Skip to content
2000
image of Steatotic Shadows: The Dark Link Between Metabolic Dysfunction-associated 
Steatotic Liver Disease and Cancer Risk

Abstract

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) has become a worldwide health crisis. In addition to its effects on liver function, MASLD intensely increases the risk of hepatocellular carcinoma (HCC) and a number of extrahepatic cancers, including breast, colorectal, and pancreatic cancers. This review explores the complex network of molecular pathways linking MASLD to cancer, emphasizing the involvement of oxidative stress, lipotoxicity, insulin resistance, chronic inflammation, and mitochondrial dysfunction. Genetic variations in important genes, including PNPLA3, TM6SF2, and MBOAT7, increase this risk by hastening the course of the disease and making a person more susceptible to cancer. By shedding light on these important pathways and genetic factors, this research not only advances knowledge of the relationship between MASLD and cancer but also opens the door for novel treatment approaches meant to reduce the risk of cancer in MASLD patients. Millions of people afflicted by this deadly but silent illness may benefit from novel therapies that target these fundamental systems.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128366825250307043756
2025-04-04
2025-11-04
Loading full text...

Full text loading...

References

  1. Lonardo A. Leoni S. Alswat K.A. Fouad Y. History of nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2020 21 16 5888 32824337 10.3390/ijms21165888
    [Google Scholar]
  2. Satyam S.M. Grape seed extract and zinc containing nutritional food supplement decreases the oxidative stress induced by carbon tetrachloride in rats. Int. J. Pharm. Pharm. Sci. 2013 5 4 626 631
    [Google Scholar]
  3. Satyam S.M. Bairy L.K. Rehman A. Attia M. Ahmed L. Emad K. Jaafer Y. Bahaaeldin A. Unlocking Synergistic Hepatoprotection: Dapagliflozin and silymarin combination therapy modulates nuclear Erythroid 2-related factor 2/Heme Oxygenase-1 pathway in carbon Tetrachloride-Induced hepatotoxicity in wistar rats. Biology 2024 13 7 473 10.3390/biology13070473 39056668
    [Google Scholar]
  4. Satyam S.M. Bairy L.K. Rehman A. Farook M. Khan S. Nair A.A. Binu N.N. Yehya M. Khan M.M. Dapagliflozin: A promising strategy to combat cisplatin-induced hepatotoxicity in wistar rats. Biology 2024 13 9 672 10.3390/biology13090672 39336099
    [Google Scholar]
  5. The Lancet Gastroenterology Hepatology. Redefining non-alcoholic fatty liver disease: What’s in a name? Lancet Gastroenterol Hepatol 2020 5 5 419 10.1016/S2468‑1253(20)30091‑1 32277896
    [Google Scholar]
  6. Mitsala A. Tsalikidis C. Romanidis K. Pitiakoudis M. Non-alcoholic fatty liver disease and extrahepatic cancers: A wolf in sheep’s clothing? Curr. Oncol. 2022 29 7 4478 4510 10.3390/curroncol29070356 35877216
    [Google Scholar]
  7. Chalasani N. Younossi Z. Lavine J.E. Charlton M. Cusi K. Rinella M. Harrison S.A. Brunt E.M. Sanyal A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the study of liver diseases. Hepatology 2018 67 1 328 357 10.1002/hep.29367 28714183
    [Google Scholar]
  8. Salt W.B. II Nonalcoholic fatty liver disease (NAFLD): A comprehensive review. J. Insur. Med. 2004 36 1 27 41 15104027
    [Google Scholar]
  9. Szczepaniak L.S. Nurenberg P. Leonard D. Browning J.D. Reingold J.S. Grundy S. Hobbs H.H. Dobbins R.L. Magnetic resonance spectroscopy to measure hepatic triglyceride content: Prevalence of hepatic steatosis in the general population. Am. J. Physiol. Endocrinol. Metab. 2005 288 2 E462 E468 10.1152/ajpendo.00064.2004 15339742
    [Google Scholar]
  10. Singh S. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: A systematic review and meta-analysis of paired-biopsy studies Clin. Gastroenterol. Hepatol. 2015 13 4 643 654
    [Google Scholar]
