Skip to content
2000
Volume 31, Issue 23
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Simiao Pill (SMP) has been demonstrated to suppress inflammation and modulate immune function, thereby influencing the onset and progression of rheumatoid arthritis (RA). Nonetheless, the specific molecular mechanisms and targets through which SMP mediates metabolic regulation and enhances immune function have yet to be fully elucidated.

Objective

In this study, we employed an integrated approach combining the analysis of dysregulated metabolites and proteins to identify, screen, and validate the metabolic regulatory targets of SMP in adjuvant-induced arthritis (AIA) rats by using pseudotargeted metabolomics and 4D-DIA quantitative proteomics methodologies.

Methods

An AIA rat model was developed, and SMP was administered to AIA rats. Subsequently, assessments were conducted on paw edema, arthritis scores, histopathological changes and IL-1 β content of inflammatory factors in AIA rats. UHPLC-QTOF-MS/MS was employed to analyze endogenous metabolites in the serum. Metabolic pathway and protein profile were performed on the biomarkers. The protein-lipid-phenotype map for the SMP-treated rats was constructed and the primary target closely related to the metabolic regulation of SMP was further screened and verified.

Results

Pseudotargeted metabolomics analysis revealed that SMP can mitigate the down-regulation of lipid levels in AIA rats. Pathway enrichment analysis identified arachidonic acid metabolism as the most significantly affected metabolic pathway and SMP was found to substantially ameliorate the dysregulation of this pathway in AIA rats. Subsequent protein profiling led to the identification of five key proteins, with noteworthy obvious corrective effects observed on Ptges3 and Alox15 due to SMP treatment. A comprehensive protein-lipid-phenotypic landscape of SMP-treated rats was analyzed for the specific molecular expressions associated with the arachidonic acid pathway. According to the correlation matrix of dysregulated metabolite/protein, we found that Ptges3 was ranked as the primary target closely related to the metabolic regulation of SMP, a finding further validated through immunofluorescence staining in rat joint and synovial cells.

Conclusion

Our study confirmed that SMP exerts an anti-arthritic effect by modulating the arachidonic acid metabolic network the Ptges3 protein in rat joints and human rheumatoid arthritis synovial fibroblasts. This finding offers a novel mechanistic insight into the pharmacological action of SMP in AIA rats. It informs future research on the therapeutic potential of SMP in RA.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128374077250410042947
2025-04-15
2025-09-03
Loading full text...

Full text loading...

