Skip to content
2000
image of Harnessing Antioxidant Properties of Plant-Derived Bioactive Compounds to Alleviate Atopic Dermatitis Symptoms: A Review

Abstract

Atopic dermatitis (AD) is a common chronic inflammatory skin disorder affecting both children and adults, characterized by intense itching, erythema, and xerosis. The pathogenesis of AD is multifactorial, involving genetic predisposition, immune dysregulation, skin barrier dysfunction, and environmental factors. A growing body of evidence suggests that oxidative stress plays a critical role in AD, contributing to chronic inflammation, immune cell activation, and skin barrier disruption. Oxidative stress arises from an imbalance between Reactive Oxygen Species (ROS) production and antioxidant defenses, leading to cellular damage and the exacerbation of AD symptoms. Recent research has highlighted the potential of plant-derived bioactive compounds, particularly those with antioxidant properties, to mitigate oxidative stress and provide therapeutic benefits in AD. These compounds, including quercetin, resveratrol, curcumin, silymarin, baicalin, luteolin, and epigallocatechin gallate, not only neutralize ROS but also exhibit anti-inflammatory, immunomodulatory, and skin barrier-restoring effects. Natural antioxidants from plants offer a safer alternative to conventional treatments, which may have long-term side effects. This review provides a comprehensive overview of the mechanisms by which oxidative stress contributes to AD and examines the potential of plant-derived antioxidants in alleviating AD symptoms. The growing interest in these compounds underscores the need for further research to harness their full therapeutic potential in AD management.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128368673250611114044
2025-06-25
2025-10-29
Loading full text...

Full text loading...

References

  1. Tian J. Zhang D. Yang Y. Huang Y. Wang L. Yao X. Lu Q. Global epidemiology of atopic dermatitis: A comprehensive systematic analysis and modelling study. Br. J. Dermatol. 2023 190 1 55 61 10.1093/bjd/ljad339 37705227
    [Google Scholar]
  2. Kim J. Kim B.E. Leung D.Y.M. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019 40 2 84 92 10.2500/aap.2019.40.4202 30819278
    [Google Scholar]
  3. Yang G. Seok J.K. Kang H.C. Cho Y.Y. Lee H.S. Lee J.Y. Skin barrier abnormalities and immune dysfunction in atopic dermatitis. Int. J. Mol. Sci. 2020 21 8 2867 10.3390/ijms21082867 32326002
    [Google Scholar]
  4. Pizzino G. Irrera N. Cucinotta M. Pallio G. Mannino F. Arcoraci V. Squadrito F. Altavilla D. Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 1 8416763 10.1155/2017/8416763 28819546
    [Google Scholar]
  5. Md Jaffri J. Reactive oxygen species and antioxidant system in selected skin disorders. Malays. J. Med. Sci. 2023 30 1 7 20 10.21315/mjms2023.30.1.2 36875194
    [Google Scholar]
  6. Teng Y. Zhong H. Yang X. Tao X. Fan Y. Current and emerging therapies for atopic dermatitis in the elderly. Clin. Interv. Aging 2023 18 1641 1652 10.2147/CIA.S426044 37810952
    [Google Scholar]
  7. Megna M. Napolitano M. Patruno C. Villani A. Balato A. Monfrecola G. Ayala F. Balato N. Systemic treatment of adult atopic dermatitis: A review. Dermatol. Ther. 2017 7 1 1 23 10.1007/s13555‑016‑0170‑1 28025775
    [Google Scholar]
  8. Forman H.J. Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021 20 9 689 709 10.1038/s41573‑021‑00233‑1 34194012
    [Google Scholar]
  9. Shoaib S. Ansari M.A. Fatease A.A. Safhi A.Y. Hani U. Jahan R. Alomary M.N. Ansari M.N. Ahmed N. Wahab S. Ahmad W. Yusuf N. Islam N. Plant-derived bioactive compounds in the management of neurodegenerative disorders: Challenges, future directions and molecular mechanisms involved in neuroprotection. Pharmaceutics 2023 15 3 749 10.3390/pharmaceutics15030749 36986610
    [Google Scholar]
  10. Hebert A.A. Oxidative stress as a treatment target in atopic dermatitis: The role of furfuryl palmitate in mild-to-moderate atopic dermatitis. Int. J. Womens Dermatol. 2020 6 4 331 333 10.1016/j.ijwd.2020.03.042 33015298
    [Google Scholar]
  11. Papaccio F. D Arino A. Caputo S. Bellei B. Focus on the contribution of oxidative stress in skin aging. Antioxidants 2022 11 6 1121 10.3390/antiox11061121 35740018
    [Google Scholar]
  12. Chettouh-Hammas N. Fasani F. Boileau A. Gosset D. Busco G. Grillon C. Improvement of antioxidant defences in keratinocytes grown in physioxia: Comparison of 2D and 3D models. Oxid. Med. Cell. Longev. 2023 2023 1 15 10.1155/2023/6829931 37360501
    [Google Scholar]
  13. Alessandrello C. Sanfilippo S. Minciullo P.L. Gangemi S. An overview on atopic dermatitis, oxidative stress, and psychological stress: Possible role of nutraceuticals as an additional therapeutic strategy. Int. J. Mol. Sci. 2024 25 9 5020 10.3390/ijms25095020 38732239
    [Google Scholar]
