Skip to content
2000
Volume 31, Issue 31
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Gout, based on hyperuricemia, is an immune disease characterized by redness and pain caused by monosodium urate (MSU) deposition in the joints. Inflammation is the fundamental cause of gout symptoms, and many immune cells, such as monocytes/macrophages, neutrophils, and T lymphocytes, have been shown to be involved in various processes of pathological progress. This study reviews the changes and functions of different immune cells during the occurrence and development of gout, focusing on the mechanisms and signaling pathways by which macrophages activate nod-like receptor pyrin-containing 3 (NLRP3) inflammasome to initiate gout inflammation in order to further elucidate the pathogenesis of gout and provide new targets for the research of anti-gout drugs.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128369016250306050522
2025-03-26
2025-10-23
Loading full text...

Full text loading...

References

  1. DehlinM. JacobssonL. RoddyE. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors.Nat. Rev. Rheumatol.202016738039010.1038/s41584‑020‑0441‑132541923
    [Google Scholar]
  2. Chen-XuM. YokoseC. RaiS.K. PillingerM.H. ChoiH.K. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: The national health and nutrition examination survey.Arthritis Rheumatol.201971699199910.1002/art.4080730618180
    [Google Scholar]
  3. DalbethN. GoslingA.L. GaffoA. AbhishekA. Gout.Lancet2021397102871843185510.1016/S0140‑6736(21)00569‑933798500
    [Google Scholar]
  4. BodofskyS. MerrimanT.R. ThomasT.J. SchlesingerN. Advances in our understanding of gout as an auto-inflammatory disease.Semin. Arthritis Rheum.20205051089110010.1016/j.semarthrit.2020.06.01532916560
    [Google Scholar]
  5. ShiC. ZhouZ. ChiX. XiuS. YiC. JiangZ. ChenR. ZhangL. LiuZ. Recent advances in gout drugs.Eur. J. Med. Chem.2023245Pt 111489010.1016/j.ejmech.2022.11489036335742
    [Google Scholar]
  6. PengX LiX XieB LaiY SosnikA BoucettaH Gout therapeutics and drug delivery.J. Cont. Release.202336272875410.1016/j.jconrel.2023.09.011
    [Google Scholar]
  7. NatiM. ChungK.J. ChavakisT. The role of innate immune cells in nonalcoholic fatty liver disease.J. Innate Immun.2022141314110.1159/00051840734515137
    [Google Scholar]
  8. ZhangQ. CaoX. Epigenetic remodeling in innate immunity and inflammation.Annu. Rev. Immunol.202139127931110.1146/annurev‑immunol‑093019‑12361933544645
    [Google Scholar]
  9. WangM. ChenW. ZhangX. MeiL. WuX. ChenX. YangZ. GaoK. HuangH. HuangR. Single-cell analysis in blood reveals distinct immune cell profiles in gouty arthritis.J. Immunol.2023210674575210.4049/jimmunol.220042236705528
    [Google Scholar]
  10. YuH. XueW. YuH. SongY. LiuX. QinL. WangS. BaoH. GuH. ChenG. ZhaoD. TuY. ChengJ. WangL. AiZ. HuD. WangL. PengA. Single-cell transcriptomics reveals variations in monocytes and Tregs between gout flare and remission.JCI Insight2023823e17141710.1172/jci.insight.17141738063198
    [Google Scholar]
  11. WuX. YouC. The biomarkers discovery of hyperuricemia and gout: Proteomics and metabolomics.PeerJ202211e1455410.7717/peerj.1455436632144
    [Google Scholar]
  12. Limad.J.D. Paulad.A.G.P. YuasaB.S. SmaniotoS.d.C.C. da Cruz SilvaM.C. Santosd.P.I. PradoK.B. BoldtW.A.B. BragaT.T. Genetic and epigenetic regulation of the innate immune response to gout.Immunol. Invest.202352336439710.1080/08820139.2023.216855436745138
    [Google Scholar]
  13. SoA.K. MartinonF. Inflammation in gout: Mechanisms and therapeutic targets.Nat. Rev. Rheumatol.2017131163964710.1038/nrrheum.2017.15528959043
    [Google Scholar]
  14. LiuW. PengJ. WuY. YeZ. ZongZ. WuR. LiH. Immune and inflammatory mechanisms and therapeutic targets of gout: An update.Int. Immunopharmacol.202312111046610.1016/j.intimp.2023.11046637311355
    [Google Scholar]
  15. TinA. MartenJ. KuhnsH.V.L. LiY. WuttkeM. KirstenH. SieberK.B. QiuC. GorskiM. YuZ. GiriA. SveinbjornssonG. LiM. ChuA.Y. HoppmannA. O’ConnorL.J. PrinsB. NutileT. NoceD. AkiyamaM. CoccaM. GhasemiS. Mostd.v.P.J. HornK. XuY. FuchsbergerC. SedaghatS. AfaqS. AminN. ÄrnlövJ. BakkerS.J.L. BansalN. BaptistaD. BergmannS. BiggsM.L. BiinoG. BoerwinkleE. BottingerE.P. BoutinT.S. BrumatM. BurkhardtR. CampanaE. CampbellA. CampbellH. CarrollR.J. CatamoE. ChambersJ.C. CiulloM. ConcasM.P. CoreshJ. CorreT. CusiD. FelicitaS.C. Borstd.M.H. GrandiD.A. Mutsertd.R. Vriesd.A.P.J. DelgadoG. DemirkanA. DevuystO. DittrichK. EckardtK.U. EhretG. EndlichK. EvansM.K. GansevoortR.T. GaspariniP. GiedraitisV. GiegerC. GirottoG. GögeleM. GordonS.D. GudbjartssonD.F. GudnasonV. HallerT. HametP. HarrisT.B. HaywardC. HicksA.A. HoferE. HolmH. HuangW. Hutri-KähönenN. HwangS.J. IkramM.A. LewisR.M. IngelssonE. JakobsdottirJ. JonsdottirI. JonssonH. JoshiP.K. JosyulaN.S. JungB. KähönenM. KamataniY. KanaiM. KerrS.M. KiessW. KleberM.E. KoenigW. KoonerJ.S. KörnerA. KovacsP. KrämerB.K. KronenbergF. KuboM. KühnelB. BiancaL.M. LangeL.A. LehneB. LehtimäkiT. LiuJ. LoefflerM. LoosR.J.F. LyytikäinenL.P. MagiR. MahajanA. MartinN.G. MärzW. MascalzoniD. MatsudaK. MeisingerC. MeitingerT. MetspaluA. MilaneschiY. O’DonnellC.J. WilsonO.D. GazianoJ.M. MishraP.P. MohlkeK.L. MononenN. MontgomeryG.W. Mook-KanamoriD.O. Müller-NurasyidM. NadkarniG.N. NallsM.A. NauckM. NikusK. NingB. NolteI.M. NoordamR. O’ConnellJ.R. OlafssonI. PadmanabhanS. PenninxB.W.J.H. PerlsT. PetersA. PirastuM. PirastuN. PistisG. PolasekO. PonteB. PorteousD.J. PoulainT. PreussM.H. RabelinkT.J. RaffieldL.M. RaitakariO.T. RettigR. RheinbergerM. RiceK.M. RizziF. RobinoA. RudanI. KrajcoviechovaA. CifkovaR. RueediR. RuggieroD. RyanK.A. SabaY. SalviE. SchmidtH. SchmidtR. ShafferC.M. SmithA.V. SmithB.H. SpracklenC.N. StrauchK. StumvollM. SulemP. TajuddinS.M. TerenA. ThieryJ. ThioC.H.L. ThorsteinsdottirU. TonioloD. TönjesA. TremblayJ. UitterlindenA.G. VaccargiuS. Harstd.v.P. Duijnv.C.M. VerweijN. VölkerU. VollenweiderP. WaeberG. WaldenbergerM. WhitfieldJ.B. WildS.H. WilsonJ.F. YangQ. ZhangW. ZondermanA.B. BochudM. WilsonJ.G. PendergrassS.A. HoK. ParsaA. PramstallerP.P. PsatyB.M. BögerC.A. SniederH. ButterworthA.S. OkadaY. EdwardsT.L. StefanssonK. SusztakK. ScholzM. HeidI.M. HungA.M. TeumerA. PattaroC. WoodwardO.M. VitartV. KöttgenA. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.Nat. Genet.201951101459147410.1038/s41588‑019‑0504‑x31578528