References

  1. AllenA. CarvilleS. McKennaF. GrpG.D. Diagnosis and management of rheumatoid arthritis in adults: Summary of updated NICE guidance.BMJ2018362k301510.1136/bmj.k3015 30076129
    [Google Scholar]
  2. ZhaoJ.K. ChenX. HoK.H. CaiC. LiC.W. YangM. Nanotechnology for diagnosis and therapy of rheumatoid arthritis: Evolution towards theranostic approaches.Chin. Chem. Lett.2021321668610.1016/j.cclet.2020.11.048
    [Google Scholar]
  3. SafiriS. KolahiA.A. HoyD. Global, regional and national burden of rheumatoid arthritis 1990-2017: A systematic analysis of the global burden of disease study 2017.Ann. Rheum. Dis.201978111463147110.1136/annrheumdis‑2019‑215920 31511227
    [Google Scholar]
  4. BlackR.J. CrossM. HaileL.M. Global, regional, and national burden of rheumatoid arthritis, 1990-2020, and projections to 2050: A systematic analysis of the global burden of disease study 2021.Lancet Rheumatol.2023510e594e61010.1016/S2665‑9913(23)00211‑4 37795020
    [Google Scholar]
  5. FinckhA. GilbertB. HodkinsonB. Global epidemiology of rheumatoid arthritis.Nat. Rev. Rheumatol.2022181059160210.1038/s41584‑022‑00827‑y 36068354
    [Google Scholar]
  6. HsiehP.H. WuO. GeueC. McIntoshE. McInnesI.B. SiebertS. Economic burden of rheumatoid arthritis: A systematic review of literature in biologic era.Ann. Rheum. Dis.202079677177710.1136/annrheumdis‑2019‑216243 32245893
    [Google Scholar]
  7. YipK. Navarro-MillánI. Racial, ethnic, and healthcare disparities in rheumatoid arthritis.Curr. Opin. Rheumatol.202133211712110.1097/BOR.0000000000000782 33394602
    [Google Scholar]
  8. ConfortiA. Di ColaI. PavlychV. Beyond the joints, the extra-articular manifestations in rheumatoid arthritis.Autoimmun. Rev.202120210273510.1016/j.autrev.2020.102735 33346115
    [Google Scholar]
  9. ParkE. BathonJ. Cardiovascular complications of rheumatoid arthritis.Curr. Opin. Rheumatol.202436320921610.1097/BOR.0000000000001004 38334476
    [Google Scholar]
  10. LiuN. FanX. ShaoY. Resveratrol attenuates inflammation and fibrosis in rheumatoid arthritis-associated interstitial lung disease via the AKT/TMEM175 pathway.J. Transl. Med.202422145710.1186/s12967‑024‑05228‑1 38745204
    [Google Scholar]
  11. NooreenR. NeneS. JainH. Polymer nanotherapeutics: A versatile platform for effective rheumatoid arthritis therapy.J. Control. Release202234839741910.1016/j.jconrel.2022.05.054 35660632
    [Google Scholar]
  12. Di MatteoA. BathonJ.M. EmeryP. Rheumatoid arthritis.Lancet2023402104162019203310.1016/S0140‑6736(23)01525‑8 38240831
    [Google Scholar]
  13. BermasB.L. BlancoI. BlazerA.D. Overturning Roe v. Wade: toppling the practice of rheumatology.Arthritis Rheumatol.202274121865186710.1002/art.42336 36128693
    [Google Scholar]
  14. GaoJ. WangC. WeiW. The effects of drug transporters on the efficacy of methotrexate in the treatment of rheumatoid arthritis.Life Sci.202126811890710.1016/j.lfs.2020.118907 33428880
    [Google Scholar]
  15. Jara-PalaciosM.A. ChunW. TraubN.L. Potential contributors to low dose methotrexate toxicity in a patient with rheumatoid arthritis and pernicious anemia: Case report.BMC Rheumatol.202151510.1186/s41927‑020‑00175‑y 33573706
    [Google Scholar]
  16. FreezeR. YangK.W. HaysteadT. HughesP. ScarneoS. Delineation of the distinct inflammatory signaling roles of TAK1 and JAK1/3 in the CIA model of rheumatoid arthritis.Pharmacol. Res. Perspect.2023114e0112410.1002/prp2.1124 37564034
    [Google Scholar]
  17. JonesG. PanovaE. New insights and long-term safety of tocilizumab in rheumatoid arthritis.Ther. Adv. Musculoskelet. Dis.2018101019519910.1177/1759720X18798462 30327685