  14. van Smeden J. Bouwstra J.A. Stratum corneum lipids: Their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr. Probl. Dermatol. 2016 49 8 26 10.1159/000441540 26844894
    [Google Scholar]
  15. Furue M. Regulation of filaggrin, loricrin, and involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic implications in atopic dermatitis. Int. J. Mol. Sci. 2020 21 15 5382 10.3390/ijms21155382 32751111
    [Google Scholar]
  16. Afzal S. Abdul Manap A.S. Attiq A. Albokhadaim I. Kandeel M. Alhojaily S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023 14 1269581 10.3389/fphar.2023.1269581 37927596
    [Google Scholar]
  17. Raimondo A. Serio B. Lembo S. Oxidative stress in atopic dermatitis and possible biomarkers: Present and future. Indian J. Dermatol. 2023 68 6 657 660 10.4103/ijd.ijd_878_22 38371532
    [Google Scholar]
  18. Kwon Y.J. Kwon H.H. Leem J. Jang Y.Y. Kahweol inhibits pro-inflammatory cytokines and chemokines in tumor necrosis factor-α/interferon-γ-stimulated human keratinocyte hacat cells. Curr. Issues Mol. Biol. 2024 46 4 3470 3483 10.3390/cimb46040218 38666948
    [Google Scholar]
  19. Liu T. Zhang L. Joo D. Sun S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017 2 1 17023 10.1038/sigtrans.2017.23 29158945
    [Google Scholar]
  20. Guo Q. Jin Y. Chen X. Ye X. Shen X. Lin M. Zeng C. Zhou T. Zhang J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024 9 1 53 10.1038/s41392‑024‑01757‑9 38433280
    [Google Scholar]
  21. Shankar A. McAlees J.W. Lewkowich I.P. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J. Allergy Clin. Immunol. 2022 150 2 266 276 10.1016/j.jaci.2022.06.012 35934680
    [Google Scholar]
  22. Romagnani S. Cytokines and chemoattractants in allergic inflammation. Mol. Immunol. 2002 38 12-13 881 885 10.1016/S0161‑5890(02)00013‑5 12009564
    [Google Scholar]
  23. Williams M.A. Rangasamy T. Bauer S.M. Killedar S. Karp M. Kensler T.W. Yamamoto M. Breysse P. Biswal S. Georas S.N. Disruption of the transcription factor Nrf2 promotes pro-oxidative dendritic cells that stimulate Th2-like immunoresponsiveness upon activation by ambient particulate matter. J. Immunol. 2008 181 7 4545 4559 10.4049/jimmunol.181.7.4545 18802057
    [Google Scholar]
  24. Kang C. Li X. Liu P. Liu Y. Niu Y. Zeng X. Zhao H. Liu J. Qiu S. Tolerogenic dendritic cells and TLR4/IRAK4/NF-κB signaling pathway in allergic rhinitis. Front. Immunol. 2023 14 1276512 10.3389/fimmu.2023.1276512 37915574
    [Google Scholar]
  25. Shu P. Liang H. Zhang J. Lin Y. Chen W. Zhang D. Reactive oxygen species formation and its effect on CD4+ T cell-mediated inflammation. Front. Immunol. 2023 14 1199233 10.3389/fimmu.2023.1199233 37304262
    [Google Scholar]
  26. Andrade B. Jara-Gutiérrez C. Paz-Araos M. Vázquez M.C. Díaz P. Murgas P. The relationship between reactive oxygen species and the CGAS/STING signaling pathway in the inflammaging process. Int. J. Mol. Sci. 2022 23 23 15182 10.3390/ijms232315182 36499506
    [Google Scholar]
  27. Mittal M. Siddiqui M.R. Tran K. Reddy S.P. Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014 20 7 1126 1167 10.1089/ars.2012.5149 23991888
    [Google Scholar]
  28. Liu H.M. Cheng M.Y. Xun M.H. Zhao Z.W. Zhang Y. Tang W. Cheng J. Ni J. Wang W. Possible mechanisms of oxidative stress-induced skin cellular senescence, inflammation, and cancer and the therapeutic potential of plant polyphenols. Int. J. Mol. Sci. 2023 24 4 3755 10.3390/ijms24043755 36835162
    [Google Scholar]
  29. Redza-Dutordoir M. Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 12 2977 2992 10.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
  30. Saito Y. Yamamoto S. Chikenji T.S. Role of cellular senescence in inflammation and regeneration. Inflamm. Regen. 2024 44 1 28 10.1186/s41232‑024‑00342‑5 38831382
    [Google Scholar]
  31. Chin T. Lee X.E. Ng P.Y. Lee Y. Dreesen O. The role of cellular senescence in skin aging and age-related skin pathologies. Front. Physiol. 2023 14 1297637 10.3389/fphys.2023.1297637 38074322
    [Google Scholar]
  32. Bocheva G.S. Slominski R.M. Slominski A.T. Immunological aspects of skin aging in atopic dermatitis. Int. J. Mol. Sci. 2021 22 11 5729 10.3390/ijms22115729 34072076
    [Google Scholar]
  33. Sharifi-Rad M. Anil Kumar N.V. Zucca P. Varoni E.M. Dini L. Panzarini E. Rajkovic J. Tsouh Fokou P.V. Azzini E. Peluso I. Prakash Mishra A. Nigam M. El Rayess Y. Beyrouthy M.E. Polito L. Iriti M. Martins N. Martorell M. Docea A.O. Setzer W.N. Calina D. Cho W.C. Sharifi-Rad J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020 11 694 10.3389/fphys.2020.00694 32714204
    [Google Scholar]
  34. Borgia F. Li Pomi F. Vaccaro M. Alessandrello C. Papa V. Gangemi S. Oxidative stress and phototherapy in atopic dermatitis: Mechanisms, role, and future perspectives. Biomolecules 2022 12 12 1904 10.3390/biom12121904 36551332
    [Google Scholar]
  35. Spiers J.G. Chen H.J.C. Sernia C. Lavidis N.A. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front. Neurosci. 2015 8 456 10.3389/fnins.2014.00456 25646076