  11. Rinella M.E. Lazarus J.V. Ratziu V. Francque S.M. Sanyal A.J. Kanwal F. Romero D. Abdelmalek M.F. Anstee Q.M. Arab J.P. Arrese M. Bataller R. Beuers U. Boursier J. Bugianesi E. Byrne C.D. Castro Narro G.E. Chowdhury A. Cortez-Pinto H. Cryer D.R. Cusi K. El-Kassas M. Klein S. Eskridge W. Fan J. Gawrieh S. Guy C.D. Harrison S.A. Kim S.U. Koot B.G. Korenjak M. Kowdley K.V. Lacaille F. Loomba R. Mitchell-Thain R. Morgan T.R. Powell E.E. Roden M. Romero-Gómez M. Silva M. Singh S.P. Sookoian S.C. Spearman C.W. Tiniakos D. Valenti L. Vos M.B. Wong V.W. Xanthakos S. Yilmaz Y. Younossi Z. Hobbs A. Villota-Rivas M. Newsome P.N. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023 78 6 1966 1986 10.1097/HEP.0000000000000520 37363821
    [Google Scholar]
  12. Rinella M.E. Sookoian S. From NAFLD to MASLD: Updated naming and diagnosis criteria for fatty liver disease. J. Lipid Res. 2024 65 1 100485 10.1016/j.jlr.2023.100485 38103785
    [Google Scholar]
  13. Hong S. Sun L. Hao Y. Li P. Zhou Y. Liang X. Hu J. Wei H. From NAFLD to MASLD: When metabolic comorbidity matters. Ann. Hepatol. 2024 29 2 101281 10.1016/j.aohep.2023.101281 38135250
    [Google Scholar]
  14. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). Obes. Facts 2024 17 4 374 444 10.1159/000539371 38852583
    [Google Scholar]
  15. Younossi Z.M. Kalligeros M. Henry L. Epidemiology of metabolic dysfunction-associated steatotic liver disease. Clin. Mol. Hepatol. 2024 39159948
    [Google Scholar]
  16. Kanwal F. Trends in the burden of nonalcoholic fatty liver disease in a United States cohort of veterans. Clin. Gastroenterol. Hepatol. 2016 14 2 301 308
    [Google Scholar]
  17. VanSaun M.N. Lee I.K. Washington M.K. Matrisian L. Gorden D.L. High fat diet induced hepatic steatosis establishes a permissive microenvironment for colorectal metastases and promotes primary dysplasia in a murine model. Am. J. Pathol. 2009 175 1 355 364 10.2353/ajpath.2009.080703 19541928
    [Google Scholar]
  18. Kasprzak A. Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. Int. J. Mol. Sci. 2021 22 12 6434 10.3390/ijms22126434 34208601
    [Google Scholar]
  19. Tümen D. Heumann P. Gülow K. Demirci C.N. Cosma L.S. Müller M. Kandulski A. Pathogenesis and current treatment strategies of hepatocellular carcinoma. Biomedicines 2022 10 12 3202 36551958
    [Google Scholar]
  20. Wang X. Zhang L. Dong B. Molecular mechanisms in MASLD/MASH-related HCC. Hepatology 2024
    [Google Scholar]
  21. Dornas W. Schuppan D. Mitochondrial oxidative injury: A key player in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2020 319 3 G400 G411 10.1152/ajpgi.00121.2020 32597705
    [Google Scholar]
  22. Galasso L. Cerrito L. Maccauro V. Termite F. Mignini I. Esposto G. Borriello R. Ainora M.E. Gasbarrini A. Zocco M.A. Inflammatory response in the pathogenesis and treatment of hepatocellular carcinoma: A double-edged weapon. Int. J. Mol. Sci. 2024 25 13 7191 10.3390/ijms25137191 39000296
    [Google Scholar]
  23. Park M.H. Hong J.T. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells 2016 5 2 15 27043634
    [Google Scholar]
  24. Sánchez P.S. Rigual M.D.M. Djouder N. Inflammatory and non-inflammatory mechanisms controlling cirrhosis development. Cancers 2021 13 20 5045 10.3390/cancers13205045 34680192
    [Google Scholar]
  25. Sanna C. Rosso C. Marietti M. Bugianesi E. Non-alcoholic fatty liver disease and extra-hepatic cancers. Int. J. Mol. Sci. 2016 17 5 717 10.3390/ijms17050717 27187365
    [Google Scholar]
  26. Bakshi H.A. Quinn G.A. Nasef M.M. Mishra V. Aljabali A.A.A. El-Tanani M. Serrano-Aroca Á. Webba Da Silva M. McCarron P.A. Tambuwala M.M. Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-kB/VEGF pathways. Cells 2022 11 9 1502 10.3390/cells11091502 35563808
    [Google Scholar]
  27. Bakshi H.A. Zoubi M.S.A. Hakkim F.L. Aljabali A.A.A. Rabi F.A. Hafiz A.A. Al-Batanyeh K.M. Al-Trad B. Ansari P. Nasef M.M. Charbe N.B. Satija S. Mehta M. Mishra V. Gupta G. Abobaker S. Negi P. Azzouz I.M. Dardouri A.A.K. Dureja H. Prasher P. Chellappan D.K. Dua K. Webba da Silva M. El Tanani M. McCarron P.A. Tambuwala M.M. Dietary crocin is protective in pancreatic cancer while reducing radiation-induced hepatic oxidative damage. Nutrients 2020 12 6 1901 10.3390/nu12061901 32604971
    [Google Scholar]
  28. El-Tanani M. Al Khatib A.O. Aladwan S.M. Abuelhana A. McCarron P.A. Tambuwala M.M. Importance of STAT3 signalling in cancer, metastasis and therapeutic interventions. Cell. Signal. 2022 92 110275 10.1016/j.cellsig.2022.110275 35122990