    [Google Scholar]
  16. ShenX. WangC. LiangN. LiuZ. LiX. ZhuZ.J. MerrimanT.R. DalbethN. TerkeltaubR. LiC. YinH. Serum metabolomics identifies dysregulated pathways and potential metabolic biomarkers for hyperuricemia and gout.Arthritis Rheumatol.20217391738174810.1002/art.4173333760368
    [Google Scholar]
  17. BorghiC. Agabiti-RoseiE. JohnsonR.J. KielsteinJ.T. LurbeE. ManciaG. RedonJ. StackA.G. TsioufisK.P. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease.Eur. J. Intern. Med.20208011110.1016/j.ejim.2020.07.00632739239
    [Google Scholar]
  18. GustafssonD. UnwinR. The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality.BMC Nephrol.201314116410.1186/1471‑2369‑14‑16423895142
    [Google Scholar]
  19. BardinT. RichetteP. Definition of hyperuricemia and gouty conditions.Curr. Opin. Rheumatol.201426218619110.1097/BOR.000000000000002824419750
    [Google Scholar]
  20. SautinY.Y. JohnsonR.J. Uric acid: The oxidant-antioxidant paradox.Nucleosides Nucleotides Nucleic Acids2008276-760861910.1080/1525777080213855818600514
    [Google Scholar]
  21. LiY. ZhaoL. QiW. Uric acid, as a double-edged sword, affects the activity of epidermal growth factor (EGF) on human umbilical vein endothelial cells by regulating aging process.Bioengineered20221323877389510.1080/21655979.2022.202717235152831
    [Google Scholar]
  22. LaiJ.H. LuoS.F. HungL.F. HuangC.Y. LienS.B. LinL.C. LiuF.C. YenB.L. HoL.J. Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory.Sci. Rep.201771235910.1038/s41598‑017‑02640‑028539647
    [Google Scholar]
  23. MijailovicN.R. VesicK. BorovcaninM.M. The influence of serum uric acid on the brain and cognitive dysfunction.Front. Psych.20221382847610.3389/fpsyt.2022.82847635530021
    [Google Scholar]
  24. TuW. WuJ. JianG. LoriJ. TangY. ChengH. WuX. WangN. Asymptomatic hyperuricemia and incident stroke in elderly Chinese patients without comorbidities.Eur. J. Clin. Nutr.201973101392140210.1038/s41430‑019‑0405‑130787471
    [Google Scholar]
  25. KuwabaraM. KuwabaraR. HisatomeI. NiwaK. Roncal-JimenezC.A. BjornstadP. Andres-HernandoA. SatoY. JensenT. GarciaG. OhnoM. HillJ.O. LanaspaM.A. JohnsonR.J. “Metabolically Healthy” obesity and hyperuricemia increase risk for hypertension and diabetes: 5-year Japanese cohort study.Obesity201725111997200810.1002/oby.2200028922565
    [Google Scholar]
  26. KuwabaraM. FukuuchiT. AokiY. MizutaE. OuchiM. KurajohM. MaruhashiT. TanakaA. MorikawaN. NishimiyaK. AkashiN. TanakaY. OtaniN. MoritaM. MiyataH. TakadaT. TsutaniH. OginoK. IchidaK. HisatomeI. AbeK. Exploring the multifaceted nexus of uric acid and health: A review of recent studies on diverse diseases.Biomolecules20231310151910.3390/biom1310151937892201
    [Google Scholar]
  27. KuwabaraM. NiwaK. HisatomeI. NakagawaT. Roncal-JimenezC.A. Andres-HernandoA. BjornstadP. JensenT. SatoY. MilagresT. GarciaG. OhnoM. LanaspaM.A. JohnsonR.J. Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases.Hypertension20176961036104410.1161/HYPERTENSIONAHA.116.0899828396536
    [Google Scholar]
  28. BuL.L. YuanH.H. XieL.L. GuoM.H. LiaoD.F. ZhengX.L. New dawn for atherosclerosis: Vascular endothelial cell senescence and death.Int. J. Mol. Sci.202324201516010.3390/ijms24201516037894840
    [Google Scholar]
  29. YuM.A. Sánchez-LozadaL.G. JohnsonR.J. KangD.H. Oxidative stress with an activation of the renin–angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction.J. Hypertens.20102861234124210.1097/HJH.0b013e328337da1d20486275
    [Google Scholar]
  30. ZhangJ. LinX. XuJ. TangF. Apelin-13 reduces oxidative stress induced by uric acid via downregulation of renin-angiotensin system in adipose tissue.Toxicol. Lett.2019305515710.1016/j.toxlet.2019.01.01430710622
    [Google Scholar]
  31. LiX. GuY. RenL. CaiQ. QiuY. HeJ. Study of hispidulin in the treatment of uric acid nephropathy based on NF-κB signaling pathway.Chem. Biol. Drug Des.20231031e14367
    [Google Scholar]
  32. BiswasS.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?Oxid. Med. Cell. Longev.201620161569893110.1155/2016/569893126881031
    [Google Scholar]
  33. LiX. MengX. TimofeevaM. TzoulakiI. TsilidisK.K. IoannidisP.A. CampbellH. TheodoratouE. Serum uric acid levels and multiple health outcomes: Umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies.BMJ2017357j237610.1136/bmj.j237628592419
    [Google Scholar]
  34. DalbethN. Phipps-GreenA. FramptonC. NeogiT. TaylorW.J. MerrimanT.R. Relationship between serum urate concentration and clinically evident incident gout: An individual participant data analysis.Ann. Rheum. Dis.20187771048105210.1136/annrheumdis‑2017‑21228829463518
    [Google Scholar]
  35. ChhanaA. PoolB. WeiY. ChoiA. GaoR. MunroJ. CornishJ. DalbethN. Human cartilage homogenates influence the crystallization of monosodium urate and inflammatory response to monosodium urate crystals: A potential link between osteoarthritis and gout.Arthritis Rheumatol.201971122090209910.1002/art.4103831297987
    [Google Scholar]
  36. SunB. ChengL. XiongY. HuL. LuoZ. ZhouM. LiJ. XieH. HeF. YuanX. ChenX. ZhouH.H. LiuZ. ChenX. ZhangW. PSORS1C1 hypomethylation is associated with allopurinol-induced severe cutaneous adverse reactions during disease onset period: A multicenter retrospective case-control clinical study in Han Chinese.Front. Pharmacol.2018892310.3389/fphar.2017.0092329387007
    [Google Scholar]
  37. AnisT. MeherJ. Allopurinol-induced Stevens–Johnson syndrome (SJS).Clin. Pharmacol.2023159910510.2147/CPAA.S42771437811521
    [Google Scholar]
  38. SunR. LuJ. LiH. ChengX. XinY. LiC. Evaluation of febuxostat initiation during an acute gout attack: A prospective, randomized clinical trial.Joint Bone Spine202087546146610.1016/j.jbspin.2020.03.01732302693
    [Google Scholar]
  39. OtaniN. OuchiM. KudoH. TsuruokaS. HisatomeI. AnzaiN. Recent approaches to gout drug discovery: An update.Expert Opin. Drug Discov.202015894395410.1080/17460441.2020.175525132329387
    [Google Scholar]