    [Google Scholar]
  36. Hannibal K.E. Bishop M.D. Chronic stress, cortisol dysfunction, and pain: A psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys. Ther. 2014 94 12 1816 1825 10.2522/ptj.20130597 25035267
    [Google Scholar]
  37. Mahmoud O. Oladipo O. Mahmoud R.H. Yosipovitch G. Itch: From the skin to the brain – peripheral and central neural sensitization in chronic itch. Front. Mol. Neurosci. 2023 16 1272230 10.3389/fnmol.2023.1272230 37849619
    [Google Scholar]
  38. Legat F.J. Itch in atopic dermatitis – what is new? Front. Med. 2021 8 644760 10.3389/fmed.2021.644760 34026782
    [Google Scholar]
  39. Riaz M. Khalid R. Afzal M. Anjum F. Fatima H. Zia S. Rasool G. Egbuna C. Mtewa A.G. Uche C.Z. Aslam M.A. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Sci. Nutr. 2023 11 6 2500 2529 10.1002/fsn3.3308 37324906
    [Google Scholar]
  40. Zhang N. Zhang S. Dong X. Plant-derived bioactive compounds and their novel role in central nervous system disorder treatment via ATF4 targeting: A systematic literature review. Biomed. Pharmacother. 2024 176 116811 10.1016/j.biopha.2024.116811 38795641
    [Google Scholar]
  41. Lobo V. Patil A. Phatak A. Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010 4 8 118 126 10.4103/0973‑7847.70902 22228951
    [Google Scholar]
  42. Sorrenti V. Burò I. Consoli V. Vanella L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. Int. J. Mol. Sci. 2023 24 3 2019 10.3390/ijms24032019 36768340
    [Google Scholar]
  43. Fernandes A. Rodrigues P.M. Pintado M. Tavaria F.K. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. Phytomedicine 2023 115 154824 10.1016/j.phymed.2023.154824 37119762
    [Google Scholar]
  44. Chandran D. Water-Ethanol azeotropic mixture as a biofriendly medium for molecular imprinting: Implications for homeotherapy. 2024 Available from: https://redefininghomeopathy.com/2023/ 03/10/water-ethanol-azeotropic-mixture-as-a-medium-for-molecular-imprinting/
  45. Farhan M. The promising role of polyphenols in skin disorders. Molecules 2024 29 4 865 10.3390/molecules29040865 38398617
    [Google Scholar]
  46. Dębińska A. Sozańska B. Dietary polyphenols—natural bioactive compounds with potential for preventing and treating some allergic conditions. Nutrients 2023 15 22 4823 10.3390/nu15224823 38004216
    [Google Scholar]
  47. Katiyar S. Silymarin and skin cancer prevention: Anti-inflammatory, antioxidant and immunomodulatory effects (Review). Int. J. Oncol. 2005 26 1 169 176 10.3892/ijo.26.1.169 15586237
    [Google Scholar]
  48. Yoon J.H. Kim M.Y. Cho J.Y. Apigenin: A therapeutic agent for treatment of skin inflammatory diseases and cancer. Int. J. Mol. Sci. 2023 24 2 1498 10.3390/ijms24021498 36675015
    [Google Scholar]
  49. Popradit A. Nakhokwik Y. Robischon M. Saiki S.T. Yoshimura J. Wanasiri A. Ishida A. Soil degradation and herbicide pollution by repeated cassava monoculture within Thailand’s conservation region. PLoS One 2024 19 8 0308284 10.1371/journal.pone.0308284 39106244
    [Google Scholar]
  50. Oluyemi GF Afolabi RO Zamora SC Li Y McElroy D Environmental impact assessment of a plant cell-based bio-manufacturing process for producing plant natural product ingredients. Sustainability 2024 16 19 8515 10.3390/su16198515
    [Google Scholar]
  51. Çakmakçı R. Salık M.A. Çakmakçı S. Assessment and principles of environmentally sustainable food and agriculture systems. Agriculture 2023 13 5 1073 10.3390/agriculture13051073
    [Google Scholar]
  52. Parasuraman S. Anand David A.V. Arulmoli R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016 10 20 84 89 10.4103/0973‑7847.194044 28082789
    [Google Scholar]
  53. Mirza M.A. Mahmood S. Hilles A.R. Ali A. Khan M.Z. Zaidi S.A.A. Iqbal Z. Ge Y. Quercetin as a therapeutic product: Evaluation of its pharmacological action and clinical applications—a review. Pharmaceuticals 2023 16 11 1631 10.3390/ph16111631 38004496
    [Google Scholar]
  54. Beken B. Serttas R. Yazicioglu M. Turkekul K. Erdogan S. Quercetin improves inflammation, oxidative stress, and impaired wound healing in atopic dermatitis model of human keratinocytes. Pediatr. Allergy Immunol. Pulmonol. 2020 33 2 69 79 10.1089/ped.2019.1137 34678092
    [Google Scholar]
  55. Xu D. Hu M.J. Wang Y.Q. Cui Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019 24 6 1123 10.3390/molecules24061123 30901869
    [Google Scholar]
  56. Qi W. Qi W. Xiong D. Long M. Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules 2022 27 19 6545 10.3390/molecules27196545 36235082
    [Google Scholar]
  57. Aghababaei F. Hadidi M. Recent advances in potential health benefits of quercetin. Pharmaceuticals 2023 16 7 1020 10.3390/ph16071020 37513932
    [Google Scholar]
  58. Frantz M.C. Rozot R. Marrot L. NRF2 in dermo-cosmetic: From scientific knowledge to skin care products. Biofactors 2023 49 1 32 61 10.1002/biof.1907 36258295