    [Google Scholar]
  29. Haggag Y. Elshikh M. El-Tanani M. Bannat I.M. McCarron P. Tambuwala M.M. Nanoencapsulation of sophorolipids in PEGylated poly(lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Deliv. Transl. Res. 2020 10 5 1353 1366 32239473
    [Google Scholar]
  30. Morgan R. El-Tanani M. Hunter K.D. Harrington K.J. Pandha H.S. Targeting HOX/PBX dimers in cancer. Oncotarget 2017 8 19 32322 32331 10.18632/oncotarget.15971 28423659
    [Google Scholar]
  31. Brahma M.K. Gilglioni E.H. Zhou L. Trépo E. Chen P. Gurzov E.N. Oxidative stress in obesity-associated hepatocellular carcinoma: Sources, signaling and therapeutic challenges. Oncogene 2021 40 33 5155 5167 10.1038/s41388‑021‑01950‑y 34290399
    [Google Scholar]
  32. Zhou J. Zheng Q. Chen Z. The Nrf2 pathway in liver diseases. Front. Cell Dev. Biol. 2022 10 826204 10.3389/fcell.2022.826204 35223849
    [Google Scholar]
  33. Ahmed A.Z. Mumbrekar K.D. Satyam S.M. Shetty P. D’Souza M.R. Singh V.K. Chia seed oil ameliorates doxorubicin-induced cardiotoxicity in female wistar rats: An electrocardiographic, biochemical and histopathological approach. Cardiovasc. Toxicol. 2021 21 7 533 542 10.1007/s12012‑021‑09644‑3 33740233
    [Google Scholar]
  34. Ahmed A.Z. Satyam S.M. Shetty P. D’Souza M.R. Methyl gallate attenuates doxorubicin-induced cardiotoxicity in rats by suppressing oxidative stress. Scientifica 2021 2021 1 6694340 10.1155/2021/6694340 33510932
    [Google Scholar]
  35. Satyam S.M. Bairy L.K. Neuronutraceuticals combating neuroinflammaging: Molecular insights and translational challenges—a systematic review. Nutrients 2022 14 15 3029 10.3390/nu14153029 35893883
    [Google Scholar]
  36. Mani Satyam S. Bairy LK. Pirasanthan R. Vaishnav RL. Grape seed extract and zinc containing nutritional food supplement prevents onset and progression of age-related cataract in wistar rats. J. Nutr. Health Aging 2014 18 5 524 530 10.1007/s12603‑014‑0020‑8 24886740
    [Google Scholar]
  37. Satyam S.M. Bairy L.K. Pirasanthan R. Vaishnav R.L. Grape seed extract and Zinc containing nutritional food supplement delays onset and progression of Streptozocin-induced diabetic cataract in Wistar rats. J. Food Sci. Technol. 2015 52 5 2824 2832 10.1007/s13197‑014‑1305‑y 25892780
    [Google Scholar]
  38. Satyam S.M. Bairy L.K. Shetty P. Sainath P. Bharati S. Ahmed A.Z. Singh V.K. Ashwal A.J. Metformin and dapagliflozin attenuate doxorubicin-induced acute cardiotoxicity in wistar rats: An Electrocardiographic, Biochemical, and Histopathological Approach. Cardiovasc. Toxicol. 2023 23 2 107 119 36790727
    [Google Scholar]
  39. Kitamura H. Motohashi H. NRF2 addiction in cancer cells. Cancer Sci. 2018 109 4 900 911 10.1111/cas.13537 29450944
    [Google Scholar]
  40. Ngo H.K.C. Kim D.H. Cha Y.N. Na H.K. Surh Y.J. Nrf2 mutagenic activation drives hepatocarcinogenesis. Cancer Res. 2017 77 18 4797 4808 10.1158/0008‑5472.CAN‑16‑3538 28655791
    [Google Scholar]
  41. Peng C. Li X. Ao F. Li T. Guo J. Liu J. Zhang X. Gu J. Mao J. Zhou B. Mitochondrial ROS driven by NOX4 upregulation promotes hepatocellular carcinoma cell survival after incomplete radiofrequency ablation by inducing of mitophagy via Nrf2/PINK1. J. Transl. Med. 2023 21 1 218 10.1186/s12967‑023‑04067‑w 36964576
    [Google Scholar]
  42. Watanabe S. Horie Y. Suzuki A. Hepatocyte-specific Pten-deficient mice as a novel model for nonalcoholic steatohepatitis and hepatocellular carcinoma. Hepatol. Res. 2005 33 2 161 166 16214396
    [Google Scholar]
  43. Piguet A-C. Stroka D. Zimmermann A. Dufour J.F. Hypoxia aggravates non-alcoholic steatohepatitis in mice lacking hepatocellular PTEN. Clin. Sci. 2009 118 6 401 410 10.1042/CS20090313 19832698
    [Google Scholar]
  44. Die L. Yan P. Jun Jiang Z. Min Hua T. Cai W. Xing L. Glycogen synthase kinase-3 beta inhibitor suppresses Porphyromonas gingivalis lipopolysaccharide-induced CD40 expression by inhibiting nuclear factor-kappa B activation in mouse osteoblasts. Mol. Immunol. 2012 52 1 38 49 10.1016/j.molimm.2012.04.005 22580404
    [Google Scholar]
  45. Mulholland D.J. Dedhar S. Wu H. Nelson C.C. PTEN and GSK3β: Key regulators of progression to androgen-independent prostate cancer. Oncogene 2006 25 3 329 337 10.1038/sj.onc.1209020 16421604