  40. ZhangM.Y. NiuJ.Q. WenX.Y. JinQ.L. Liver failure associated with benzbromarone: A case report and review of the literature.World J. Clin. Cases20197131717172510.12998/wjcc.v7.i13.171731367632
    [Google Scholar]
  41. JatuworaprukK. LouthrenooW. Emerging therapeutic options for refractory gout.Nat. Rev. Rheumatol.2024202737410.1038/s41584‑023‑01066‑538102493
    [Google Scholar]
  42. AfinogenovaY. DanveA. NeogiT. Update on gout management: What is old and what is new.Curr. Opin. Rheumatol.202234211812410.1097/BOR.000000000000086134907116
    [Google Scholar]
  43. TerkeltaubR. LeeJ. MinJ. ShinS. SaagK.G. Serum urate–lowering efficacy and safety of tigulixostat in gout patients with hyperuricemia: A randomized, double-blind, placebo-controlled, dose-finding trial.Arthritis Rheumatol.20237571275128410.1002/art.4244736649008
    [Google Scholar]
  44. WeiJ.C.C. FleischmannR.M. MorrisS. A 12-Week, randomized, double-blinded, placebo-controlled, phase 2B study of safety, tolerability and efficacy of AR882 in gout patients.Ann. Rheum. Dis.202382192
    [Google Scholar]
  45. MartilloM.A. NazzalL. CrittendenD.B. The crystallization of monosodium urate.Curr. Rheumatol. Rep.201416240010.1007/s11926‑013‑0400‑924357445
    [Google Scholar]
  46. ChhanaA. PoolB. CallonK.E. TayM.L. MussonD. NaotD. McCarthyG. McGlashanS. CornishJ. DalbethN. Monosodium urate crystals reduce osteocyte viability and indirectly promote a shift in osteocyte function towards a proinflammatory and proresorptive state.Arthritis Res. Ther.201820120810.1186/s13075‑018‑1704‑y30201038
    [Google Scholar]
  47. RichetteP. DohertyM. PascualE. BarskovaV. BecceF. CastanedaJ. CoyfishM. GuilloS. JansenT. JanssensH. LiotéF. MallenC.D. NukiG. Perez-RuizF. PimentaoJ. PunziL. PywellA. SoA.K. TauscheA.K. UhligT. ZavadaJ. ZhangW. TubachF. BardinT. 2018 updated European league against rheumatism evidence-based recommendations for the diagnosis of gout.Ann. Rheum. Dis.2020791313810.1136/annrheumdis‑2019‑21531531167758
    [Google Scholar]
  48. HainerB.L. MathesonE. WilkesR.T. Diagnosis, treatment, and prevention of gout.Am. Fam. Physician2014901283183625591183
    [Google Scholar]
  49. ChhanaA. LeeG. DalbethN. Factors influencing the crystallization of monosodium urate: A systematic literature review.BMC Musculoskelet. Disord.201516129610.1186/s12891‑015‑0762‑426467213
    [Google Scholar]
  50. KlauserA.S. StroblS. SchwablC. KlotzW. FeuchtnerG. MorigglB. HeldJ. TaljanovicM. WeaverJ.S. ReijnierseM. GizewskiE.R. StofferinH. Prevalence of monosodium urate (MSU) deposits in cadavers detected by dual-energy computed tomography (DECT).Diagnostics2022125124010.3390/diagnostics1205124035626395
    [Google Scholar]
  51. TaylorW.J. FransenJ. JansenT.L. DalbethN. SchumacherH.R. BrownM. LouthrenooW. Vazquez-MelladoJ. EliseevM. McCarthyG. StampL.K. Perez-RuizF. SiveraF. EaH.K. GerritsenM. ScireC. CavagnaL. LinC. ChouY.Y. TauscheA.K. Vargas-SantosA.B. JanssenM. ChenJ.H. SlotO. CimminoM.A. UhligT. NeogiT. Study for updated gout classification criteria: Identification of features to classify gout.Arthritis Care Res.20156791304131510.1002/acr.2258525777045
    [Google Scholar]
  52. GaffoA.L. SchumacherH.R. SaagK.G. TaylorW.J. DinnellaJ. OutmanR. ChenL. DalbethN. SiveraF. Vázquez-MelladoJ. ChouC.T. ZengX. Perez-RuizF. KowalskiS.C. Goldenstein-SchainbergC. ChenL. BardinT. SinghJ.A. Developing a provisional definition of flare in patients with established gout.Arthritis Rheum.20126451508151710.1002/art.3348322083456
    [Google Scholar]
  53. ZhaiL. JiaX. ChenY. LiuM. ZhangJ. MaS. WangX. ChengW. HeJ. ZhouJ. ZuoL. ZhangM. YuanQ. XuM. JiJ. TanM. LiuB. Comprehensive multi-omics analysis elucidates colchicine-induced toxicity mechanisms and unveils the therapeutic potential of MLN4924 and kinase inhibitors.Acta Pharmacol. Sin.2024467021410.1038/s41401‑024‑01422‑539567751
    [Google Scholar]
  54. RahayuC. AbdulahR. Katherine A.Tjenggal Rano K. Sinuraya NSAID-induced adverse drug reaction: Mechanism and management.Indian J. Forensic Med. Toxicol.202115220721710.37506/ijfmt.v15i2.14308
    [Google Scholar]
  55. HardyR.S. RazaK. CooperM.S. Therapeutic glucocorticoids: Mechanisms of actions in rheumatic diseases.Nat. Rev. Rheumatol.202016313314410.1038/s41584‑020‑0371‑y32034322
    [Google Scholar]
  56. SchlesingerN. PillingerM.H. SimonL.S. LipskyP.E. Interleukin-1β inhibitors for the management of acute gout flares: A systematic literature review.Arthritis Res. Ther.202325112810.1186/s13075‑023‑03098‑437491293
    [Google Scholar]
  57. KlückV. JansenT.L.T.A. JanssenM. ComarniceanuA. EfdéM. TengesdalI.W. SchraaK. CleophasM.C.P. ScribnerC.L. SkourasD.B. MarchettiC. DinarelloC.A. JoostenL.A.B. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: An open-label, dose-adaptive, proof-of-concept, phase 2a trial.Lancet Rheumatol.202025e270e28010.1016/S2665‑9913(20)30065‑533005902
    [Google Scholar]
  58. ChhanaA. DalbethN. The gouty tophus: A review.Curr. Rheumatol. Rep.20151731910.1007/s11926‑014‑0492‑x25761926
    [Google Scholar]
  59. EaH.K. GauffenicA. NguyenQ.D. PhamN.G. OlivierO. FrochotV. BazinD. LeN.H. MartyC. OstertagA. Cohen-SolalM. LaredoJ.D. RichetteP. BardinT. Calcium pyrophosphate dihydrate crystal deposition in gouty tophi.Arthritis Rheumatol.202173232432910.1002/art.4151532909692
    [Google Scholar]
  60. AatiO. TaylorW.J. HorneA. DalbethN. Toward development of a tophus impact questionnaire: A qualitative study exploring the experience of people with tophaceous gout.J. Clin. Rheumatol.201420525125510.1097/RHU.000000000000012725036566
    [Google Scholar]
  61. PopovichI. DalbethN. DoyleA. ReevesQ. McQueenF.M. Exploring cartilage damage in gout using 3-T MRI: Distribution and associations with joint inflammation and tophus deposition.Skeletal Radiol.201443791792410.1007/s00256‑014‑1869‑724687845
    [Google Scholar]
  62. Méndez-SalazarE.O. Vázquez-MelladoJ. Casimiro-SoriguerC.S. DopazoJ. ÇubukC. Zamudio-CuevasY. Francisco-BalderasA. Martínez-FloresK. Fernández-TorresJ. Lozada-PérezC. PinedaC. Sánchez-GonzálezA. SilveiraL.H. Burguete-GarcíaA.I. Orbe-OrihuelaC. Lagunas-MartínezA. Vazquez-GomezA. López-ReyesA. Palacios-GonzálezB. Martínez-NavaG.A. Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism.Mol. Med.20212715010.1186/s10020‑021‑00311‑534030623
