Skip to content
2000
image of Effect of the Addition of Jujuboside A from Semen Ziziphi Spinosae on Renal Inflammation in Diabetic Mice

Abstract

Background

Diabetic Nephropathy (DN) is a Chronic Kidney Disease (CKD), and its main pathological changes are renal tubular injury and glomerulosclerosis. (SZS) is the seed of var. (Bunge) Hu ex H.F. Chow. As a triterpene saponin, Jujuboside A (Ju A) is the main active substance isolated from SZS. This study sought to investigate the potential effect and mechanism of Jujuboside A against DN.

Methods

The anti-apoptotic effects of Ju A on renal parenchymal cells of DN were examined by in and in studies. Molecular docking and Molecular Dynamics (MD) simulation revealed that Ju A could bind to TNF-α and Caspase-3 forming stable receptor-ligand complexes, respectively. Immunofluorescence (IF) staining and ELISA detection were carried out to investigate the potential mechanisms by which Ju A exerted its amelioration effect on DN.

Results

Our study showed that, accompanied by the restored renal function, Ju A inhibited apoptosis of renal tubules and glomeruli in and in . Network pharmacology revealed that 42 overlapping targets were related to Ju A and DN. Among them, IL6, IL1B, TNF, VEGFA, EGFR, ALB, IGF1, FGF2, CASP3, and ESR1 were the top 10 targets. Ju A could bind to TNF-α and Caspase-3 forming stable receptor-ligand complexes, respectively, as demonstrated by molecular docking and MD simulation. Ju A decreased the protein levels of TNF-α and IL-1β in renal tubules and glomeruli of diabetic mice, and in HG-cultured HK-2 cells and podocytes, leading to the alleviation of inflammation. Besides, the up-regulated relative phosphorylation levels of NF-κB p65 and cleaved caspase-3 were also down-regulated by Ju A and .

Discussion

The research showed that Ju A had a high affinity for Caspase-3 and TNF-α, and the underlying mechanism of Ju A against DN was the inhibition of apoptosis in renal tubular epithelial cells and podocytes. These findings strengthened the evidence that Ju A could be a potential treatment strategy for DN and offered opportunities for therapeutic advances in the field.

Conclusion

Ju A could inhibit apoptosis and alleviate inflammation of renal parenchymal cells by inactivating the TNF-α/NF-κB p65/Caspase-3 signaling pathway, exerting renal protective effect against DN.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128367936251020114651
2026-01-07
2026-01-27
Loading full text...

Full text loading...