    [Google Scholar]
  59. Najaf Najafi N. Armide N. Akbari A. Baradaran Rahimi V. Askari V.R. Quercetin a promising functional food additive against allergic Diseases: A comprehensive and mechanistic review. J. Funct. Foods 2024 116 106152 10.1016/j.jff.2024.106152
    [Google Scholar]
  60. Mlcek J. Jurikova T. Skrovankova S. Sochor J. Quercetin and its anti-allergic immune response. Molecules 2016 21 5 623 10.3390/molecules21050623 27187333
    [Google Scholar]
  61. Jafarinia M. Sadat Hosseini M. kasiri N. Fazel N. Fathi F. Ganjalikhani Hakemi M. Eskandari N. Quercetin with the potential effect on allergic diseases. Allergy Asthma Clin. Immunol. 2020 16 1 36 10.1186/s13223‑020‑00434‑0 32467711
    [Google Scholar]
  62. Fania L. Moretta G. Antonelli F. Scala E. Abeni D. Albanesi C. Madonna S. Multiple roles for cytokines in atopic dermatitis: From pathogenic mediators to endotype-specific biomarkers to therapeutic targets. Int. J. Mol. Sci. 2022 23 5 2684 10.3390/ijms23052684 35269828
    [Google Scholar]
  63. Tanaka Y. Furuta A. Asano K. Kobayashi H. Modulation of Th1/Th2 cytokine balance by quercetin in vitro. Medicines 2020 7 8 46 10.3390/medicines7080046 32751563
    [Google Scholar]
  64. Hou D.D. Zhang W. Gao Y.L. Sun Y. Wang H.X. Qi R.Q. Chen H.D. Gao X.H. Anti-inflammatory effects of quercetin in a mouse model of MC903-induced atopic dermatitis. Int. Immunopharmacol. 2019 74 105676 10.1016/j.intimp.2019.105676 31181406
    [Google Scholar]
  65. Dębińska A. New treatments for atopic dermatitis targeting skin barrier repair via the regulation of flg expression. J. Clin. Med. 2021 10 11 2506 10.3390/jcm10112506 34198894
    [Google Scholar]
  66. Moosbrugger-Martinz V. Leprince C. Méchin M.C. Simon M. Blunder S. Gruber R. Dubrac S. Revisiting the roles of filaggrin in atopic dermatitis. Int. J. Mol. Sci. 2022 23 10 5318 10.3390/ijms23105318 35628125
    [Google Scholar]
  67. Farhan M. Rizvi A. The pharmacological properties of red grape polyphenol resveratrol: Clinical trials and obstacles in drug development. Nutrients 2023 15 20 4486 10.3390/nu15204486 37892561
    [Google Scholar]
  68. Lin M.H. Hung C.F. Sung H.C. Yang S.C. Yu H.P. Fang J.Y. The bioactivities of resveratrol and its naturally occurring derivatives on skin. Yao Wu Shi Pin Fen Xi 2021 29 1 15 38 10.38212/2224‑6614.1151 35696226
    [Google Scholar]
  69. Carlucci C.D. Hui Y. Chumanevich A.P. Robida P.A. Fuseler J.W. Sajish M. Nagarkatti P. Nagarkatti M. Oskeritzian C.A. Resveratrol protects against skin inflammation through inhibition of mast cell, sphingosine kinase-1, stat3 and nf-κb p65 signaling activation in mice. Int. J. Mol. Sci. 2023 24 7 6707 10.3390/ijms24076707 37047680
    [Google Scholar]
  70. Meng T. Xiao D. Muhammed A. Deng J. Chen L. He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021 26 1 229 10.3390/molecules26010229 33466247
    [Google Scholar]
  71. Ma C. Wang Y. Dong L. Li M. Cai W. Anti-inflammatory effect of resveratrol through the suppression of NF-κB and JAK/STAT signaling pathways. Acta Biochim. Biophys. Sin. 2015 47 3 207 213 10.1093/abbs/gmu135 25651848
    [Google Scholar]
  72. Marko M. Pawliczak R. Resveratrol and its derivatives in inflammatory skin disorders—atopic dermatitis and psoriasis: A review. Antioxidants 2023 12 11 1954 10.3390/antiox12111954 38001807
    [Google Scholar]
  73. Malaguarnera L. Influence of resveratrol on the immune response. Nutrients 2019 11 5 946 10.3390/nu11050946 31035454
    [Google Scholar]
  74. Karuppagounder V. Arumugam S. Thandavarayan R.A. Pitchaimani V. Sreedhar R. Afrin R. Harima M. Suzuki H. Nomoto M. Miyashita S. Suzuki K. Watanabe K. Resveratrol attenuates HMGB1 signaling and inflammation in house dust mite-induced atopic dermatitis in mice. Int. Immunopharmacol. 2014 23 2 617 623 10.1016/j.intimp.2014.10.014 25466270
    [Google Scholar]
  75. Zhang W. Tang R. Ba G. Li M. Lin H. Anti-allergic and anti-inflammatory effects of resveratrol via inhibiting TXNIP-oxidative stress pathway in a mouse model of allergic rhinitis. World Allergy Organ. J. 2020 13 10 100473 10.1016/j.waojou.2020.100473 33133334
    [Google Scholar]
  76. Caglayan Sozmen S. Karaman M. Cilaker Micili S. Isik S. Arikan Ayyildiz Z. Bagriyanik A. Uzuner N. Karaman O. Resveratrol ameliorates 2,4-dinitrofluorobenzene-induced atopic dermatitis-like lesions through effects on the epithelium. PeerJ 2016 4 1889 10.7717/peerj.1889 27069818
    [Google Scholar]
  77. Sharifi-Rad J. Rayess Y.E. Rizk A.A. Sadaka C. Zgheib R. Zam W. Sestito S. Rapposelli S. Neffe-Skocińska K. Zielińska D. Salehi B. Setzer W.N. Dosoky N.S. Taheri Y. El Beyrouthy M. Martorell M. Ostrander E.A. Suleria H.A.R. Cho W.C. Maroyi A. Martins N. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 2020 11 01021 10.3389/fphar.2020.01021 33041781
    [Google Scholar]