    [Google Scholar]
  18. WangK. ZhangD. LiuY. Traditional Chinese medicine formula Bi-Qi capsule alleviates rheumatoid arthritis-induced inflammation, synovial hyperplasia, and cartilage destruction in rats.Arthritis Res. Ther.20182014310.1186/s13075‑018‑1547‑6 29540195
    [Google Scholar]
  19. WangZ. WuJ. LiD. Traditional Chinese medicine Biqi capsule compared with leflunomide in combination with methotrexate in patients with rheumatoid arthritis: A randomized controlled trial.Chin. Med.20201513610.1186/s13020‑020‑00319‑9 32336980
    [Google Scholar]
  20. WuN. YuanT. YinZ. Network pharmacology and molecular docking study of the Chinese Miao medicine sidaxue in the treatment of rheumatoid arthritis.Drug Des. Devel. Ther.20221643546610.2147/DDDT.S330947 35221674
    [Google Scholar]
  21. WangX. ChangJ. ZhouG. The traditional Chinese medicine compound huangqin qingre chubi capsule inhibits the pathogenesis of rheumatoid arthritis through the CUL4B/Wnt pathway.Front. Pharmacol.20211275023310.3389/fphar.2021.750233 34512369
    [Google Scholar]
  22. ChenX. GaoK. WuX.D. Chinese herbal formula huayu-qiangshen-tongbi decoction attenuates rheumatoid arthritis through upregulating miR-125b to suppress NF-κB-induced inflammation by targeting CK2.J. Immunol. Res.2022202211310.1155/2022/2836128 35832651
    [Google Scholar]
  23. DingZ.H. WangX.Y. ZhangY. LiuJ. WanL. LiT. Altered iron-mediated metabolic homeostasis governs the efficacy and toxicity of tripterygium glycosides tablets against rheumatoid arthritis.Engineering20243916617910.1016/j.eng.2024.04.003
    [Google Scholar]
  24. WangQ. YangY. YuanX. Jinwu Jiangu Capsule alleviates rheumatoid arthritis symptoms by regulating the ADCY10 and cAMP/RANKL pathways.J. Ethnopharmacol.2025338Pt 311909910.1016/j.jep.2024.119099 39542189
    [Google Scholar]
  25. XuY. LiS. WangY. Fangji Huangqi Decoction alleviates rheumatoid arthritis through regulating HIF-1α mediated the angiogenesis and the balance between autophagy and apoptosis.J. Ethnopharmacol.202432911806110.1016/j.jep.2024.118061 38614265
    [Google Scholar]
  26. ChenW. ZhangC. XuM. Yu-Xue-Bi capsule ameliorates aggressive synovitis and joint damage in rheumatoid arthritis via modulating the SUCNR1/HIF-1α/TRPV1 axis.Phytomedicine202513615635410.1016/j.phymed.2024.156354 39765037
    [Google Scholar]
  27. WangH. HuangY. ShenP. Modified si‐miao pill for rheumatoid arthritis: A systematic review and meta‐analysis.Evid. Based Complement. Alternat. Med.202020201767215210.1155/2020/7672152 32595735
    [Google Scholar]
  28. ChengM.J. HongM.C. HuF.P. LiuW.H. Decipher the action mechanism of Simiao Pill in the treatment of knee osteoarthritis by integrating network pharmacology.J. Herbal. Med.2023 Dec4210077710.1016/j.hermed.2023.100777
    [Google Scholar]
  29. QinD LiangW YuY Modified Simiaowan prevents and treats gouty arthritis via the Nrf2/NLRP3 inflammasome signaling pathway.J Ethnopharmacol2024318Pt A11690610.1016/j.jep.2023.11690637442492
    [Google Scholar]
  30. LinX. ShaoT. HuangL. Simiao decoction alleviates gouty arthritis by modulating proinflammatory cytokines and the gut ecosystem.Front. Pharmacol.20201195510.3389/fphar.2020.00955 32670069
    [Google Scholar]
  31. ShiL. YuanZ. LiuJ. Modified Simiaowan prevents articular cartilage injury in experimental gouty arthritis by negative regulation of STAT3 pathway.J. Ethnopharmacol.202127011382510.1016/j.jep.2021.113825 33460754
    [Google Scholar]