    [Google Scholar]
  46. Cherla R.P. Lee S.Y. Mulder R.A. Lee M.S. Tesh V.L. Shiga toxin 1-induced proinflammatory cytokine production is regulated by the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway. Infect. Immun. 2009 77 9 3919 3931 10.1128/IAI.00738‑09 19596774
    [Google Scholar]
  47. Haidinger M. Poglitsch M. Geyeregger R. Kasturi S. Zeyda M. Zlabinger G.J. Pulendran B. Hörl W.H. Säemann M.D. Weichhart T. A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J. Immunol. 2010 185 7 3919 3931 10.4049/jimmunol.1000296 20805416
    [Google Scholar]
  48. Aksamitiene E. Kiyatkin A. Kholodenko B.N. Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: A fine balance. Biochem. Soc. Trans. 2012 40 1 139 146 10.1042/BST20110609 22260680
    [Google Scholar]
  49. Hawkins P.T. PI3K signaling in neutrophils. Curr. Top. Microbiol. Immunol. 2010 346 183 202
    [Google Scholar]
  50. Sheppard K. Targeting PI3 kinase/AKT/mTOR signaling in cancer. Crit. Rev. Oncog. 2012 17 1 69 95
    [Google Scholar]
  51. Chan T.O. Tsichlis P.N. PDK2: A complex tail in one Akt. Sci. STKE 2001 2001 66 pe1 pe1 10.1126/stke.2001.66.pe1 11752635
    [Google Scholar]
  52. Hers I. Vincent E.E. Tavaré J.M. Akt signalling in health and disease. Cell. Signal. 2011 23 10 1515 1527 10.1016/j.cellsig.2011.05.004 21620960
    [Google Scholar]
  53. Bae E.J. Xu J. Oh D.Y. Bandyopadhyay G. Lagakos W.S. Keshwani M. Olefsky J.M. Liver-specific p70 S6 kinase depletion protects against hepatic steatosis and systemic insulin resistance. J. Biol. Chem. 2012 287 22 18769 18780 10.1074/jbc.M112.365544 22493495
    [Google Scholar]
  54. Huo Y. Iadevaia V. Proud C.G. Differing effects of rapamycin and mTOR kinase inhibitors on protein synthesis. Biochem. Soc. Trans. 2011 39 2 446 450 10.1042/BST0390446 21428917
    [Google Scholar]
  55. Kwiatkowski D.J. Rhebbing up mTOR: New insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol. Ther. 2003 2 5 471 476 10.4161/cbt.2.5.446 14614311
    [Google Scholar]
  56. Gao C. GSK3: A key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease. Rev. Neurosci. 2011 23 1 1 11
    [Google Scholar]
  57. Okumura N. Yoshida H. Kitagishi Y. Murakami M. Nishimura Y. Matsuda S. PI3K/AKT/PTEN signaling as a molecular target in leukemia angiogenesis. Adv. Hematol. 2012 2012 1 843085 10.1155/2012/843085 22505939
    [Google Scholar]
  58. Song M.S. Salmena L. Pandolfi P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 2012 13 5 283 296 10.1038/nrm3330 22473468
    [Google Scholar]
  59. Singh G. Chan A.M. Post-translational modifications of PTEN and their potential therapeutic implications. Curr. Cancer Drug Targets 2011 11 5 536 547 10.2174/156800911795655930 21486223
    [Google Scholar]
  60. Yoshida H. Ethanol extract of rosemary repressed PTEN expression in K562 culture cells. 2011 Available from: https://pesquisa.bvsalud.org/portal/resource/pt/sea-161444
  61. Barata J.T. The impact of PTEN regulation by CK2 on PI3K-dependent signaling and leukemia cell survival. Adv. Enzyme Regul. 2011 51 1 37 49 10.1016/j.advenzreg.2010.09.012 21035501
    [Google Scholar]
  62. Georgescu M-M. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer 2010 1 12 1170 1177 10.1177/1947601911407325 21779440
    [Google Scholar]
  63. Li Y.M. Zhou B.P. Deng J. Pan Y. Hay N. Hung M.C. A hypoxia-independent hypoxia-inducible factor-1 activation pathway induced by phosphatidylinositol-3 kinase/Akt in HER2 overexpressing cells. Cancer Res. 2005 65 8 3257 3263 10.1158/0008‑5472.CAN‑04‑1284 15833858
    [Google Scholar]
  64. Pinyol R. Torrecilla S. Wang H. Montironi C. Piqué-Gili M. Torres-Martin M. Wei-Qiang L. Willoughby C.E. Ramadori P. Andreu-Oller C. Taik P. Lee Y.A. Moeini A. Peix J. Faure-Dupuy S. Riedl T. Schuehle S. Oliveira C.P. Alves V.A. Boffetta P. Lachenmayer A. Roessler S. Minguez B. Schirmacher P. Dufour J.F. Thung S.N. Reeves H.L. Carrilho F.J. Chang C. Uzilov A.V. Heikenwalder M. Sanyal A. Friedman S.L. Sia D. Llovet J.M. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J. Hepatol. 2021 75 4 865 878 10.1016/j.jhep.2021.04.049 33992698
    [Google Scholar]