  78. Mohammadi S.G. Kafeshani M. Bagherniya M. Kesharwani P. Sahebkar A. Exploring Curcumin’s healing properties in the treatment of atopic dermatitis. Food Biosci. 2024 59 104144 10.1016/j.fbio.2024.104144
    [Google Scholar]
  79. Vollono L. Falconi M. Gaziano R. Iacovelli F. Dika E. Terracciano C. Bianchi L. Campione E. Potential of curcumin in skin disorders. Nutrients 2019 11 9 2169 10.3390/nu11092169 31509968
    [Google Scholar]
  80. Phan T.T. See P. Lee S.T. Chan S.Y. Protective effects of curcumin against oxidative damage on skin cells in vitro: Its implication for wound healing. J. Trauma 2001 51 5 927 931 10.1097/00005373‑200111000‑00017 11706342
    [Google Scholar]
  81. Lin T.K. Zhong L. Santiago J. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int. J. Mol. Sci. 2017 19 1 70 10.3390/ijms19010070 29280987
    [Google Scholar]
  82. Kumari A. Raina N. Wahi A. Goh K.W. Sharma P. Nagpal R. Jain A. Ming L.C. Gupta M. Wound-healing effects of curcumin and its nanoformulations: A comprehensive review. Pharmaceutics 2022 14 11 2288 10.3390/pharmaceutics14112288 36365107
    [Google Scholar]
  83. Peng Y. Ao M. Dong B. Jiang Y. Yu L. Chen Z. Hu C. Xu R. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des. Devel. Ther. 2021 15 4503 4525 10.2147/DDDT.S327378 34754179
    [Google Scholar]
  84. Haftcheshmeh S.M. Mirhafez S.R. Abedi M. Heydarlou H. Shakeri A. Mohammadi A. Sahebkar A. Therapeutic potency of curcumin for allergic diseases: A focus on immunomodulatory actions. Biomed. Pharmacother. 2022 154 113646 10.1016/j.biopha.2022.113646 36063645
    [Google Scholar]
  85. Hu P. Li K. Peng X.X. Kan Y. Yao T.J. Wang Z.Y. Li Z. Liu H.Y. Cai D. Curcumin derived from medicinal homologous foods: Its main signals in immunoregulation of oxidative stress, inflammation, and apoptosis. Front. Immunol. 2023 14 1233652 10.3389/fimmu.2023.1233652 37497225
    [Google Scholar]
  86. Kong Z.L. Sudirman S. Lin H.J. Chen W.N. In vitro anti-inflammatory effects of curcumin on mast cell-mediated allergic responses via inhibiting FcεRI protein expression and protein kinase C delta translocation. Cytotechnology 2020 72 1 81 95 10.1007/s10616‑019‑00359‑6 31773429
    [Google Scholar]
  87. Mokra D. Joskova M. Mokry J. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int. J. Mol. Sci. 2022 24 1 340 10.3390/ijms24010340 36613784
    [Google Scholar]
  88. Chiu Y.H. Wu Y.W. Hung J.I. Chen M.C. Epigallocatechin gallate/L-ascorbic acid–loaded poly-γ-glutamate microneedles with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis. Acta Biomater. 2021 130 223 233 10.1016/j.actbio.2021.05.032 34087444
    [Google Scholar]
  89. Payne A Nahashon S Taka E Adinew GM Soliman KFA Epigallocatechin-3-gallate (EGCG): New therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules 2022 12 3 371 10.3390/biom12030371
    [Google Scholar]
  90. He J. Xu L. Yang L. Wang X. Epigallocatechin gallate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity. Med. Sci. Monit. 2018 24 8198 8206 10.12659/MSM.911175 30428482
    [Google Scholar]
  91. Mokra D. Adamcakova J. Mokry J. Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants 2022 11 8 1566 10.3390/antiox11081566 36009285
    [Google Scholar]
  92. Noh S.U. Cho E.A. Kim H.O. Park Y.M. Epigallocatechin-3-gallate improves Dermatophagoides pteronissinus extract-induced atopic dermatitis-like skin lesions in NC/Nga mice by suppressing macrophage migration inhibitory factor. Int. Immunopharmacol. 2008 8 9 1172 1182 10.1016/j.intimp.2008.04.002 18602062
    [Google Scholar]
  93. Hossen I. Kaiqi Z. Hua W. Junsong X. Mingquan H. Yanping C. Epigallocatechin gallate (EGCG) inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells via modulating nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) signaling pathway. Food Sci. Nutr. 2023 11 8 4634 4650 10.1002/fsn3.3427 37576060
    [Google Scholar]
  94. Joo S.Y. Song Y.A. Park Y.L. Myung E. Chung C.Y. Park K.J. Cho S.B. Lee W.S. Kim H.S. Rew J.S. Kim N.S. Joo Y.E. Epigallocatechin-3-gallate inhibits LPS-induced NF-ΚB and MAPK signaling pathways in bone marrow-derived macrophages. Gut Liver 2012 6 2 188 196 10.5009/gnl.2012.6.2.188 22570747
    [Google Scholar]
  95. Shimamura Y. Noaki R. Kurokawa A. Utsumi M. Hirai C. Kan T. Masuda S. Effect of (−)-Epigallocatechin Gallate on Activation of JAK/STAT Signaling Pathway by Staphylococcal Enterotoxin A. Toxins (Basel) 2021 13 9 609 10.3390/toxins13090609 34564613
    [Google Scholar]
  96. Huang I.H. Chung W.H. Wu P.C. Chen C.B. JAK–STAT signaling pathway in the pathogenesis of atopic dermatitis: An updated review. Front. Immunol. 2022 13 1068260 10.3389/fimmu.2022.1068260 36569854
    [Google Scholar]
  97. Chamcheu J.C. Siddiqui I.A. Adhami V.M. Esnault S. Bharali D.J. Babatunde A.S. Adame S. Massey R.J. Wood G.S. Longley B.J. Mousa S.A. Mukhtar H. Chitosan-based nanoformulated (–)-epigallocatechin-3-gallate (EGCG) modulates human keratinocyte-induced responses and alleviates imiquimod-induced murine psoriasiform dermatitis. Int. J. Nanomedicine 2018 13 4189 4206 10.2147/IJN.S165966 30057446