    [Google Scholar]
  63. SriranganathanM.K. VinikO. PardoP.J. BombardierC. EdwardsC.J. Interventions for tophi in gout.Coch. Database Syst. Rev.202188CD01006934379791
    [Google Scholar]
  64. CarcioneJ. BodofskyS. LaMoreauxB. SchlesingerN. Beyond medical treatment: Surgical treatment of gout.Curr. Rheumatol. Rep.2021231110.1007/s11926‑020‑00969‑633236200
    [Google Scholar]
  65. HallyK.E. Ferrer-FontL. PilkingtonK.R. LarsenP.D. OMIP 083: A 21-marker 18-color flow cytometry panel for in-depth phenotyping of human peripheral monocytes.Cytometry A2022101537437910.1002/cyto.a.2454535274803
    [Google Scholar]
  66. NarasimhanP.B. MarcovecchioP. HamersA.A.J. HedrickC.C. Nonclassical monocytes in health and disease.Annu. Rev. Immunol.201937143945610.1146/annurev‑immunol‑042617‑05311931026415
    [Google Scholar]
  67. GuH. YuH. QinL. YuH. SongY. ChenG. ZhaoD. WangS. XueW. WangL. AiZ. XuB. PengA. MSU crystal deposition contributes to inflammation and immune responses in gout remission.Cell Rep.2023421011313910.1016/j.celrep.2023.11313937756161
    [Google Scholar]
  68. BuschR. KollnbergerS. MellinsE.D. HLA associations in inflammatory arthritis: Emerging mechanisms and clinical implications.Nat. Rev. Rheumatol.201915636438110.1038/s41584‑019‑0219‑531092910
    [Google Scholar]
  69. SaitoH. GasserA. BolampertiS. MaedaM. MatthiesL. JähnK. LongC.L. SchlüterH. KwiatkowskiM. SainiV. PajevicP.D. BellidoT. Wijnenv.A.J. MohammadK.S. GuiseT.A. TaipaleenmäkiH. HesseE. TG-interacting factor 1 (Tgif1)-deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone.Nat. Commun.2019101135410.1038/s41467‑019‑08778‑x30902975
    [Google Scholar]
  70. HirataH. KamoharaA. MurayamaM. NishiokaK. HondaH. UranoY. SoejimaH. OkiS. KukitaT. KawanoS. MawatariM. KukitaA. A novel role of helix-loop-helix transcriptional factor Bhlhe40 in osteoclast activation.J. Cell. Physiol.2022237103912392610.1002/jcp.3084435908202
    [Google Scholar]
  71. WangS. GongY. WangZ. MengX. LuoZ. PapasianC.J. GreenbaumJ. LiY. LiangQ. ChenY. LiX. XiangQ. ZhangH. LiuY. ChengL. HuY. TanL. ShenH. XiaoH. DengH. Regulon active landscape reveals cell development and functional state changes of human primary osteoblasts in vivo.Hum. Genomics20231711110.1186/s40246‑022‑00448‑236793138
    [Google Scholar]
  72. LiM. YuC. ZengX. Comparative efficacy of traditional non-selective NSAIDs and selective cyclo-oxygenase-2 inhibitors in patients with acute gout: A systematic review and meta-analysis.BMJ Open2020109e03674810.1136/bmjopen‑2019‑03674832912981
    [Google Scholar]
  73. LiuY. TangH. LiuX. ChenH. FengN. ZhangJ. WangC. QiuM. YangJ. ZhouX. Frontline Science: Reprogramming COX-2, 5-LOX, and CYP4A-mediated arachidonic acid metabolism in macrophages by salidroside alleviates gouty arthritis.J. Leukoc. Biol.20181051112410.1002/JLB.3HI0518‑193R30265377
    [Google Scholar]
  74. GuilliamsM. MildnerA. YonaS. Developmental and functional heterogeneity of monocytes.Immunity201849459561310.1016/j.immuni.2018.10.00530332628
    [Google Scholar]
  75. GeissmannF. ManzM.G. JungS. SiewekeM.H. MeradM. LeyK. Development of monocytes, macrophages, and dendritic cells.Science2010327596665666110.1126/science.117833120133564
    [Google Scholar]
  76. MelgarejoE. MedinaM.Á. Sánchez-JiménezF. UrdialesJ.L. Monocyte chemoattractant protein-1: A key mediator in inflammatory processes.Int. J. Biochem. Cell Biol.2009415998100110.1016/j.biocel.2008.07.01818761421
    [Google Scholar]
  77. PaneeJ. Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes.Cytokine201260111210.1016/j.cyto.2012.06.01822766373
    [Google Scholar]
  78. RosasM. DaviesL.C. GilesP.J. LiaoC.T. KharfanB. StoneT.C. O’DonnellV.B. FraserD.J. JonesS.A. TaylorP.R. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal.Science2014344618464564810.1126/science.125141424762537
    [Google Scholar]
  79. BousoikE. QadriM. ElsaidK.A. CD44 receptor mediates urate crystal phagocytosis by macrophages and regulates inflammation in a murine peritoneal model of acute gout.Sci. Rep.2020101574810.1038/s41598‑020‑62727‑z32238827
    [Google Scholar]
  80. JeongJ.H. HongS. KwonO.C. GhangB. HwangI. KimY.G. LeeC.K. YooB. CD14+ cells with the phenotype of infiltrated monocytes consist of distinct populations characterized by anti-inflammatory as well as pro-inflammatory activity in gouty arthritis.Front. Immunol.20178126010.3389/fimmu.2017.0126029056937
    [Google Scholar]
  81. JeongJ.H. JungJ.H. LeeJ.S. OhJ.S. KimY.G. LeeC.K. YooB. HongS. Prominent inflammatory features of monocytes/macrophages in acute calcium pyrophosphate crystal arthritis: A comparison with acute gouty arthritis.Immune Netw.2019193e2110.4110/in.2019.19.e2131281718
    [Google Scholar]
  82. SavianoA. RaucciF. CasilloG.M. MansourA.A. PiccoloV. MontesanoC. SmimmoM. VelleccoV. CapassoG. BoscainoA. SummaV. MascoloN. IqbalA.J. SorrentinoR. Biancad.d.V.R. BucciM. BrancaleoneV. MaioneF. Anti-inflammatory and immunomodulatory activity of Mangifera indica L. reveals the modulation of COX-2/mPGES-1 axis and Th17/Treg ratio.Pharmacol. Res.202218210628310.1016/j.phrs.2022.10628335662629
    [Google Scholar]
  83. MartinW.J. ShawO. LiuX. SteigerS. HarperJ.L. Monosodium urate monohydrate crystal–recruited noninflammatory monocytes differentiate into M1-like proinflammatory macrophages in a peritoneal murine model of gout.Arthritis Rheum.20116351322133210.1002/art.3024921538316
    [Google Scholar]
  84. MartinW.J. WaltonM. HarperJ. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal–induced murine peritoneal model of acute gout.Arthritis Rheum.200960128128910.1002/art.2418519116939
    [Google Scholar]
  85. UdalovaI.A. MantovaniA. FeldmannM. Macrophage heterogeneity in the context of rheumatoid arthritis.Nat. Rev. Rheumatol.201612847248510.1038/nrrheum.2016.9127383913
    [Google Scholar]
  86. Kurowska-StolarskaM. AliverniniS. Synovial tissue macrophages: Friend or foe?RMD Open201732e00052710.1136/rmdopen‑2017‑00052729299338
    [Google Scholar]