References

  1. Anders H.J. Huber T.B. Isermann B. Schiffer M. CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease. Nat. Rev. Nephrol. 2018 14 6 361 377 10.1038/s41581‑018‑0001‑y 29654297
    [Google Scholar]
  2. Thomas M.C. Cooper M.E. Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat. Rev. Nephrol. 2016 12 2 73 81 10.1038/nrneph.2015.173 26553517
    [Google Scholar]
  3. Hovind P. Rossing P. Tarnow L. Smidt U.M. Parving H.H. Remission and regression in the nephropathy of type 1 diabetes when blood pressure is controlled aggressively11See Editorial by Steffes, p. 378. Kidney Int. 2001 60 1 277 283 10.1046/j.1523‑1755.2001.00797.x 11422762
    [Google Scholar]
  4. Chen J. Liu Q. He J. Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front. Immunol. 2022 13 958790 10.3389/fimmu.2022.958790 36045667
    [Google Scholar]
  5. Yang T. Shu F. Yang H. YY1: A novel therapeutic target for diabetic nephropathy orchestrated renal fibrosis. Metabolism 2019 96 33 45 10.1016/j.metabol.2019.04.013 31028762
    [Google Scholar]
  6. Yang T. Hu Y. Chen S. YY1 inactivated transcription co-regulator PGC-1α to promote mitochondrial dysfunction of early diabetic nephropathy-associated tubulointerstitial fibrosis. Cell Biol. Toxicol. 2023 39 2 391 413 10.1007/s10565‑022‑09711‑7 35445903
    [Google Scholar]
  7. Ricciardi C.A. Gnudi L. Kidney disease in diabetes: From mechanisms to clinical presentation and treatment strategies. Metabolism 2021 124 154890 10.1016/j.metabol.2021.154890 34560098
    [Google Scholar]
  8. Doshi S.M. Friedman A.N. Diagnosis and management of type 2 diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 2017 12 8 1366 1373 10.2215/CJN.11111016 28280116
    [Google Scholar]
  9. Jiang S. Fang J. Yu T. Li W. Angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers for renal outcomes and mortality in diabetic kidney disease. Eur. J. Intern. Med. 2021 85 127 129 10.1016/j.ejim.2020.11.017 33250340
    [Google Scholar]
  10. Filippatos T.D. Panagiotopoulou T.V. Elisaf M.S. Adverse effects of GLP-1 receptor agonists. Rev. Diabet. Stud. 2014 11 3-4 202 230 10.1900/RDS.2014.11.202 26177483
    [Google Scholar]
  11. Singh M. Kumar A. Risks associated with SGLT2 inhibitors: An overview. Curr. Drug Saf. 2018 13 84 91 10.2174/1574886313666180226103408
    [Google Scholar]
  12. Trujillo J. Safety and tolerability of once‐weekly GLP‐1 receptor agonists in type 2 diabetes. J. Clin. Pharm. Ther. 2020 45 S1 43 60 10.1111/jcpt.13225 32910487
    [Google Scholar]
  13. Tang G. Li S. Zhang C. Chen H. Wang N. Feng Y. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm. Sin. B 2021 11 9 2749 2767 10.1016/j.apsb.2020.12.020 34589395
    [Google Scholar]
  14. Sun G. Li C. Cui W. Review of herbal traditional chinese medicine for the treatment of diabetic nephropathy. J. Diabetes Res. 2016 2016 1 18 10.1155/2016/5749857 26649322
    [Google Scholar]
  15. Wen Y. Yan M. Zhang B. Li P. Chinese medicine for diabetic kidney disease in C hina. Nephrology 2017 22 S4 50 55 10.1111/nep.13149 29155500
    [Google Scholar]
  16. Huang D.D. Shi G. Jiang Y. Yao C. Zhu C. A review on the potential of resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed. Pharmacother. 2020 125 109767 10.1016/j.biopha.2019.109767 32058210
    [Google Scholar]
  17. Jiashuo W.U. Fangqing Z. Zhuangzhuang L.I. Weiyi J. Yue S. Integration strategy of network pharmacology in traditional chinese medicine: A narrative review. J. Tradit. Chin. Med. 2022 42 3 479 486 10.19852/j.cnki.jtcm.20220408.003 35610020
    [Google Scholar]
  18. Zhang J. Li S. Lin W. Pan R. Dai Y. Xia Y. Tripterygium glycoside tablet attenuates renal function impairment in diabetic nephropathy mice by regulating triglyceride metabolism. J. Pharm. Biomed. Anal. 2022 221 115028 10.1016/j.jpba.2022.115028 36108463
    [Google Scholar]
  19. Chen J.C. Xiao H.H. Zhang Q. Jujuboside A inhibits oxidative stress damage and enhances immunomodulatory capacity of human umbilical cord mesenchymal stem cells through up-regulating IDO expression. Chin. J. Nat. Med. 2022 20 7 494 505 10.1016/S1875‑5364(22)60176‑6 35907648