    [Google Scholar]
  98. Fukutomi R. Ohishi T. Koyama Y. Pervin M. Nakamura Y. Isemura M. Beneficial effects of epigallocatechin-3-O-gallate, chlorogenic acid, resveratrol, and curcumin on neurodegenerative diseases. Molecules 2021 26 2 415 10.3390/molecules26020415 33466849
    [Google Scholar]
  99. Wu S Pang Y He Y Zhang X Peng L Guo J A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds. Biomed. Pharmacoth. 2021 140 111741 10.1016/j.biopha.2021.111741
    [Google Scholar]
  100. Okoshi K Ito S Matsuoka M Kinugasa Y Shimizu E Tanaka K Combination of a topical anti-inflammatory drug and a moisturizer, both with a lamellar structure containing synthetic pseudo-ceramides, for the treatment of patients with mild-to-moderate atopic dermatitis. Clin. Cosmet. Investig. Dermatol. 2024 17 1569 1578 10.2147/CCID.S467934
    [Google Scholar]
  101. Surai P. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants 2015 4 1 204 247 10.3390/antiox4010204 26785346
    [Google Scholar]
  102. Vostálová J. Tinková E. Biedermann D. Kosina P. Ulrichová J. Rajnochová Svobodová A. Skin protective activity of silymarin and its flavonolignans. Molecules 2019 24 6 1022 10.3390/molecules24061022 30875758
    [Google Scholar]
  103. Zhang Z. Li X. Sang S. McClements D.J. Chen L. Long J. Jiao A. Wang J. Jin Z. Qiu C. A review of nanostructured delivery systems for the encapsulation, protection, and delivery of silymarin: An emerging nutraceutical. Food Res. Int. 2022 156 111314 10.1016/j.foodres.2022.111314 35651070
    [Google Scholar]
  104. Fidrus E. Ujhelyi Z. Fehér P. Hegedűs C. Janka E.A. Paragh G. Vasas G. Bácskay I. Remenyik É. Silymarin: Friend or foe of uv exposed keratinocytes? Molecules 2019 24 9 1652 10.3390/molecules24091652 31035502
    [Google Scholar]
  105. Boira C. Chapuis E. Scandolera A. Reynaud R. Silymarin alleviates oxidative stress and inflammation induced by uv and air pollution in human epidermis and activates β-endorphin release through cannabinoid receptor type 2. Cosmetics 2024 11 1 30 10.3390/cosmetics11010030
    [Google Scholar]
  106. Ranjan S. Gautam A. Pharmaceutical prospects of Silymarin for the treatment of neurological patients: An updated insight. Front. Neurosci. 2023 17 1159806 10.3389/fnins.2023.1159806 37274201
    [Google Scholar]
  107. Ruel Y. Moawad F. Alsarraf J. Pichette A. Legault J. Brambilla D. Pouliot R. Antiproliferative and anti-inflammatory effects of the polyphenols phloretin and balsacone C in a coculture of t cells and psoriatic keratinocytes. Int. J. Mol. Sci. 2024 25 11 5639 10.3390/ijms25115639 38891824
    [Google Scholar]
  108. Surai P.F. Surai A. Earle-Payne K. Silymarin and Inflammation: Food for Thoughts. Antioxidants 2024 13 1 98 10.3390/antiox13010098 38247522
    [Google Scholar]
  109. Karimi G. Hassanzadeh-Josan S. Memar B. Esmaeili S.A. Riahi-Zanjani B. Immunomodulatory effects of silymarin after subacute exposure to mice: A tiered approach immunotoxicity screening. J. Pharmacopuncture 2018 21 2 90 97 10.3831/KPI.2018.21.011 30151309
    [Google Scholar]
  110. Mota J. Faria-Silva C. Resendes A. Santos M.I. Carvalheiro M.C. Lima A. Simões S. Silymarin inhibits dermal gelatinolytic activity and reduces cutaneous inflammation. Nat. Prod. Res. 2024 1 12 10.1080/14786419.2024.2347452 38684022
    [Google Scholar]
  111. Oršolić N. Allergic inflammation: Effect of propolis and its flavonoids. Molecules 2022 27 19 6694 10.3390/molecules27196694 36235230
    [Google Scholar]
  112. Kawakami T. Ando T. Kimura M. Wilson B.S. Kawakami Y. Mast cells in atopic dermatitis. Curr. Opin. Immunol. 2009 21 6 666 678 10.1016/j.coi.2009.09.006 19828304
    [Google Scholar]
  113. Henriet E. Abdallah F. Laurent Y. Guimpied C. Clement E. Simon M. Pichon C. Baril P. Targeting TGF-β1/miR-21 pathway in keratinocytes reveals protective effects of silymarin on imiquimod-induced psoriasis mouse model. JID Innov. 2023 3 3 100175 10.1016/j.xjidi.2022.100175 36968096
    [Google Scholar]
  114. Segarra S. Naiken T. Garnier J. Hamon V. Coussay N. Bernard F.X. Enhanced in vitro expression of filaggrin and antimicrobial peptides following application of glycosaminoglycans and a sphingomyelin-rich lipid extract. Vet. Sci. 2022 9 7 323 10.3390/vetsci9070323 35878340
    [Google Scholar]
  115. Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim. Sci. J. 2020 91 1 13357 10.1111/asj.13357 32219956
    [Google Scholar]
  116. Kang J.S. Yoon W.K. Han M.H. Lee H. Lee C.W. Lee K.H. Han S.B. Lee K. Yang K.H. Park S.K. Kim H.M. Inhibition of atopic dermatitis by topical application of silymarin in NC/Nga mice. Int. Immunopharmacol. 2008 8 10 1475 1480 10.1016/j.intimp.2008.06.004 18593606
    [Google Scholar]
  117. Kesharwani S.S. Jain V. Dey S. Sharma S. Mallya P. Kumar V.A. An overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J. Drug Deliv. Sci. Technol. 2020 60 102021 10.1016/j.jddst.2020.102021