  87. CulemannS. GrüneboomA. Nicolás-ÁvilaJ.Á. WeidnerD. LämmleK.F. RotheT. QuintanaJ.A. KirchnerP. KrljanacB. EberhardtM. FerrazziF. KretzschmarE. SchichtM. FischerK. GelseK. FaasM. PfeifleR. AckermannJ.A. PachowskyM. RennerN. SimonD. HaseloffR.F. EkiciA.B. BäuerleT. BlasigI.E. VeraJ. VoehringerD. KleyerA. PaulsenF. SchettG. HidalgoA. KrönkeG. Locally renewing resident synovial macrophages provide a protective barrier for the joint.Nature2019572777167067510.1038/s41586‑019‑1471‑131391580
    [Google Scholar]
  88. LanZ. ChenL. FengJ. XieZ. LiuZ. WangF. LiuP. YueX. DuL. ZhaoY. YangP. LuoJ. ZhuZ. HuX. CaoL. LuP. SahR. LavineK. KimB. HuH. Mechanosensitive TRPV4 is required for crystal-induced inflammation.Ann. Rheum. Dis.202180121604161410.1136/annrheumdis‑2021‑22029534663597
    [Google Scholar]
  89. RobertsA.W. LeeB.L. DeguineJ. JohnS. ShlomchikM.J. BartonG.M. Tissue-resident macrophages are locally programmed for silent clearance of apoptotic cells.Immunity2017475913927.e610.1016/j.immuni.2017.10.00629150239
    [Google Scholar]
  90. A-GonzalezN. QuintanaJ.A. García-SilvaS. MazariegosM. AlejaG.d.l.A. Nicolás-ÁvilaJ.A. WalterW. AdroverJ.M. CrainiciucG. KuchrooV.K. RothlinC.V. PeinadoH. CastrilloA. RicoteM. HidalgoA. Phagocytosis imprints heterogeneity in tissue-resident macrophages.J. Exp. Med.201721451281129610.1084/jem.2016137528432199
    [Google Scholar]
  91. HuangQ.Q. DoyleR. ChenS.Y. ShengQ. MisharinA.V. MaoQ. WinterD.R. PopeR.M. Critical role of synovial tissue–resident macrophage niche in joint homeostasis and suppression of chronic inflammation.Sci. Adv.202172eabd051510.1126/sciadv.abd051533523968
    [Google Scholar]
  92. LiuL. ZhuL. LiuM. ZhaoL. YuY. XueY. ShanL. Recent insights into the role of macrophages in acute gout.Front. Immunol.20221395580610.3389/fimmu.2022.95580635874765
    [Google Scholar]
  93. SicaA. MantovaniA. Macrophage plasticity and polarization: In vivo veritas.J. Clin. Invest.2012122378779510.1172/JCI5964322378047
    [Google Scholar]
  94. BashirS. SharmaY. ElahiA. KhanF. Macrophage polarization: The link between inflammation and related diseases.Inflamm. Res.201665111110.1007/s00011‑015‑0874‑126467935
    [Google Scholar]
  95. WangN. LiangH. ZenK. Molecular mechanisms that influence the macrophage m1-m2 polarization balance.Front. Immunol.2014561410.3389/fimmu.2014.0061425506346
    [Google Scholar]
  96. BragaT.T. AgudeloJ.S.H. CamaraN.O.S. Macrophages during the fibrotic process: M2 as friend and foe.Front. Immunol.2015660210.3389/fimmu.2015.0060226635814
    [Google Scholar]
  97. PortaC. RiboldiE. IppolitoA. SicaA. Molecular and epigenetic basis of macrophage polarized activation.Semin. Immunol.201527423724810.1016/j.smim.2015.10.00326561250
    [Google Scholar]
  98. ZhaoL. YeW. ZhuY. ChenF. WangQ. LvX. HuaY. DuZ. ZhuX. YuY. ZouH. LiuL. XueY. Distinct macrophage polarization in acute and chronic gout.Lab. Invest.2022102101054106310.1038/s41374‑022‑00798‑435614340
    [Google Scholar]
  99. CutoloM. SoldanoS. GotelliE. MontagnaP. CampitielloR. PaolinoS. PizzorniC. SulliA. SmithV. TarditoS. CTLA4-Ig treatment induces M1–M2 shift in cultured monocyte-derived macrophages from healthy subjects and rheumatoid arthritis patients.Arthritis Res. Ther.202123130610.1186/s13075‑021‑02691‑934952630
    [Google Scholar]
  100. Silvestre-RoigC. FridlenderZ.G. GlogauerM. ScapiniP. Neutrophil diversity in health and disease.Trends Immunol.201940756558310.1016/j.it.2019.04.01231160207
    [Google Scholar]
  101. ScanuA. OlivieroF. RamondaR. FrallonardoP. DayerJ.M. PunziL. Cytokine levels in human synovial fluid during the different stages of acute gout: Role of transforming growth factor β1 in the resolution phase.Ann. Rheum. Dis.201271462162410.1136/annrheumdis‑2011‑20071122294622
    [Google Scholar]
  102. VedderD. GerritsenM. NurmohamedM.T. Vollenhovenv.R.F. LoodC. A neutrophil signature is strongly associated with increased cardiovascular risk in gout.Rheumatology20216062783279010.1093/rheumatology/keaa71233188698
    [Google Scholar]
  103. FineN. BarzilayO. GlogauerM. Analysis of human and mouse neutrophil phagocytosis by flow cytometry.Methods Mol. Biol.20232692152310.1007/978‑1‑0716‑3338‑0_237365458
    [Google Scholar]
  104. EpsteinF.H. WeissS.J. Tissue destruction by neutrophils.N. Engl. J. Med.1989320636537610.1056/NEJM1989020932006062536474
    [Google Scholar]
  105. YinC. LiuB. LiY. LiX. WangJ. ChenR. TaiY. ShouQ. WangP. ShaoX. LiangY. ZhouH. MiW. FangJ. LiuB. IL-33/ST2 induces neutrophil-dependent reactive oxygen species production and mediates gout pain.Theranostics20201026121891220310.7150/thno.4802833204337
    [Google Scholar]
  106. YinC. LiuB. DongZ. ShiS. PengC. PanY. BiX. NieH. ZhangY. TaiY. HuQ. WangX. ShaoX. AnH. FangJ. WangC. LiuB. CXCL5 activates CXCR2 in nociceptive sensory neurons to drive joint pain and inflammation in experimental gouty arthritis.Nat. Commun.2024151326310.1038/s41467‑024‑47640‑738627393
    [Google Scholar]
  107. CapucettiA. AlbanoF. BonecchiR. Multiple roles for chemokines in neutrophil biology.Front. Immunol.202011125910.3389/fimmu.2020.0125932733442
    [Google Scholar]
  108. ShanL. YangD. FengF. ZhuD. LiX. miR-3146 induces neutrophil extracellular traps to aggravate gout flare.J. Clin. Lab. Anal.20213511e2403210.1002/jcla.2403234606644
    [Google Scholar]
  109. Garcia-GonzalezE. GamberucciA. LucheriniO.M. AlìA. SimpaticoA. LorenziniS. LazzeriniP.E. TripodiS. FredianiB. SelviE. Neutrophil extracellular traps release in gout and pseudogout depends on the number of crystals regardless of leukocyte count.Rheumatology202160104920492810.1093/rheumatology/keab08733521820
    [Google Scholar]
  110. JeongJ.H. ChoiS.J. AhnS.M. OhJ.S. KimY.G. LeeC.K. YooB. HongS. Neutrophil extracellular trap clearance by synovial macrophages in gout.Arthritis Res. Ther.20212318810.1186/s13075‑021‑02472‑433741037
    [Google Scholar]
  111. LeeK.H. KronbichlerA. ParkD.D.Y. ParkY. MoonH. KimH. ChoiJ.H. ChoiY. ShimS. LyuI.S. YunB.H. HanY. LeeD. LeeS.Y. YooB.H. LeeK.H. KimT.L. KimH. ShimJ.S. NamW. SoH. ChoiS. LeeS. ShinJ.I. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review.Autoimmun. Rev.201716111160117310.1016/j.autrev.2017.09.01228899799
    [Google Scholar]