  65. Gull N. Arshad F. Naikoo G.A. Hassan I.U. Pedram M.Z. Ahmad A. Aljabali A.A.A. Mishra V. Satija S. Charbe N. Negi P. Goyal R. Serrano-Aroca Á. Al Zoubi M.S. El-Tanani M. Tambuwala M.M. Recent advances in anticancer activity of novel plant extracts and compounds from Curcuma longa in hepatocellular carcinoma. J. Gastrointest. Cancer 2023 54 2 368 390 10.1007/s12029‑022‑00809‑z 35285010
    [Google Scholar]
  66. Bhat M. Sonenberg N. Gores G.J. The mTOR pathway in hepatic malignancies. Hepatology 2013 58 2 810 818 10.1002/hep.26323 23408390
    [Google Scholar]
  67. Schlaeger C. Longerich T. Schiller C. Bewerunge P. Mehrabi A. Toedt G. Kleeff J. Ehemann V. Eils R. Lichter P. Schirmacher P. Radlwimmer B. Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology 2008 47 2 511 520 10.1002/hep.22033 18161050
    [Google Scholar]
  68. Xu Z. Xu M. Liu P. Zhang S. Shang R. Qiao Y. Che L. Ribback S. Cigliano A. Evert K. Pascale R.M. Dombrowski F. Evert M. Chen X. Calvisi D.F. Chen X. The mTORC2‐Akt1 cascade is crucial for c‐Myc to promote hepatocarcinogenesis in mice and humans. Hepatology 2019 70 5 1600 1613 10.1002/hep.30697 31062368
    [Google Scholar]
  69. Che L. Yuan Y.H. Jia J. Ren J. Activation of sonic hedgehog signaling pathway is an independent potential prognosis predictor in human hepatocellular carcinoma patients. Chin. J. Cancer Res. 2012 24 4 323 331 10.3978/j.issn.1000‑9604.2012.10.10 23359030
    [Google Scholar]
  70. Huang G. Wallace D.F. Powell E.E. Rahman T. Clark P.J. Subramaniam V.N. Gene variants implicated in steatotic liver disease: Opportunities for diagnostics and therapeutics. Biomedicines 2023 11 10 2809 10.3390/biomedicines11102809 37893185
    [Google Scholar]
  71. Cheng J-T. Wang L. Wang H. Tang F.R. Cai W.Q. Sethi G. Xin H.W. Ma Z. Insights into biological role of LncRNAs in epithelial-mesenchymal transition. Cells 2019 8 10 1178 10.3390/cells8101178 31575017
    [Google Scholar]
  72. Li X. Li H. Zhang S. Zhang R. Li J. Wei Y. Yang C. Zhang F. Zhou H. Protective effect of Idelalisib on carbon tetrachloride-induced liver fibrosis via microRNA-124-3P/phosphatidylinositol-3-hydroxykinase signalling pathway. J. Cell. Mol. Med. 2021 25 24 11185 11197 10.1111/jcmm.17039 34747105
    [Google Scholar]
  73. Ye L. Mayerle J. Ziesch A. Reiter F.P. Gerbes A.L. De Toni E.N. The PI3K inhibitor copanlisib synergizes with sorafenib to induce cell death in hepatocellular carcinoma. Cell Death Discov. 2019 5 1 86 10.1038/s41420‑019‑0165‑7 30962952
    [Google Scholar]
  74. Zhai B. Zhang X. Sun B. Cao L. Zhao L. Li J. Ge N. Chen L. Qian H. Yin Z. MK2206 overcomes the resistance of human liver cancer stem cells to sorafenib by inhibition of pAkt and upregulation of pERK. Tumour Biol. 2016 37 6 8047 8055 10.1007/s13277‑015‑4707‑1 26711788
    [Google Scholar]
  75. Campos L. Phase II study of single agent perifosine in patients with hepatocellular carcinoma (HCC). J. Clin. Oncol. 2009 27 15 Suppl. e15505 e15505
    [Google Scholar]
  76. Thimonier E. Guillaud O. Walter T. Decullier E. Vallin M. Boillot O. Dumortier J. Conversion to everolimus dramatically improves the prognosis of de novo malignancies after liver transplantation for alcoholic liver disease. Clin. Transplant. 2014 28 12 1339 1348 10.1111/ctr.12430 25081431
    [Google Scholar]
  77. Lin S. Qiu X. Fu X. Zhang S. Tang C. Kuang J. Guan H. Lai S. SNRK modulates mTOR-autophagy pathway for liver lipid homeostasis in MAFLD. Mol. Ther. 2024 33 1 279 296 10.1016/j.ymthe.2024.11.016 39521960
    [Google Scholar]
  78. Wise-Draper T.M. Moorthy G. Salkeni M.A. Karim N.A. Thomas H.E. Mercer C.A. Beg M.S. O’Gara S. Olowokure O. Fathallah H. Kozma S.C. Thomas G. Rixe O. Desai P. Morris J.C. A phase Ib study of the dual PI3K/mTOR inhibitor dactolisib (BEZ235) combined with everolimus in patients with advanced solid malignancies. Target. Oncol. 2017 12 3 323 332 10.1007/s11523‑017‑0482‑9 28357727
    [Google Scholar]
  79. Hu Y-T. Shu Z.Y. Jiang J.H. Xie Q.F. Zheng S.S. Torin2 overcomes sorafenib resistance via suppressing mTORC2-AKT-BAD pathway in hepatocellular carcinoma cells. Hepatobiliary Pancreat. Dis. Int. 2020 19 6 547 554 10.1016/j.hbpd.2020.09.010 33051131