  32. TangM. XieX. YiP. Integrating network pharmacology with molecular docking to unravel the active compounds and potential mechanism of simiao pill treating rheumatoid arthritis.Evid. Based Complement. Alternat. Med.202020201578605310.1155/2020/5786053 33204288
    [Google Scholar]
  33. WangY. ZhangF. LiX. Integrated multi-omics techniques and network pharmacology analysis to explore the material basis and mechanism of simiao pill in the treatment of rheumatoid arthritis.ACS Omega2023812111381115010.1021/acsomega.2c07959 37008152
    [Google Scholar]
  34. YangJ. ChenG. GuoT.W. QinW.Y. JiaP. Simiao Wan attenuates monosodium urate crystal-induced arthritis in rats through contributing to macrophage M2 polarization.J. Ethnopharmacol.202127511412310.1016/j.jep.2021.114123 33894285
    [Google Scholar]
  35. LiZ. ChenM. WangZ. Berberine inhibits RA-FLS cell proliferation and adhesion by regulating RAS/MAPK/FOXO/HIF-1 signal pathway in the treatment of rheumatoid arthritis.Bone Joint Res.20231229110210.1302/2046‑3758.122.BJR‑2022‑0269.R1 36718649
    [Google Scholar]
  36. ShiL. XuL. YangY. SongH. PanH. YinL. Suppressive effect of modified Simiaowan on experimental gouty arthritis: An in vivo and in vitro study.J. Ethnopharmacol.201315031038104410.1016/j.jep.2013.10.023 24184191
    [Google Scholar]
  37. WeyandC.M. GoronzyJ.J. Immunometabolism in early and late stages of rheumatoid arthritis.Nat. Rev. Rheumatol.201713529130110.1038/nrrheum.2017.49 28360422
    [Google Scholar]
  38. Al-KanaanB.M. Al-OuqailiM.T.S. Al-RawiK.F.A. Detection of cytokines (IL-1α and IL-2) and oxidative stress markers in hepatitis B envelope antigen-positive and -negative chronic hepatitis B patients: Molecular and biochemical study.Gene Reports.2019 Dec1710050410.1016/j.genrep.2019.100504
    [Google Scholar]
  39. AbdulrazaqZ.A. Salih Al-OM.T. TalibN.M. Association between circulating 25-hydroxy vitamin D receptor and molecular response in multiple Myeloma.Pak. J. Biol. Sci.202326947248110.3923/pjbs.2023.472.481 38044697
    [Google Scholar]
  40. ZhaoL. LiuY. ZhangS. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer.Cell Death Dis.202213437810.1038/s41419‑022‑04821‑w 35444235
    [Google Scholar]
  41. GuerraL. BonettiL. BrennerD. Metabolic modulation of immunity: A new concept in cancer immunotherapy.Cell Rep.202032110784810.1016/j.celrep.2020.107848 32640218
    [Google Scholar]
  42. BaoX. WangD. DaiX. An immunometabolism subtyping system identifies S100A9+ macrophage as an immune therapeutic target in colorectal cancer based on multiomics analysis.Cell Rep. Med.20234410098710.1016/j.xcrm.2023.100987 36990096
    [Google Scholar]
  43. OberholtzerN. QuinnK.M. ChakrabortyP. MehrotraS. New developments in T cell immunometabolism and implications for cancer immunotherapy.Cells202211470810.3390/cells11040708 35203357
    [Google Scholar]
  44. CaiY. WangZ. GuoS. Detection, mechanisms, and therapeutic implications of oncometabolites.Trends Endocrinol. Metab.2023341284986110.1016/j.tem.2023.08.018 37739878
    [Google Scholar]
  45. ChenL. HuangL. GuY. LiC. SunP. XiangY. Novel post-translational modifications of protein by metabolites with immune responses and immune-related molecules in cancer immunotherapy.Int. J. Biol. Macromol.2024277Pt 113388310.1016/j.ijbiomac.2024.133883 39033895
    [Google Scholar]
  46. LianX. YangK. LiR. Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy.Mol. Cancer20222112710.1186/s12943‑021‑01486‑5 35062950
    [Google Scholar]
  47. ListaS. González-DomínguezR. López-OrtizS. Integrative metabolomics science in Alzheimer’s disease: Relevance and future perspectives.Ageing Res. Rev.20238910198710.1016/j.arr.2023.101987 37343679