  112. DesaiJ. Foresto-NetoO. HonarpishehM. SteigerS. NakazawaD. PopperB. BuhlE.M. BoorP. MulayS.R. AndersH.J. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin.Sci. Rep.2017711500310.1038/s41598‑017‑15106‑029101355
    [Google Scholar]
  113. DesaiJ. KumarS.V. MulayS.R. KonradL. RomoliS. SchauerC. HerrmannM. BilyyR. MüllerS. PopperB. NakazawaD. WeidenbuschM. ThomasovaD. KrautwaldS. LinkermannA. AndersH.J. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling.Eur. J. Immunol.201646122322910.1002/eji.20154560526531064
    [Google Scholar]
  114. JankowskiJ. KozubK.O. KleibertM. CamletK. KleibertK. Cudnoch-JędrzejewskaA. The role of programmed types of cell death in pathogenesis of heart failure with preserved ejection fraction.Int. J. Mol. Sci.20242518992110.3390/ijms2518992139337409
    [Google Scholar]
  115. VedderD. GerritsenM. DuvvuriB. Vollenhovenv.R.F. NurmohamedM.T. LoodC. Neutrophil activation identifies patients with active polyarticular gout.Arthritis Res. Ther.202022114810.1186/s13075‑020‑02244‑632552822
    [Google Scholar]
  116. CautionK. YoungN. Robledo-AvilaF. KrauseK. KhweekA.A. HamiltonK. BadrA. VaidyaA. DailyK. GosuH. AnneM.N.K. EltobgyM. DakhlallahD. ArgwalS. EstfanousS. ZhangX. Partida-SanchezS. GavrilinM.A. JarjourW.N. AmerA.O. Caspase-11 mediates neutrophil chemotaxis and extracellular trap formation during acute gouty arthritis through alteration of cofilin phosphorylation.Front. Immunol.201910251910.3389/fimmu.2019.0251931803174
    [Google Scholar]
  117. SchauerC. JankoC. MunozL.E. ZhaoY. KienhöferD. FreyB. LellM. MangerB. RechJ. NaschbergerE. HolmdahlR. KrennV. HarrerT. JeremicI. BilyyR. SchettG. HoffmannM. HerrmannM. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines.Nat. Med.201420551151710.1038/nm.354724784231
    [Google Scholar]
  118. LiuL. ShanL. WangH. SchauerC. SchoenJ. ZhuL. LuC. WangZ. XueY. WuH. HerrmannM. Neutrophil extracellular trap–borne elastase prevents inflammatory relapse in intercritical gout.Arthritis Rheumatol.20237561039104710.1002/art.4243136575650
    [Google Scholar]
  119. TanH. LiZ. ZhangS. ZhangJ. JiaE. Novel perception of neutrophil extracellular traps in gouty inflammation.Int. Immunopharmacol.202311510964210.1016/j.intimp.2022.10964236608445
    [Google Scholar]
  120. ChenT. ZhouJ. DangW. Mechanism of neutrophil extracellular traps in the pathogenesis of gout.Clin. Exp. Rheumatol.202442112272227910.55563/clinexprheumatol/ezzfbt38910565
    [Google Scholar]
  121. RaucciF. IqbalA.J. SavianoA. MinosiP. PiccoloM. IraceC. CasoF. ScarpaR. PierettiS. MascoloN. MaioneF. IL-17A neutralizing antibody regulates monosodium urate crystal-induced gouty inflammation.Pharmacol. Res.201914710435110.1016/j.phrs.2019.10435131315067
    [Google Scholar]
  122. YangQ.B. HeY.L. ZhangQ.B. MiQ.S. ZhouJ.G. Downregulation of transcription factor t-bet as a protective strategy in monosodium urate-induced gouty inflammation.Front. Immunol.201910119910.3389/fimmu.2019.0119931231373
    [Google Scholar]
  123. KumarB.V. ConnorsT.J. FarberD.L. HumanT. Human T cell development, localization, and function throughout life.Immunity201848220221310.1016/j.immuni.2018.01.00729466753
    [Google Scholar]
  124. KumarA. PyaramK. YaroszE.L. HongH. LyssiotisC.A. GiriS. ChangC.H. Enhanced oxidative phosphorylation in NKT cells is essential for their survival and function.Proc. Natl. Acad. Sci. USA2019116157439744810.1073/pnas.190137611630910955
    [Google Scholar]
  125. DimitrijevićM. Arsenović-RaninN. KosecD. BufanB. Nacka-AleksićM. PilipovićI. LeposavićG. Sexual dimorphism in Th17/Treg axis in lymph nodes draining inflamed joints in rats with collagen-induced arthritis.Brain Behav. Immun.20197619821410.1016/j.bbi.2018.11.31130476564
    [Google Scholar]
  126. MuehlingL.M. LawrenceM.G. WoodfolkJ.A. Pathogenic CD4+ T cells in patients with asthma.J. Allergy Clin. Immunol.201714061523154010.1016/j.jaci.2017.02.02528442213
    [Google Scholar]
  127. GorD.O. RoseN.R. GreenspanN.S. TH1-TH2: A Procrustean paradigm.Nat. Immunol.20034650350510.1038/ni0603‑50312774069
    [Google Scholar]
  128. WangH. XieL. SongX. WangJ. LiX. LinZ. SuT. LiangB. HuangD. Purine-induced IFN-γ promotes uric acid production by upregulating xanthine oxidoreductase expression.Front. Immunol.20221377300110.3389/fimmu.2022.77300135154100
    [Google Scholar]
  129. LiuX. LiY. LiZ. WeiX. MaY. ChengP. JiaoR. FangJ. XingY. TangJ. WangM. LiT. A novel IgG1 monoclonal antibody against xanthine oxidase alleviates inflammation induced by potassium oxonate in mice.Int. J. Biol. Macromol.201811253754710.1016/j.ijbiomac.2018.01.17129382583
    [Google Scholar]
  130. ZhaoL.J. WangH. GaoH.Y. WangJ. GaoC. LiX.F. Increase in different peripheral effector T subsets in acute and chronic gout.Transpl. Immunol.20237610176310.1016/j.trim.2022.10176336436796
    [Google Scholar]
  131. BettelliE. CarrierY. GaoW. KornT. StromT.B. OukkaM. WeinerH.L. KuchrooV.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells.Nature2006441709023523810.1038/nature0475316648838
    [Google Scholar]
  132. WingJ.B. TanakaA. SakaguchiS. Human FOXP3+ regulatory t cell heterogeneity and function in autoimmunity and cancer.Immunity201950230231610.1016/j.immuni.2019.01.02030784578
    [Google Scholar]
  133. DaiX.J. TaoJ.H. FangX. XiaY. LiX.M. WangY.P. LiX.P. Changes of Treg/Th17 ratio in spleen of acute gouty arthritis rat induced by MSU crystals.Inflammation20184151955196410.1007/s10753‑018‑0839‑y30039428
    [Google Scholar]
  134. LiuY. ZhaoQ. YinY. McNuttM.A. ZhangT. CaoY. Serum levels of IL-17 are elevated in patients with acute gouty arthritis.Biochem. Biophys. Res. Commun.2018497389790210.1016/j.bbrc.2018.02.16629476737
    [Google Scholar]
  135. ZiX. SuR. SuR. WangH. LiB. GaoC. LiX. WangC. Elevated serum IL-2 and Th17/Treg imbalance are associated with gout.Clin. Exp. Med.2024241910.1007/s10238‑023‑01253‑438240927
    [Google Scholar]
  136. WangY. TuS. HuangY. QinK. ChenZ. MicroRNA-181a regulates Treg functions via TGF-β1/Smad axis in the spleen of mice with acute gouty arthritis induced by MSU crystals.Braz. J. Med. Biol. Res.202255e1200210.1590/1414‑431x2022e1200236477951