    [Google Scholar]
  80. Fang J. Pan L. Gu Q.X. Juengpanich S. Zheng J.H. Tong C.H. Wang Z.Y. Nan J.J. Wang Y.F. Scientometric analysis of mTOR signaling pathway in liver disease. Ann. Transl. Med. 2020 8 4 93 10.21037/atm.2019.12.110 32175386
    [Google Scholar]
  81. Hu Y. Sun C. Chen Y. Liu Y.D. Fan J.G. Pipeline of new drug treatment for non-alcoholic fatty liver disease/metabolic dysfunction-associated Steatotic liver disease. J. Clin. Transl. Hepatol. 2024 12 9 802 814 10.14218/JCTH.2024.00123 39280073
    [Google Scholar]
  82. Bartolini I. Risaliti M. Tucci R. Muiesan P. Ringressi M.N. Taddei A. Amedei A. Gut microbiota and immune system in liver cancer: Promising therapeutic implication from development to treatment. World J. Gastrointest. Oncol. 2021 13 11 1616 1631 10.4251/wjgo.v13.i11.1616 34853639
    [Google Scholar]
  83. Benedé-Ubieto R. Cubero F.J. Nevzorova Y.A. Breaking the barriers: The role of gut homeostasis in metabolic-associated steatotic liver disease (MASLD). Gut Microbes 2024 16 1 2331460 10.1080/19490976.2024.2331460 38512763
    [Google Scholar]
  84. Daniel N. Genua F. Jenab M. Mayén A.L. Chrysovalantou Chatziioannou A. Keski-Rahkonen P. Hughes D.J. The role of the gut microbiome in the development of hepatobiliary cancers. Hepatology 2024 80 5 1252 1269 10.1097/HEP.0000000000000406 37055022
    [Google Scholar]
  85. Ohtani N. Kawada N. Role of the gut–liver axis in liver inflammation, fibrosis, and cancer: A special focus on the gut microbiota relationship. Hepatol. Commun. 2019 3 4 456 470 10.1002/hep4.1331 30976737
    [Google Scholar]
  86. Scarpellini E. Scarcella M. Tack J.F. Scarlata G.G.M. Zanetti M. Abenavoli L. Gut microbiota and metabolic dysfunction-associated steatotic liver disease. Antioxidants 2024 13 11 1386 10.3390/antiox13111386 39594528
    [Google Scholar]
  87. Thomas S.C. Miller G. Li X. Saxena D. Getting off tract: Contributions of intraorgan microbiota to cancer in extraintestinal organs. Gut 2023 73 1 175 185 10.1136/gutjnl‑2022‑328834 37918889
    [Google Scholar]
  88. Czarnowski P. Wierzbicka-Rucińska A. Socha P. Relationship of gut microbiota and immunological response in obesity-related non-alcoholic fatty liver disease in children. Acta Biochim. Pol. 2023 70 3 469 474 10.18388/abp.2020_6573 37672729
    [Google Scholar]
  89. Janeiro M.H. Ramírez M.J. Milagro F.I. Martínez J.A. Solas M. Implication of trimethylamine N-oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients 2018 10 10 1398 10.3390/nu10101398 30275434
    [Google Scholar]
  90. Ma R. Shi G. Li Y. Shi H. Trimethylamine N-oxide, choline and its metabolites are associated with the risk of non-alcoholic fatty liver disease. Br. J. Nutr. 2024 131 11 1915 1923 38443197
    [Google Scholar]
  91. Meijnikman A.S. Nieuwdorp M. Schnabl B. Endogenous ethanol production in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2024 21 8 556 571 38831008
    [Google Scholar]
  92. Qu X. Tang Y. Hua S. Immunological approaches towards cancer and inflammation: a cross talk. Front. Immunol. 2018 9 563 29662489
    [Google Scholar]
  93. Shen R. Ke L. Li Q. Dang X. Shen S. Shen J. Li S. Liang L. Peng B. Kuang M. Ma Y. Yang Z. Hua Y. Abnormal bile acid-microbiota crosstalk promotes the development of hepatocellular carcinoma. Hepatol. Int. 2022 16 2 396 411 35211843
    [Google Scholar]
  94. Jin L. Sun Y. Li Y. Zhang H. Yu W. Li Y. Xin Y. Alsareii S.A. Wang Q. Zhang D. A synthetic peptide AWRK6 ameliorates metabolic associated fatty liver disease: involvement of lipid and glucose homeostasis. Peptides 2021 143 170597 34118361
    [Google Scholar]
  95. Sumida Y. Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol. 2018 53 3 362 376 29247356
    [Google Scholar]
  96. Nicoletti A. Ponziani F.R. Biolato M. Valenza V. Marrone G. Sganga G. Gasbarrini A. Miele L. Grieco A. Intestinal permeability in the pathogenesis of liver damage: From non-alcoholic fatty liver disease to liver transplantation. World J. Gastroenterol. 2019 25 33 4814 4834 31543676
    [Google Scholar]
  97. Boursier J. Mueller O. Barret M. Machado M. Fizanne L. Araujo-Perez F. Guy C.D. Seed P.C. Rawls J.F. David L.A. Hunault G. Oberti F. Calès P. Diehl A.M. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016 63 3 764 775 26600078