    [Google Scholar]
  118. Soleimani V. Delghandi P.S. Moallem S.A. Karimi G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytother. Res. 2019 33 6 1627 1638 10.1002/ptr.6361 31069872
    [Google Scholar]
  119. Chanchal D.K. Singh K. Bhushan B. Chaudhary J.S. Kumar S. Varma A.K. Agnihotri N. Garg A. An updated review of Chinese skullcap (Scutellaria baicalensis): Emphasis on phytochemical constituents and pharmacological attributes. Pharmacol. Res. Mod. Chin. Med. 2023 9 100326 10.1016/j.prmcm.2023.100326
    [Google Scholar]
  120. Wen Y. Wang Y. Zhao C. Zhao B. Wang J. The pharmacological efficacy of baicalin in inflammatory diseases. Int. J. Mol. Sci. 2023 24 11 9317 10.3390/ijms24119317 37298268
    [Google Scholar]
  121. Liang W. Huang X. Chen W. The effects of baicalin and baicalein on cerebral ischemia: A review. Aging Dis. 2017 8 6 850 867 10.14336/AD.2017.0829 29344420
    [Google Scholar]
  122. Wang P.W. Lin T.Y. Yang P.M. Fang J.Y. Li W.T. Pan T.L. Therapeutic efficacy of Scutellaria baicalensis Georgi against psoriasis- like lesions via regulating the responses of keratinocyte and macrophage. Biomed. Pharmacother. 2022 155 113798 10.1016/j.biopha.2022.113798 36271574
    [Google Scholar]
  123. Liang J. Zhou Y. Cheng X. Chen J. Cao H. Guo X. Zhang C. Zhuang Y. Hu G. Baicalin attenuates h2o2-induced oxidative stress by regulating the ampk/nrf2 signaling pathway in IPEC-J2 cells. Int. J. Mol. Sci. 2023 24 11 9435 10.3390/ijms24119435 37298392
    [Google Scholar]
  124. Wang L. Xian Y.F. Loo S.K.F. Ip S.P. Yang W. Chan W.Y. Lin Z.X. Wu J.C.Y. Baicalin ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice through modulating skin barrier function, gut microbiota and JAK/STAT pathway. Bioorg. Chem. 2022 119 105538 10.1016/j.bioorg.2021.105538 34929516
    [Google Scholar]
  125. Liao H. Ye J. Gao L. Liu Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed. Pharmacother. 2021 133 110917 10.1016/j.biopha.2020.110917 33217688
    [Google Scholar]
  126. Bao M. Liang M. Sun X. Mohyuddin S.G. Chen S. Wen J. Yong Y. Ma X. Yu Z. Ju X. Liu X. Baicalin alleviates LPS-induced oxidative stress via NF-κB and Nrf2–HO1 signaling pathways in IPEC-J2 cells. Front. Vet. Sci. 2022 8 808233 10.3389/fvets.2021.808233 35146015
    [Google Scholar]
  127. Zhao J. Wang Z. Yuan Z. Lv S. Su Q. Baicalin ameliorates atherosclerosis by inhibiting NLRP3 inflammasome in apolipoprotein E-deficient mice. Diab. Vasc. Dis. Res. 2020 17 6 1479164120977441 10.1177/1479164120977441 33269624
    [Google Scholar]
  128. Jung S. Lee S.Y. Choi D. See H.J. Kwon D.A. Do J.R. Shon D.H. Shin H. Skullcap (Scutellaria Baicalensis) hexane fraction inhibits the permeation of ovalbumin and regulates TH1/2 immune responses. Nutrients 2017 9 11 1184 10.3390/nu9111184 29143798
    [Google Scholar]
  129. Bae M.J. Shin H.S. See H.J. Jung S.Y. Kwon D.A. Shon D.H. Baicalein induces CD4+Foxp3+ T cells and enhances intestinal barrier function in a mouse model of food allergy. Sci. Rep. 2016 6 1 32225 10.1038/srep32225 27561877
    [Google Scholar]
  130. Lee J. Seo Y.S. Lee A.Y. Nam H.H. Ji K.Y. Kim T. Lee S. Hyun J.W. Moon C. Cho Y. Jung B. Kim J.S. Chae S. Anti-atopic effect of Scutellaria baicalensis and Raphanus sativus on atopic dermatitis-like lesions in mice by experimental verification and compound-target prediction. Pharmaceuticals 2024 17 3 269 10.3390/ph17030269 38543055
    [Google Scholar]
  131. Hung C.H. Wang C.N. Cheng H.H. Liao J.W. Chen Y.T. Chao Y.W. Jiang J. Lee C.C. Baicalin ameliorates imiquimod-induced psoriasis-like inflammation in mice. Planta Med. 2018 84 15 1110 1117 10.1055/a‑0622‑8242 29763944
    [Google Scholar]
  132. Mir-Palomo S. Nácher A. Díez-Sales O. Ofelia Vila Busó M.A. Caddeo C. Manca M.L. Manconi M. Fadda A.M. Saurí A.R. Inhibition of skin inflammation by baicalin ultradeformable vesicles. Int. J. Pharm. 2016 511 1 23 29 10.1016/j.ijpharm.2016.06.136 27374324
    [Google Scholar]
  133. Chen Y. Wang Y. Song S. Zhang X. Wu L. Wu J. Li X. Topical application of baicalin combined with echinacoside ameliorates psoriatic skin lesions by suppressing the inflammation-related tnf signaling pathway and the angiogenesis-related vegf signaling pathway. ACS Omega 2023 8 43 40260 40276 10.1021/acsomega.3c04281 37929119
    [Google Scholar]
  134. Yun M.Y. Yang J.H. Kim D.K. Cheong K.J. Song H.H. Kim D.H. Cheong K.J. Kim Y.I. Shin S.C. Therapeutic effects of baicalein on atopic dermatitis-like skin lesions of nc/nga mice induced by dermatophagoides pteronyssinus. Int. Immunopharmacol. 2010 10 9 1142 1148 10.1016/j.intimp.2010.06.020 20621172
    [Google Scholar]
  135. Calderón-Oliver M. Ponce-Alquicira E. Chapter 7 - fruits: A source of polyphenols and health benefits. Natural and artificial flavoring agents and food dyes United States Academic Press 2018 189 228 10.1016/B978‑0‑12‑811518‑3.00007‑7