    [Google Scholar]
  137. SongS. LouY. MaoY. WenX. FanM. HeZ. ShenY. WenC. ShaoT. Alteration of gut microbiome and correlated amino acid metabolism contribute to hyperuricemia and Th17-driven inflammation in Uox-KO Mice.Front. Immunol.20221380430610.3389/fimmu.2022.80430635197978
    [Google Scholar]
  138. McKinneyC. StampL.K. DalbethN. ToplessR.K. DayR.O. KannangaraD.R.W. WilliamsK.M. JanssenM. JansenT.L. JoostenL.A. RadstakeT.R. RichesP.L. TauscheA.K. LiotéF. SoA. MerrimanT.R. Multiplicative interaction of functional inflammasome genetic variants in determining the risk of gout.Arthritis Res. Ther.201517128810.1186/s13075‑015‑0802‑326462562
    [Google Scholar]
  139. WangS. LiuW. WeiB. WangA. WangY. WangW. GaoJ. JinY. LuH. KaY. YueQ. Traditional herbal medicine: Therapeutic potential in acute gouty arthritis.J. Ethnopharmacol.202433011818210.1016/j.jep.2024.11818238621464
    [Google Scholar]
  140. JoE.K. KimJ.K. ShinD.M. SasakawaC. Molecular mechanisms regulating NLRP3 inflammasome activation.Cell. Mol. Immunol.201613214815910.1038/cmi.2015.9526549800
    [Google Scholar]
  141. YangJ. LiuZ. XiaoT.S. Post-translational regulation of inflammasomes.Cell. Mol. Immunol.2017141657910.1038/cmi.2016.2927345727
    [Google Scholar]
  142. AhnH. KangS.G. YoonS. KimP.H. KimD. LeeG.S. Poly-gamma-glutamic acid from Bacillus subtilis upregulates pro-inflammatory cytokines while inhibiting NLRP3, NLRC4 and AIM2 inflammasome activation.Cell. Mol. Immunol.201815211111910.1038/cmi.2016.1327133472
    [Google Scholar]
  143. ShiJ. GaoW. ShaoF. Pyroptosis: Gasdermin-mediated programmed necrotic cell death.Trends Biochem. Sci.201742424525410.1016/j.tibs.2016.10.00427932073
    [Google Scholar]
  144. LiuX. ZhangZ. RuanJ. PanY. MagupalliV.G. WuH. LiebermanJ. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.Nature2016535761015315810.1038/nature1862927383986
    [Google Scholar]
  145. ShiJ. ZhaoY. WangK. ShiX. WangY. HuangH. ZhuangY. CaiT. WangF. ShaoF. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.Nature2015526757566066510.1038/nature1551426375003
    [Google Scholar]
  146. MiguelD.E. PuigJ.G. CastilloC. PeiteadoD. TorresR.J. Martín- MolaE. Diagnosis of gout in patients with asymptomatic hyperuricaemia: A pilot ultrasound study.Ann. Rheum. Dis.201271115715810.1136/ard.2011.15499721953340
    [Google Scholar]
  147. VieiraA.T. MaciaL. GalvãoI. MartinsF.S. CanessoM.C.C. AmaralF.A. GarciaC.C. MaslowskiK.M. LeonD.E. ShimD. NicoliJ.R. HarperJ.L. TeixeiraM.M. MackayC.R. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout.Arthritis Rheumatol.20156761646165610.1002/art.3910725914377
    [Google Scholar]
  148. JoostenL.A.B. NeteaM.G. MylonaE. KoendersM.I. MalireddiR.K.S. OostingM. StienstraR. Veerdonkd.v.F.L. StalenhoefA.F. Giamarellos-BourboulisE.J. KannegantiT.D. Meerd.v.J.W.M. Engagement of fatty acids with toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal–induced gouty arthritis.Arthritis Rheum.201062113237324810.1002/art.2766720662061
    [Google Scholar]
  149. FitzgeraldK.A. KaganJ.C. Toll-like receptors and the control of immunity.Cell202018061044106610.1016/j.cell.2020.02.04132164908
    [Google Scholar]
  150. XuH. ZhangB. ChenY. ZengF. WangW. ChenZ. CaoL. ShiJ. ChenJ. ZhuX. XueY. HeR. JiM. HuaY. Type II collagen facilitates gouty arthritis by regulating MSU crystallisation and inflammatory cell recruitment.Ann. Rheum. Dis.202382341642710.1136/ard‑2022‑22276436109143
    [Google Scholar]
  151. HaoK. JiangW. ZhouM. LiH. ChenY. JiangF. HuQ. Targeting BRD4 prevents acute gouty arthritis by regulating pyroptosis.Int. J. Biol. Sci.202016163163317310.7150/ijbs.4615333162822
    [Google Scholar]
  152. HuaT. WangH. FanX. AnN. LiJ. SongH. KongE. LiY. YuanH. BRD4 inhibition attenuates inflammatory pain by ameliorating nlrp3 inflammasome-induced pyroptosis.Front. Immunol.20221383797710.3389/fimmu.2022.83797735154163
    [Google Scholar]
  153. ShenR. MaL. ZhengY. Anti-inflammatory effects of luteolin on acute gouty arthritis rats via TLR/MyD88/NF-κB pathway.Zhong. Nan. Da. Xue. Xue. Bao. Yi. Xue. Ban.202045211512232386034
    [Google Scholar]
  154. GuY. ZhuY. DengG. LiuS. SunY. LvW. Curcumin analogue AI-44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation.Int. Immunopharmacol.20219310737510.1016/j.intimp.2021.10737533517224
    [Google Scholar]
  155. TsujimotoK. JoT. NagiraD. KonakaH. ParkJ.H. YoshimuraS. NinomiyaA. SugiharaF. HirayamaT. ItotagawaE. MatsuzakiY. TakaichiY. AokiW. SaitaS. NakamuraS. BallabioA. NadaS. OkadaM. TakamatsuH. KumanogohA. The lysosomal Ragulator complex activates NLRP3 inflammasome in vivo via HDAC6.EMBO J.2023421e11138910.15252/embj.202211138936444797
    [Google Scholar]
  156. RheeD.K. MarcelinoJ. BakerM. GongY. SmitsP. LefebvreV. JayG.D. StewartM. WangH. WarmanM.L. CarptenJ.D. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth.J. Clin. Invest.2005115362263110.1172/JCI20052226315719068
    [Google Scholar]
  157. HuangQ. GaoW. MuH. QinT. LongF. RenL. TangH. LiuJ. ZengM. HSP60 regulates monosodium urate crystal-induced inflammation by activating the TLR4-NF-κB-MyD88 signaling pathway and disrupting mitochondrial function.Oxid. Med. Cell. Longev.2020202011610.1155/2020/870689833488933
    [Google Scholar]
  158. CoboI. ChengA. Murillo-SaichJ. CorasR. TorresA. AbeY. LanaA.J. SchlachetzkiJ. Liu-BryanR. TerkeltaubR. Sanchez-LopezE. GlassC.K. GumaM. Monosodium urate crystals regulate a unique JNK-dependent macrophage metabolic and inflammatory response.Cell Rep.2022381011048910.1016/j.celrep.2022.11048935263587
    [Google Scholar]
  159. AlghannamA.F. GhaithM.M. AlhussainM.H. Regulation of energy substrate metabolism in endurance exercise.Int. J. Environ. Res. Public Health2021189496310.3390/ijerph1809496334066984
    [Google Scholar]
  160. LiX. WanA. LiuY. LiM. ZhuZ. LuoC. TaoJ. P2X7R mediates the synergistic effect of ATP and MSU crystals to induce acute gouty arthritis.Oxid. Med. Cell. Longev.2023202311210.1155/2023/331730736686377
    [Google Scholar]
  161. SluyterR. The P2X7 Receptor.Adv. Exp. Med. Biol.20171051175310.1007/5584_2017_5928676924
    [Google Scholar]