    [Google Scholar]
  98. Hoyles L. Snelling T. Umlai U.K. Nicholson J.K. Carding S.R. Glen R.C. McArthur S. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 2018 6 1 55 29562936
    [Google Scholar]
  99. Caussy C. Ajmera V.H. Puri P. Hsu C.L. Bassirian S. Mgdsyan M. Singh S. Faulkner C. Valasek M.A. Rizo E. Richards L. Brenner D.A. Sirlin C.B. Sanyal A.J. Loomba R. Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease. Gut 2019 68 10 1884 1892 30567742
    [Google Scholar]
  100. Schwabe R.F. Greten T.F. Gut microbiome in HCC - Mechanisms, diagnosis and therapy. J. Hepatol. 2020 72 2 230 238 31954488
    [Google Scholar]
  101. Sookoian S. Salatino A. Castaño G.O. Landa M.S. Fijalkowky C. Garaycoechea M. Pirola C.J. Intrahepatic bacterial metataxonomic signature in non-alcoholic fatty liver disease. Gut 2020 69 8 1483 1491 31900291
    [Google Scholar]
  102. He Q-J. Li Y.F. Zhao L.T. Lin C.T. Yu C.Y. Wang D. Recent advances in age-related metabolic dysfunction-associated steatotic liver disease. World J. Gastroenterol. 2024 30 7 652 662 38515956
    [Google Scholar]
  103. Romeo S. Kozlitina J. Xing C. Pertsemlidis A. Cox D. Pennacchio L.A. Boerwinkle E. Cohen J.C. Hobbs H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2008 40 12 1461 1465 10.1038/ng.257 18820647
    [Google Scholar]
  104. Sookoian S. Pirola C.J. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011 53 6 1883 1894 10.1002/hep.24283 21381068
    [Google Scholar]
  105. Xu R. Tao A. Zhang S. Deng Y. Chen G. Association between patatin-like phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic fatty liver disease: A HuGE review and meta-analysis. Sci. Rep. 2015 5 1 9284 10.1038/srep09284 25791171
    [Google Scholar]
  106. Liu Y-L. Patman G.L. Leathart J.B. Piguet A.C. Burt A.D. Dufour J.F. Day C.P. Daly A.K. Reeves H.L. Anstee Q.M. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J. Hepatol. 2014 61 1 75 81 10.1016/j.jhep.2014.02.030 24607626
    [Google Scholar]
  107. Seko Y. Sumida Y. Tanaka S. Mori K. Taketani H. Ishiba H. Hara T. Okajima A. Umemura A. Nishikawa T. Yamaguchi K. Moriguchi M. Kanemasa K. Yasui K. Imai S. Shimada K. Itoh Y. Development of hepatocellular carcinoma in Japanese patients with biopsy-proven non-alcoholic fatty liver disease: Association between PNPLA3 genotype and hepatocarcinogenesis/fibrosis progression. Hepatol. Res. 2017 47 11 1083 1092 10.1111/hepr.12840 27862719
    [Google Scholar]
  108. Singal A.G. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: A meta-analysis Am. J. Gastroenterol. 2014 109 3 325 334
    [Google Scholar]
  109. Mancina R.M. The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology 2016 150 5 1219 1230
    [Google Scholar]
  110. Thangapandi V.R. Knittelfelder O. Brosch M. Patsenker E. Vvedenskaya O. Buch S. Hinz S. Hendricks A. Nati M. Herrmann A. Rekhade D.R. Berg T. Matz-Soja M. Huse K. Klipp E. Pauling J.K. Wodke J.A. Miranda Ackerman J. Bonin M.V. Aigner E. Datz C. von Schönfels W. Nehring S. Zeissig S. Röcken C. Dahl A. Chavakis T. Stickel F. Shevchenko A. Schafmayer C. Hampe J. Subramanian P. Loss of hepatic Mboat7 leads to liver fibrosis. Gut 2021 70 5 940 950 10.1136/gutjnl‑2020‑320853 32591434
    [Google Scholar]
  111. Donati B. Dongiovanni P. Romeo S. Meroni M. McCain M. Miele L. Petta S. Maier S. Rosso C. De Luca L. Vanni E. Grimaudo S. Romagnoli R. Colli F. Ferri F. Mancina R.M. Iruzubieta P. Craxi A. Fracanzani A.L. Grieco A. Corradini S.G. Aghemo A. Colombo M. Soardo G. Bugianesi E. Reeves H. Anstee Q.M. Fargion S. Valenti L. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci. Rep. 2017 7 1 4492 10.1038/s41598‑017‑04991‑0 28674415
    [Google Scholar]
  112. Dongiovanni P. Petta S. Maglio C. Fracanzani A.L. Pipitone R. Mozzi E. Motta B.M. Kaminska D. Rametta R. Grimaudo S. Pelusi S. Montalcini T. Alisi A. Maggioni M. Kärjä V. Borén J. Käkelä P. Di Marco V. Xing C. Nobili V. Dallapiccola B. Craxi A. Pihlajamäki J. Fargion S. Sjöström L. Carlsson L.M. Romeo S. Valenti L. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015 61 2 506 514 10.1002/hep.27490 25251399
    [Google Scholar]