    [Google Scholar]
  48. QiuS. CaiY. YaoH. Small molecule metabolites: Discovery of biomarkers and therapeutic targets.Signal Transduct. Target. Ther.20238113210.1038/s41392‑023‑01399‑3 36941259
    [Google Scholar]
  49. DanziF. PacchianaR. MafficiniA. To metabolomics and beyond: A technological portfolio to investigate cancer metabolism.Signal Transduct. Target. Ther.20238113710.1038/s41392‑023‑01380‑0 36949046
    [Google Scholar]
  50. YangG. ZhouS. HeH. Exploring the “gene-protein-metabolite” network of coronary heart disease with phlegm and blood stasis syndrome by integrated multi-omics strategy.Front. Pharmacol.202213102262710.3389/fphar.2022.1022627 36523490
    [Google Scholar]
  51. GrisonS. KereselidzeD. CohenD. Applying a multiscale systems biology approach to study the effect of chronic low-dose exposure to uranium in rat kidneys.Int. J. Radiat. Biol.201995673775210.1080/09553002.2019.1577567 30714840
    [Google Scholar]
  52. ChenD. WangC. GuoL. MoW. XinY. CaoH. A comprehensive analysis based on histopathology, metabolomics and transcriptomics reveals molecular regulatory mechanisms of the red claw crayfish (Cherax quadricarinatus) in response to acute hepatopancreatic necrosis disease (AHPND).Aquaculture202255573822510.1016/j.aquaculture.2022.738225
    [Google Scholar]
  53. HaoY. LiD. XuY. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data.BMC Bioinformatics201920S719510.1186/s12859‑019‑2734‑4 31074374
    [Google Scholar]
  54. ShenP. TuS. WangH. QinK. ChenZ. Simiao pill attenuates collagen-induced arthritis in rats through suppressing the ATX-LPA and MAPK signalling pathways.Evid. Based Complement. Alternat. Med.2019201911110.1155/2019/7498527 31001354
    [Google Scholar]
  55. MiaoC. ChangJ. ZhangG. CUL4B promotes the pathology of adjuvant-induced arthritis in rats through the canonical Wnt signaling.J. Mol. Med.201896649551110.1007/s00109‑018‑1635‑8 29626254
    [Google Scholar]
  56. ZengW. ShenC. MoS. The effective treatment of purpurin on inflammation and adjuvant-induced arthritis.Molecules202328136610.3390/molecules28010366 36615560
    [Google Scholar]
  57. TanT. HuangQ. ChuW. Delivery of germacrone (GER) using macrophages-targeted polymeric nanoparticles and its application in rheumatoid arthritis.Drug Deliv.202229169270110.1080/10717544.2022.2044936 35225122
    [Google Scholar]
  58. ChenY. LiuH. HanR. Analyzing how SiMiao Wan regulates ferroptosis to prevent RA-ILD using metabolomics and cyberpharmacology.Phytomedicine202413315591210.1016/j.phymed.2024.155912 39068761
    [Google Scholar]
  59. ChibberP. HaqS.A. KumarA. Antiarthritic activity of OA-DHZ; a gastroprotective NF-κB/MAPK/COX inhibitor.Cytokine202114815568810.1016/j.cyto.2021.155688 34455232
    [Google Scholar]
  60. SinghA. ChibberP. KolimiP. Rohitukine inhibits NF-κB activation induced by LPS and other inflammatory agents.Int. Immunopharmacol.201969344910.1016/j.intimp.2019.01.015 30665042
    [Google Scholar]
  61. HussainA. AslamB. MuhammadF. Anti-arthritic activity of Ricinus communis L. and Withania somnifera L. extracts in adjuvant-induced arthritic rats via modulating inflammatory mediators and subsiding oxidative stress.Iran. J. Basic Med. Sci.202124795196110.22038/ijbms.2021.55145.12355 34712426
    [Google Scholar]
  62. GeX. Frank-BertonceljM. KleinK. Functional genomics atlas of synovial fibroblasts defining rheumatoid arthritis heritability.Genome Biol.202122124710.1186/s13059‑021‑02460‑6 34433485
    [Google Scholar]