  162. JorqueraG. Meneses-ValdésR. Rosales-SotoG. Valladares-IdeD. CamposC. Silva-MonasterioM. LlanosP. CruzG. JaimovichE. CasasM. High extracellular ATP levels released through pannexin-1 channels mediate inflammation and insulin resistance in skeletal muscle fibres of diet-induced obese mice.Diabetologia20216461389140110.1007/s00125‑021‑05418‑233710396
    [Google Scholar]
  163. LiX. LiuY. LuoC. TaoJ. Z1456467176 alleviates gouty arthritis by allosterically modulating P2X7R to inhibit NLRP3 inflammasome activation.Front. Pharmacol.20221397993910.3389/fphar.2022.97993936052144
    [Google Scholar]
  164. LiX. GaoJ. TaoJ. Purinergic signaling in the regulation of gout flare and resolution.Front. Immunol.20211278542510.3389/fimmu.2021.78542534925366
    [Google Scholar]
  165. GongQ. ChenY. Correlation between P2X7 receptor gene polymorphisms and gout.Rheumatol. Int.20153581307131010.1007/s00296‑015‑3258‑525800962
    [Google Scholar]
  166. TaoJ.H. ChengM. TangJ.P. DaiX.J. ZhangY. LiX.P. LiuQ. WangY.L. Single nucleotide polymorphisms associated with P2X7R function regulate the onset of gouty arthritis.PLoS One2017128e018168510.1371/journal.pone.018168528797095
    [Google Scholar]
  167. GurungP. LukensJ.R. KannegantiT.D. Mitochondria: Diversity in the regulation of the NLRP3 inflammasome.Trends Mol. Med.201521319320110.1016/j.molmed.2014.11.00825500014
    [Google Scholar]
  168. KroemerG. GalluzziL. BrennerC. Mitochondrial membrane permeabilization in cell death.Physiol. Rev.20078719916310.1152/physrev.00013.200617237344
    [Google Scholar]
  169. GuoW. LiuW. ChenZ. GuY. PengS. ShenL. ShenY. WangX. FengG.S. SunY. XuQ. Tyrosine phosphatase SHP2 negatively regulates NLRP3 inflammasome activation via ANT1-dependent mitochondrial homeostasis.Nat. Commun.201781216810.1038/s41467‑017‑02351‑029255148
    [Google Scholar]
  170. TschoppJ. SchroderK. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production?Nat. Rev. Immunol.201010321021510.1038/nri272520168318
    [Google Scholar]
  171. HanY. XuX. TangC. GaoP. ChenX. XiongX. YangM. YangS. ZhuX. YuanS. LiuF. XiaoL. KanwarY.S. SunL. Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis.Redox Biol.201816324610.1016/j.redox.2018.02.01329475133
    [Google Scholar]
  172. LuoT. ZhouX. QinM. LinY. LinJ. ChenG. LiuA. OuyangD. ChenD. PanH. Corilagin restrains NLRP3 inflammasome activation and pyroptosis through the ROS/TXNIP/NLRP3 pathway to prevent inflammation.Oxid. Med. Cell. Longev.2022202212610.1155/2022/165224436299604
    [Google Scholar]
  173. WangP. GengJ. GaoJ. ZhaoH. LiJ. ShiY. YangB. XiaoC. LinghuY. SunX. ChenX. HongL. QinF. LiX. YuJ.S. YouH. YuanZ. ZhouD. JohnsonR.L. ChenL. Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis.Nat. Commun.201910175510.1038/s41467‑019‑08680‑630765703
    [Google Scholar]
  174. ZhouY. ChenY. ZhongX. XiaH. ZhaoM. ZhaoM. XuL. GuoX. YouC.G. Lipoxin A4 attenuates MSU-crystal-induced NLRP3 inflammasome activation through suppressing Nrf2 thereby increasing TXNRD2.Front. Immunol.202213106044110.3389/fimmu.2022.106044136569930
    [Google Scholar]
  175. JhangJ.J. ChengY.T. HoC.Y. YenG.C. Monosodium urate crystals trigger Nrf2- and heme oxygenase-1-dependent inflammation in THP-1 cells.Cell. Mol. Immunol.201512442443410.1038/cmi.2014.6525109682
    [Google Scholar]
  176. WangQ. QiuH. Deubiquitinase USP16 induces gouty arthritis via Drp1-dependent mitochondrial fission and NLRP3 inflammasome activation.Arthritis Res. Ther.202325112610.1186/s13075‑023‑03095‑737488647
    [Google Scholar]
  177. HuaK.F. ChouJ.C. KaS.M. TasiY.L. ChenA. WuS.H. ChiuH.W. WongW.T. WangY.F. TsaiC.L. HoC.L. LinC.H. Cyclooxygenase-2 regulates NLRP3 inflammasome-derived IL-1β production.J. Cell. Physiol.2015230486387410.1002/jcp.2481525294243
    [Google Scholar]
  178. FuW. GeM. LiJ. Phospholipase A2 regulates autophagy in gouty arthritis: Proteomic and metabolomic studies.J. Transl. Med.202321126110.1186/s12967‑023‑04114‑637069596
    [Google Scholar]
  179. CroffordL.J. COX-2 in synovial tissues.Osteoarthritis Cartilage19997440640810.1053/joca.1999.022610419782
    [Google Scholar]
  180. ZhuangY ZhaoF LiangJ DengX ZhangY DingG Activation of COX-2/mPGES-1/PGE2 Cascade via NLRP3 inflammasome contributes to albumin-induced proximal tubule cell injury.Cell. Physiol. Biochem.2017422797807
    [Google Scholar]
  181. XueZ. ZhangZ. LiuH. LiW. GuoX. ZhangZ. LiuY. JiaL. LiY. RenY. YangH. ZhangL. ZhangQ. DaY. HaoJ. YaoZ. ZhangR. lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation.Cell Death Differ.201926113014510.1038/s41418‑018‑0105‑829666475
    [Google Scholar]
  182. HuangM. WangH. HuX. CaoX. lncRNA MALAT1 binds chromatin remodeling subunit BRG1 to epigenetically promote inflammation-related hepatocellular carcinoma progression.OncoImmunology201981e151862810.1080/2162402X.2018.151862830546959
    [Google Scholar]
  183. MengQ. MengW. BianH. ZhengF. GuH. ZuoR. MiaoX. ZhouZ. WangL. WenZ. MaJ. SuX. Total glucosides of paeony protects THP-1 macrophages against monosodium urate-induced inflammation via MALAT1/miR-876-5p/NLRP3 signaling cascade in gouty arthritis.Biomed. Pharmacother.202113811141310.1016/j.biopha.2021.11141333677310
    [Google Scholar]
  184. FengX. ZhanF. LuoD. HuJ. WeiG. HuaF. XuG. LncRNA 4344 promotes NLRP3-related neuroinflammation and cognitive impairment by targeting miR-138-5p.Brain Behav. Immun.20219828329810.1016/j.bbi.2021.08.23034455059
    [Google Scholar]
  185. YanH. LuoB. WuX. GuanF. YuX. ZhaoL. KeX. WuJ. YuanJ. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer.Int. J. Biol. Sci.202117102606262110.7150/ijbs.6029234326697
    [Google Scholar]
  186. ChiK. GengX. LiuC. ZhangY. CuiJ. CaiG. ChenX. WangF. HongQ. LncRNA-HOTAIR promotes endothelial cell pyroptosis by regulating the miR-22/NLRP3 axis in hyperuricaemia.J. Cell. Mol. Med.202125178504852110.1111/jcmm.1681234296520
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128369016250306050522
Loading
/content/journals/cpd/10.2174/0113816128369016250306050522
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Gout; immune cells; immunology; inflammatory response; macrophage; pathomechanism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test