    [Google Scholar]
  136. Tang L. Gao J. Li X. Cao X. Zhou B. Molecular mechanisms of luteolin against atopic dermatitis based on network pharmacology and in vivo experimental validation. Drug Des. Devel. Ther. 2022 16 4205 4221 10.2147/DDDT.S387893 36530790
    [Google Scholar]
  137. Peng Z. Zhang W. Hong H. Liu L. Effect of luteolin on oxidative stress and inflammation in the human osteoblast cell line hFOB1.19 in an inflammatory microenvironment. BMC Pharmacol. Toxicol. 2024 25 1 40 10.1186/s40360‑024‑00764‑4 38997762
    [Google Scholar]
  138. Ntalouka F. Tsirivakou A. Luteolin: A promising natural agent in management of pain in chronic conditions. Front. Pain Res. 2023 4 1114428 10.3389/fpain.2023.1114428 36937566
    [Google Scholar]
  139. Gendrisch F. Esser P.R. Schempp C.M. Wölfle U. Luteolin as a modulator of skin aging and inflammation. Biofactors 2021 47 2 170 180 10.1002/biof.1699 33368702
    [Google Scholar]
  140. Chen C.Y. Peng W.H. Tsai K.D. Hsu S.L. Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci. 2007 81 23-24 1602 1614 10.1016/j.lfs.2007.09.028 17977562
    [Google Scholar]
  141. Kim J.H. Park T.J. Park J.S. Kim M.S. Chi W.J. Kim S.Y. Luteolin-3′-O-Phosphate inhibits lipopolysaccharide-induced inflammatory responses by regulating NF-ΚB/Mapk cascade signaling in RAW 264.7 cells. Molecules 2021 26 23 7393 10.3390/molecules26237393 34885976
    [Google Scholar]
  142. Almatroodi S.A. Almatroudi A. Alharbi H.O.A. Khan A.A. Rahmani A.H. Effects and mechanisms of luteolin, a plant-based flavonoid, in the prevention of cancers via modulation of inflammation and cell signaling molecules. Molecules 2024 29 5 1093 10.3390/molecules29051093 38474604
    [Google Scholar]
  143. Jeon I. Kim H. Kang H. Lee H.S. Jeong S. Kim S. Jang S. Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves. Molecules 2014 19 6 6941 6951 10.3390/molecules19066941 24871572
    [Google Scholar]
  144. Čižmárová B. Hubková B. Tomečková V. Birková A. Flavonoids as promising natural compounds in the prevention and treatment of selected skin diseases. Int. J. Mol. Sci. 2023 24 7 6324 10.3390/ijms24076324 37047297
    [Google Scholar]
  145. Mu J. Ma H. Chen H. Zhang X. Ye M. Luteolin prevents UVB-induced skin photoaging damage by modulating SIRT3/ROS/ MAPK signaling: An in vitro and in vivo studies. Front. Pharmacol. 2021 12 728261 10.3389/fphar.2021.728261 34526903
    [Google Scholar]
  146. Gugliandolo E. Palma E. Cordaro M. D’Amico R. Peritore A.F. Licata P. Crupi R. Canine atopic dermatitis: Role of luteolin as new natural treatment. Vet. Med. Sci. 2020 6 4 926 932 10.1002/vms3.325 32741111
    [Google Scholar]
  147. Ziyan L. Yongmei Z. Nan Z. Ning T. Baolin L. Evaluation of the anti-inflammatory activity of luteolin in experimental animal models. Planta Med. 2007 73 3 221 226 10.1055/s‑2007‑967122 17354164
    [Google Scholar]
  148. Kelepouri D. Mavropoulos A. Bogdanos D.P. Sakkas L.I. The role of flavonoids in inhibiting th17 responses in inflammatory arthritis. J. Immunol. Res. 2018 2018 1 1 11 10.1155/2018/9324357 29693024
    [Google Scholar]
  149. Salehi B. Venditti A. Sharifi-Rad M. Kręgiel D. Sharifi-Rad J. Durazzo A. Lucarini M. Santini A. Souto E.B. Novellino E. Antolak H. Azzini E. Setzer W.N. Martins N. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019 20 6 1305 10.3390/ijms20061305 30875872
    [Google Scholar]
  150. Allemailem K.S. Almatroudi A. Alharbi H.O.A. AlSuhaymi N. Alsugoor M.H. Aldakheel F.M. Khan A.A. Rahmani A.H. Apigenin: A bioflavonoid with a promising role in disease prevention and treatment. Biomedicines 2024 12 6 1353 10.3390/biomedicines12061353 38927560
    [Google Scholar]
  151. Guo W. Xing Y. Luo X. Li F. Ren M. Liang Y. Reactive oxygen species: A crosslink between plant and human eukaryotic cell systems. Int. J. Mol. Sci. 2023 24 17 13052 10.3390/ijms241713052 37685857
    [Google Scholar]
  152. Hosseinzade A. Sadeghi O. Naghdipour Biregani A. Soukhtehzari S. Brandt G.S. Esmaillzadeh A. Immunomodulatory effects of flavonoids: Possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front. Immunol. 2019 10 51 10.3389/fimmu.2019.00051 30766532
    [Google Scholar]
  153. Park C.H. Min S.Y. Yu H.W. Kim K. Kim S. Lee H.J. Kim J.H. Park Y.J. Effects of apigenin on RBL-2H3, RAW264.7, and HaCaT cells: Anti-allergic, anti-inflammatory, and skin-protective activities. Int. J. Mol. Sci. 2020 21 13 4620 10.3390/ijms21134620 32610574
    [Google Scholar]
  154. Yano S. Umeda D. Yamashita S. Yamada K. Tachibana H. Dietary apigenin attenuates the development of atopic dermatitis-like skin lesions in NC/Nga mice. J. Nutr. Biochem. 2009 20 11 876 881 10.1016/j.jnutbio.2008.08.002 18993046
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128368673250611114044
Loading
/content/journals/cpd/10.2174/0113816128368673250611114044
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test