    [Google Scholar]
  20. Dutta R.P. Patil M.B. Therapeutic potential of root and stem bark of wild medicinal plant Ziziphus mauritiana (Lamk.) against silica induced toxicity in Wistar albino rats. J. Ethnopharmacol. 2018 224 111 118 10.1016/j.jep.2018.04.045 29727735
    [Google Scholar]
  21. Farhadnejad H. Asghari G. Hedayati M. Effect of Ziziphus jujube on cardiometabolic factors and systemic inflammation in type 2 diabetic patients: A randomized controlled trial. Clin. Nutr. ESPEN 2022 49 53 60 10.1016/j.clnesp.2022.03.043 35623863
    [Google Scholar]
  22. Yazdanpanah Z. Ghadiri-Anari A. Mehrjardi A.V. Dehghani A. Zardini H.Z. Nadjarzadeh A. Effect of Ziziphus jujube fruit infusion on lipid profiles, glycaemic index and antioxidant status in type 2 diabetic patients: A randomized controlled clinical trial. Phytother. Res. 2017 31 5 755 762 10.1002/ptr.5796 28271568
    [Google Scholar]
  23. Zhong Y. Luo R. Liu Q. Jujuboside A ameliorates high fat diet and streptozotocin induced diabetic nephropathy via suppressing oxidative stress, apoptosis, and enhancing autophagy. Food Chem. Toxicol. 2022 159 112697 10.1016/j.fct.2021.112697 34826549
    [Google Scholar]
  24. Liu Y.Y. Li L. Ji B. Jujuboside A ameliorates tubulointerstitial fibrosis in diabetic mice through down-regulating the YY1/TGF-β1 signaling pathway. Chin. J. Nat. Med. 2022 20 9 656 668 10.1016/S1875‑5364(22)60200‑0 36162951
    [Google Scholar]
  25. Yang T. Peng Y. Shao Y. Mitochondria-dependent apoptosis was involved in the alleviation of Jujuboside A on diabetic kidney disease-associated renal tubular injury via YY1/PGC-1α signaling. Phytomedicine 2025 138 156411 10.1016/j.phymed.2025.156411
    [Google Scholar]
  26. Wang W. Huang Q. Chen Y. The novel FAT4 activator jujuboside A suppresses NSCLC tumorigenesis by activating HIPPO signaling and inhibiting YAP nuclear translocation. Pharmacol. Res. 2021 170 105723 10.1016/j.phrs.2021.105723 34116210
    [Google Scholar]
  27. Nogales C. Mamdouh Z.M. List M. Kiel C. Casas A.I. Schmidt H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022 43 2 136 150 10.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  28. Yuan H. Ma Q. Cui H. How can synergism of traditional medicines benefit from network pharmacology? Molecules 2017 22 7 1135 10.3390/molecules22071135 28686181
    [Google Scholar]
  29. Jiao G. Fan X. Wang Y. Dissection of the active ingredients and potential mechanism of Han-Shi-Yu-Fei-decoction in treating covid-19 based on in vivo substances profiling and clinical symptom-guided network pharmacology. ACS Omega 2022 7 41 36598 36610 10.1021/acsomega.2c04589 36268464
    [Google Scholar]
  30. Li R. Zhu Y. Yu M. Liu T. Zhao Y. Yu Z. Study on the mechanism of anti-acute lung injury of Shuanghuanglian oral liquid based on identification of transitional components in blood and network pharmacology. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022 1212 123498 10.1016/j.jchromb.2022.123498 36265206
    [Google Scholar]
  31. Bian Z. Zhang W. Tang J. Mechanisms underlying the action of ziziphi spinosae semen in the treatment of insomnia: A study involving network pharmacology and experimental validation. Front. Pharmacol. 2021 12 752211 10.3389/fphar.2021.752211 35002696
    [Google Scholar]
  32. Zhang J. Huang Q. Zhao R. Ma Z. A network pharmacology study on the Tripteryguim wilfordii Hook for treatment of Crohn’s disease. BMC Complement. Med. Ther. 2020 20 1 95 10.1186/s12906‑020‑02885‑9 32293395
    [Google Scholar]
  33. Song X. Zhang Y. Dai E. Wang L. Du H. Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking. Int. Immunopharmacol. 2020 80 106179 10.1016/j.intimp.2019.106179 31972422
    [Google Scholar]
  34. Meng X. Ma J. Kang A.N. Kang S.Y. Jung H.W. Park Y.K. A novel approach based on metabolomics coupled with intestinal flora analysis and network pharmacology to explain the mechanisms of action of bekhogainsam decoction in the improvement of symptoms of streptozotocin-induced diabetic nephropathy in mice. Front. Pharmacol. 2020 11 633 10.3389/fphar.2020.00633 32508632