  63. BaX. WangH. HuangY. Simiao pill attenuates collagen-induced arthritis and bleomycin-induced pulmonary fibrosis in mice by suppressing the JAK2/STAT3 and TGF-β/Smad2/3 signalling pathway.J. Ethnopharmacol.202330911627410.1016/j.jep.2023.116274 36841380
    [Google Scholar]
  64. AbdulrazaqZ.A. Al-OuqailiM.T.S. TalibN.M. The impact of circulating 25-hydroxyvitamin D and vitamin D receptor variation on leukemia-lymphoma outcome: Molecular and cytogenetic study.Saudi J. Biol. Sci.202431110388210.1016/j.sjbs.2023.103882 38125732
    [Google Scholar]
  65. ChengR. WuZ. LiM. ShaoM. HuT. Interleukin-1β is a potential therapeutic target for periodontitis: A narrative review.Int. J. Oral Sci.2020121210.1038/s41368‑019‑0068‑8 31900383
    [Google Scholar]
  66. LevescotA. ChangM.H. SchnellJ. IL-1β-driven osteoclastogenic Tregs accelerate bone erosion in arthritis.J. Clin. Invest.202113118e14100810.1172/JCI141008 34343136
    [Google Scholar]
  67. BlanchetL. SmolinskaA. AttaliA. Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis.BMC Bioinformatics201112125410.1186/1471‑2105‑12‑254 21696593
    [Google Scholar]
  68. GhoumariA.M. IbanezC. El-EtrM. Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum.J. Neurochem.200386484885910.1046/j.1471‑4159.2003.01881.x 12887683
    [Google Scholar]
  69. YeZ. ShenY. JinK. Arachidonic acid-regulated calcium signaling in T cells from patients with rheumatoid arthritis promotes synovial inflammation.Nat. Commun.202112190710.1038/s41467‑021‑21242‑z 33568645
    [Google Scholar]
  70. NievergeltA. MarazziJ. SchoopR. AltmannK.H. GertschJ. Ginger phenylpropanoids inhibit IL-1β and prostanoid secretion and disrupt arachidonate-phospholipid remodeling by targeting phospholipases A2.J. Immunol.201118784140415010.4049/jimmunol.1100880 21908733
    [Google Scholar]
  71. WangQ.S. XuB.X. FanK.J. LiY.W. WuJ. WangT.Y. Dexamethasone-loaded thermosensitive hydrogel suppresses inflammation and pain in collagen-induced arthritis rats.Drug Des. Devel. Ther.2020144101411310.2147/DDDT.S256850 33116399
    [Google Scholar]
  72. WangC. ZhangX. LuoL. COX-2 deficiency promotes white adipogenesis via PGE2-mediated paracrine mechanism and exacerbates diet-induced obesity.Cells20221111181910.3390/cells11111819 35681514
    [Google Scholar]
  73. SubhasitanontP. ChokchaichamnankitD. ChiablaemK. Apigenin inhibits growth and induces apoptosis in human cholangiocarcinoma cells.Oncol. Lett.20171444361437110.3892/ol.2017.6705 28943950
    [Google Scholar]
  74. KoppB.T. ThompsonR. KimJ. Secondhand smoke alters arachidonic acid metabolism and inflammation in infants and children with cystic fibrosis.Thorax201974323724610.1136/thoraxjnl‑2018‑211845 30661024
    [Google Scholar]
  75. JiaQ. QiY. LiH. DingH. QiD. LiY. Decompression mechanism of radish seed in prehypertension rats through integration of transcriptomics and metabolomics methods.Evid. Based Complement. Alternat. Med.202320231213963410.1155/2023/2139634 36760467
    [Google Scholar]
  76. YinY. LiuB. CaoY. Colorectal cancer‐derived small extracellular vesicles promote tumor immune evasion by upregulating pd‐l1 expression in tumor‐associated macrophages.Adv. Sci.202299210262010.1002/advs.202102620 35356153
    [Google Scholar]
  77. JiangW. JinY. ZhangS. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis.Bone Res.20221012710.1038/s41413‑022‑00201‑4 35260562
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128374077250410042947
Loading
/content/journals/cpd/10.2174/0113816128374077250410042947
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test