadnia A. Identification of ZMYND19 as a novel biomarker of colorectal cancer: RNA-sequencing and machine learning analysis. J. Cell Commun. Signal. 2023 17 4 1469 1485 10.1007/s12079‑023‑00779‑2 37428302
    [Google Scholar]
  93. Kexin Y Xuexinyi C Xinru Z Yun L Junlu W Tianzi L Bacterial signatures for diagnosis of colorectal cancer by machine learning. Camb Explor Arts Sci 2023 1 1 10.61603/ceas.v1i1.6
    [Google Scholar]
  94. Kavitha M. Nirmala P. Convolutional neural networks for colorectal cancer detection using XG BOOST algorithms: Analysis and comparison with improved accuracy. J Survey Fisher Sci 2023 10 1S 1718 1727
    [Google Scholar]
  95. Kara O.C. Venkatayogi N. Ikoma N. Alambeigi F. A reliable and sensitive framework for simultaneous type and stage detection of colorectal cancer polyps. Ann. Biomed. Eng. 2023 51 7 1499 1512 10.1007/s10439‑023‑03153‑w 36754924
    [Google Scholar]
  96. Ishwar D. Venkatakrishnan K. Tan B. Haldavnekar R. DNA Methylation signatures of tumor-associated natural killer cells with self-functionalized nanosensor enable colorectal cancer diagnosis. Nano Lett. 2023 23 10 4142 4151 10.1021/acs.nanolett.2c04914 37134017
    [Google Scholar]
  97. Chowdary P. Kmiotek E. Mirnezami R. O127 Application of machine learning approaches in the diagnosis and management of colorectal cancer. Br. J. Surg. 2023 110 3 10.1093/bjs/znad101.127
    [Google Scholar]
  98. Canal-Noguer P. Requena Bermejo A. Zavodnik Š. Erklavec Zajec V. Mattia Mancuso F. Manrique López M. Use of methylation and fragmentation signals in the detection of early-stage colorectal cancer. J. Clin. Oncol. 2023 41 201 10.1200/JCO.2023.41.4_suppl.201
    [Google Scholar]
  99. Zhang X. Zhang H. Fan C. Hildesjö C. Shen B. Sun X.F. Loss of CHGA protein as a potential biomarker for colon cancer diagnosis: A study on biomarker discovery by machine learning and confirmation by immunohistochemistry in colorectal cancer tissue microarrays. Cancers (Basel) 2022 14 11 2664 10.3390/cancers14112664 35681650
    [Google Scholar]
  100. Waljee A.K. Weinheimer-Haus E.M. Abubakar A. Artificial intelligence and machine learning for early detection and diagnosis of colorectal cancer in sub-Saharan Africa. Gut 2022 71 7 1259 1265 10.1136/gutjnl‑2022‑327211 35418482
    [Google Scholar]
  101. Raju M.S.N. Rao M.S.B.S. Colorectal cancer disease classification using Mobilenetv2 based on deep learning. Int. J. Soft. Innov. 2022 10 1 1 18 10.4018/IJSI.309725
    [Google Scholar]
  102. Raets C. El Aisati C. De Ridder M. Sermeus A. Barbé K. An evolutionary random forest to measure the dworak tumor regression grade applied to colorectal cancer. Measurement 2022 205 112131 10.1016/j.measurement.2022.112131
    [Google Scholar]
  103. Kar P Rowlands S Assessment of a deep-learning system for colorectal cancer diagnosis using histopathology images. American J Comput Sci Technol 2022 7 3 10.21203/rs.3.rs‑2206906/v1
    [Google Scholar]
  104. Kang J.K. Kim S.Y. Lim Y. Kim H.P. Kim T.Y. Abstract 2800: Use of an optimized machine learning algorithm to develop DNA methylation markers for detecting colorectal cancer (CRC). Cancer Res. 2022 82 12 Suppl. 2800 [Suppl. 10.1158/1538‑7445.AM2022‑2800
    [Google Scholar]
  105. Huang K. Lin B. Liu J. Predicting colorectal cancer tumor mutational burden from histopathological images and clinical information using multi-modal deep learning. Bioinformatics 2022 38 22 5108 5115 10.1093/bioinformatics/btac641 36130268
    [Google Scholar]
  106. Gao Y. Zhu Z. Sun F. Increasing prediction performance of colorectal cancer disease status using random forests classification based on metagenomic shotgun sequencing data. Synth. Syst. Biotechnol. 2022 7 1 574 585 10.1016/j.synbio.2022.01.005 35155839
    [Google Scholar]
  107. Galadima H. Bello G. Anson-Dwamena R. Blando J. Using machine learning to identify influential contextual factors of late-stage diagnosis among early-onset colorectal cancer. APHA 2022 Annual Meeting and Expo; 2022: APHA Westin - Grand BallroomC, November 8, 2022
    [Google Scholar]
  108. Akhavan-Safar M. Teimourpour B. Ayyoubi M. Colorectal cancer driver gene detection in human gene regulatory network using an independent cascade diffusion model. Journal of Algorithms and Computation 2022 54 2 163 185
    [Google Scholar]
  109. Ågren E. Image segmentation on lymph node images using machine learning to improve colorectal cancer diagnosis. 2022
    [Google Scholar]
  110. Yamashita R. Long J. Longacre T. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Lancet Oncol. 2021 22 1 132 141 10.1016/S1470‑2045(20)30535‑0 33387492
    [Google Scholar]
  111. Pan Y. Zhang L. Zhang R. Screening and diagnosis of colorectal cancer and advanced adenoma by Bionic Glycome method and machine learning. Am. J. Cancer Res. 2021 11 6 3002 3020 34249441
    [Google Scholar]
  112. Mohalder R.D. Talukder K.H. Deep Learning Based Colorectal Cancer (CRC) tumors prediction 25th International Conference on Computer and Information Technology (ICCIT) 2021 01 06
    [Google Scholar]
  113. Kinross J.M. Canal-Noguer P. Chersicola M. Knap P. Bitenc M. Perera-Lluna A. Accurate early-stage colorectal cancer detection through analysis of cell-free circulating tumor DNA (ctDNA) methylation patterns. Wolters Kluwer Health 2021 10.1200/JCO.2021.39.15_suppl.3606
    [Google Scholar]
  114. Indaswari M. Zaha A. Application of the k-Nearest Neighbor (k-NN) machine learning algorithm for the identification of colorectal cancer based on MicroRNAs. Korea societ. Surgical. Oncol. 2021 20 1 194
    [Google Scholar]
  115. Sun C-Y. Multi-scale deep learning for small object detection in whole slide h&e stained images: Tumor bud detection in colorectal cancer Thesis State University of New York at Buffalo 2020
    [Google Scholar]
  116. Sabol P. Sinčák P. Hartono P. Explainable classifier for improving the accountability in decision-making for colorectal cancer diagnosis from histopathological images. J. Biomed. Inform. 2020 109 103523 10.1016/j.jbi.2020.103523 32758538
    [Google Scholar]
  117. Onwuka J.U. Li D. Liu Y. A panel of DNA methylation signature from peripheral blood may predict colorectal cancer susceptibility. BMC Cancer 2020 20 1 692 10.1186/s12885‑020‑07194‑5 32711505
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128377312250827213457
Loading
/content/journals/cpd/10.2174/0113816128377312250827213457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test