    [Google Scholar]
  35. Zhang L. Han L. Wang X. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking. Biosci. Rep. 2021 41 6 BSR20203520 10.1042/BSR20203520 33634308
    [Google Scholar]
  36. Mou X. Zhou D.Y. Zhou D. Liu K. Chen L.J. Liu W.H. A bioinformatics and network pharmacology approach to the mechanisms of action of Shenxiao decoction for the treatment of diabetic nephropathy. Phytomedicine 2020 69 153192 10.1016/j.phymed.2020.153192 32200292
    [Google Scholar]
  37. An X. Fan D. Yin Z. Prediction of the potential mechanism of triptolide in improving diabetic nephropathy by utilizing a network pharmacology and molecular docking approach. Frontiers in Bioscience-Landmark 2022 27 3 94 10.31083/j.fbl2703094 35345326
    [Google Scholar]
  38. Liu J Sun T Liu S Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation Comput Biol Med 2022 151 Pt A 106298 10.1016/j.compbiomed.2022.106298 36403355
    [Google Scholar]
  39. Genheden S. Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015 10 5 449 461 10.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  40. Li X. Jiang H. Xu L. Sarsasapogenin restores podocyte autophagy in diabetic nephropathy by targeting GSK3β signaling pathway. Biochem. Pharmacol. 2021 192 114675 10.1016/j.bcp.2021.114675 34252407
    [Google Scholar]
  41. Yang T. Hu Y. Jiang W. YY1 was indispensable for the alleviation of quercetin on diabetic nephropathy-associated tubulointerstitial inflammation. Phytomedicine 2023 111 154659 10.1016/j.phymed.2023.154659 36641979
    [Google Scholar]
  42. Yang T. Heng C. Zhou Y. Targeting mammalian serine/] threonine-protein kinase 4 through Yes-associated protein/TEA domain transcription factor-mediated epithelial-mesenchymal transition ameliorates diabetic nephropathy orchestrated renal fibrosis. Metabolism 2020 108 154258 10.1016/j.metabol.2020.154258 32376130
    [Google Scholar]
  43. Liu Y. Li Y. Xu L. Quercetin attenuates podocyte apoptosis of diabetic nephropathy through targeting EGFR signaling. Front. Pharmacol. 2022 12 792777 10.3389/fphar.2021.792777 35069207
    [Google Scholar]
  44. Lu Q. Zhou Y. Hao M. The mTOR promotes oxidative stress-induced apoptosis of mesangial cells in diabetic nephropathy. Mol. Cell. Endocrinol. 2018 473 31 43 10.1016/j.mce.2017.12.012 29277549
    [Google Scholar]
  45. Afolabi O.A. Anyogu D.C. Hamed M.A. Odetayo A.F. Adeyemi D.H. Akhigbe R.E. Glutamine prevents upregulation of NF-kB signaling and caspase 3 activation in ischaemia/reperfusion-induced testicular damage: An animal model. Biomed. Pharmacother. 2022 150 113056 10.1016/j.biopha.2022.113056 35658227
    [Google Scholar]
  46. Alicic R.Z. Cox E.J. Neumiller J.J. Tuttle K.R. Incretin drugs in diabetic kidney disease: Biological mechanisms and clinical evidence. Nat. Rev. Nephrol. 2021 17 4 227 244 10.1038/s41581‑020‑00367‑2 33219281
    [Google Scholar]
  47. Hu Q. Jiang L. Yan Q. Zeng J. Ma X. Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol. Ther. 2023 241 108314 10.1016/j.pharmthera.2022.108314 36427568
    [Google Scholar]
  48. Shou C.H. Wang J. Zheng X.X. Guo D.W. Inhibitory effect of jujuboside A on penicillin sodium induced hyperactivity in rat hippocampal CA1 area in vitro. Acta Pharmacol. Sin. 2001 22 11 986 990 11749788
    [Google Scholar]
  49. You Z. Xia Q. Liang F. Effects on the expression of GABAA receptor subunits by jujuboside A treatment in rat hippocampal neurons. J. Ethnopharmacol. 2010 128 2 419 423 10.1016/j.jep.2010.01.034 20083184
    [Google Scholar]
  50. Liu Z. Zhao X. Liu B. Jujuboside A, a neuroprotective agent from semen Ziziphi Spinosae ameliorates behavioral disorders of the dementia mouse model induced by Aβ1–42. Eur. J. Pharmacol. 2014 738 206 213 10.1016/j.ejphar.2014.05.041 24886882
    [Google Scholar]
  51. Shou C. Feng Z. Wang J. Zheng X. The inhibitory effects of jujuboside A on rat hippocampus in vivo and in vitro. Planta Med. 2002 68 9 799 803 10.1055/s‑2002‑34398 12357390
    [Google Scholar]
  52. Zhang M. Qian C. Zheng Z.G. Jujuboside A promotes Aβ clearance and ameliorates cognitive deficiency in Alzheimer’s disease through activating Axl/HSP90/PPARγ pathway. Theranostics 2018 8 15 4262 4278 10.7150/thno.26164 30128052
    [Google Scholar]
  53. Wang C. Chen J. Xiao H. Jujuboside a promotes proliferation and neuronal differentiation of APPswe-overexpressing neural stem cells by activating Wnt/β-catenin signaling pathway. Neurosci. Lett. 2022 772 136473 10.1016/j.neulet.2022.136473 35077846
    [Google Scholar]
  54. Liu M. Liang K. Zhen J. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat. Commun. 2017 8 1 413 10.1038/s41467‑017‑00498‑4 28871079
    [Google Scholar]
  55. Langer S. Kreutz R. Eisenreich A. Metformin modulates apoptosis and cell signaling of human podocytes under high glucose conditions. J. Nephrol. 2016 29 6 765 773 10.1007/s40620‑015‑0258‑1 26733332
    [Google Scholar]
  56. Zhong Y. Liu J. Sun D. Dioscin relieves diabetic nephropathy via suppressing oxidative stress and apoptosis, and improving mitochondrial quality and quantity control. Food Funct. 2022 13 6 3660 3673 10.1039/D1FO02733F 35262539
    [Google Scholar]
  57. Li H.D. You Y.K. Shao B.Y. Roles and crosstalks of macrophages in diabetic nephropathy. Front. Immunol. 2022 13 1015142 10.3389/fimmu.2022.1015142 36405700
    [Google Scholar]
  58. Sanajou D. Ghorbani Haghjo A. Argani H. Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur. J. Pharmacol. 2018 833 158 164 10.1016/j.ejphar.2018.06.001 29883668
    [Google Scholar]
  59. Wada J. Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat. Rev. Nephrol. 2016 12 1 13 26 10.1038/nrneph.2015.175 26568190
    [Google Scholar]
  60. Wang Z. Xiao D. Ji Q. Jujuboside A attenuates sepsis-induced cardiomyopathy by inhibiting inflammation and regulating autophagy. Eur. J. Pharmacol. 2023 947 175451 10.1016/j.ejphar.2022.175451 36502962
    [Google Scholar]
  61. Wu X. Xu L.Y. Li E.M. Dong G. Application of molecular dynamics simulation in biomedicine. Chem. Biol. Drug Des. 2022 99 5 789 800 10.1111/cbdd.14038 35293126
    [Google Scholar]
  62. Kausar M.A. Anwar S. Eltayb W.A. MD simulation studies for selective phytochemicals as potential inhibitors against major biological targets of diabetic nephropathy. Molecules 2022 27 15 4980 10.3390/molecules27154980 35956932
    [Google Scholar]
  63. Baldwin A.S. The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu. Rev. Immunol. 1996 14 1 649 681 10.1146/annurev.immunol.14.1.649 8717528
    [Google Scholar]
  64. Huang S. Tan M. Guo F. Nepeta angustifolia C. Y. Wu improves renal injury in HFD/STZ-induced diabetic nephropathy and inhibits oxidative stress-induced apoptosis of mesangial cells. J. Ethnopharmacol. 2020 255 112771 10.1016/j.jep.2020.112771 32201300
    [Google Scholar]
  65. Huang Q. Chen H. Yin K. Formononetin attenuates renal tubular injury and mitochondrial damage in diabetic nephropathy partly via regulating sirt1/PGC-1α pathway. Front. Pharmacol. 2022 13 901234 10.3389/fphar.2022.901234 35645821
    [Google Scholar]
  66. Aladaileh S.H. Al-Swailmi F.K. Abukhalil M.H. Shalayel M.H. Galangin protects against oxidative damage and attenuates inflammation and apoptosis via modulation of NF-κB p65 and caspase-3 signaling molecules in a rat model of diabetic nephropathy. J. Physiol. Pharmacol. 2021 72 1 10.26402/jpp.2021.1.04 34099583
    [Google Scholar]
  67. Wahab N.A.A. Giribabu N. Kilari E.K. Salleh N. Abietic acid ameliorates nephropathy progression via mitigating renal oxidative stress, inflammation, fibrosis and apoptosis in high fat diet and low dose streptozotocin-induced diabetic rats. Phytomedicine 2022 107 154464 10.1016/j.phymed.2022.154464 36215789
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128367936251020114651
Loading
/content/journals/cpd/10.2174/0113816128367936251020114651
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Jujuboside A ; TNF-α ; apoptosis ; modern pharmacology ; diabetic nephropathy ; caspase-3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test