  113. Liu Y-L. Reeves H.L. Burt A.D. Tiniakos D. McPherson S. Leathart J.B. Allison M.E. Alexander G.J. Piguet A.C. Anty R. Donaldson P. Aithal G.P. Francque S. Van Gaal L. Clement K. Ratziu V. Dufour J.F. Day C.P. Daly A.K. Anstee Q.M. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 2014 5 1 4309 10.1038/ncomms5309 24978903
    [Google Scholar]
  114. Angulo P. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2015 149 2 389 397
    [Google Scholar]
  115. Kim G-A. Lee H.C. Choe J. Kim M.J. Lee M.J. Chang H.S. Bae I.Y. Kim H.K. An J. Shim J.H. Kim K.M. Lim Y.S. Association between non-alcoholic fatty liver disease and cancer incidence rate. J. Hepatol. 2017 68 1 140 146 10.1016/j.jhep.2017.09.012 29150142
    [Google Scholar]
  116. Park J-H. Hong J.Y. Kwon M. Lee J. Han K. Han I.W. Kang W. Park J.K. Association between non-alcoholic fatty liver disease and the risk of biliary tract cancers: A South Korean nationwide cohort study. Eur. J. Cancer 2021 150 73 82 10.1016/j.ejca.2021.03.024 33892409
    [Google Scholar]
  117. Schulz P.O. Ferreira F.G. Nascimento Mde.F. Vieira A. Ribeiro M.A. David A.I. Szutan L.A. Association of nonalcoholic fatty liver disease and liver cancer. World J. Gastroenterol. 2015 21 3 913 918 25624725
    [Google Scholar]
  118. Wang Z. Zhao X. Chen S. Associations between nonalcoholic fatty liver disease and cancers in a large cohort in China Clin. Gastroenterol. Hepatol. 2021 19 4 788 796 10.1016/j.cgh.2020.05.009 32407969
    [Google Scholar]
  119. Ascha M.S. Hanouneh I.A. Lopez R. Tamimi T.A. Feldstein A.F. Zein N.N. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 2010 51 6 1972 1978 10.1002/hep.23527 20209604
    [Google Scholar]
  120. Yatsuji S. Hashimoto E. Tobari M. Taniai M. Tokushige K. Shiratori K. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. J. Gastroenterol. Hepatol. 2009 24 2 248 254 10.1111/j.1440‑1746.2008.05640.x 19032450
    [Google Scholar]
  121. Hamady Z.Z. Rees M. Welsh F.K. Toogood G.J. Prasad K.R. John T.K. Lodge J.P. Fatty liver disease as a predictor of local recurrence following resection of colorectal liver metastases. Br. J. Surg. 2013 100 6 820 826 10.1002/bjs.9057 23354994
    [Google Scholar]
  122. Fingleton B. Matrix metalloproteinases: Roles in cancer and metastasis. Front. Biosci. 2006 11 479 479 491 10.2741/1811 16146745
    [Google Scholar]
  123. Gorden D.L. Fingleton B. Crawford H.C. Jansen D.E. Lepage M. Matrisian L.M. Resident stromal cell-derived MMP-9 promotes the growth of colorectal metastases in the liver microenvironment. Int. J. Cancer 2007 121 3 495 500 10.1002/ijc.22594 17417772
    [Google Scholar]
  124. Kharbanda K.K. Rogers D.D. II Wyatt T.A. Sorrell M.F. Tuma D.J. Transforming growth factor-β induces contraction of activated hepatic stellate cells. J. Hepatol. 2004 41 1 60 66 10.1016/j.jhep.2004.03.019 15246209
    [Google Scholar]
  125. Yu Q. Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 2000 14 2 163 176 10652271
    [Google Scholar]
  126. Hayashi S. Masuda H. Shigematsu M. Liver metastasis rare in colorectal cancer patients with fatty liver. Hepatogastroenterology 1997 44 16 1069 1075 9261601
    [Google Scholar]
  127. Tamura R. Masuda H. Ishii Y. Nemoto N. Relationship between fatty liver and liver metastasis in rats given injection of rat colon cancer cell line. Hepatogastroenterology 1999 46 25 167 171 10228783
    [Google Scholar]
  128. Mikolasevic I. Racki S. Lukenda V. Pavletic-Persic M. Milic S. Orlic L. Non-alcoholic fatty liver disease; A part of the metabolic syndrome in the renal transplant recipient and possible cause of an allograft dysfunction. Med. Hypotheses 2014 82 1 36 39 10.1016/j.mehy.2013.10.030 24280560
    [Google Scholar]
  129. Mikolasevic I. Racki S. Zaputovic L. Lukenda V. Milic S. Orlic L. Nonalcoholic fatty liver disease (NAFLD): A new risk factor for adverse cardiovascular events in dialysis patients. Med. Hypotheses 2014 82 2 205 208 10.1016/j.mehy.2013.11.039 24365277
    [Google Scholar]
  130. Li Y. Yun K. Mu R. A review on the biology and properties of adipose tissue macrophages involved in adipose tissue physiological and pathophysiological processes. Lipids Health Dis. 2020 19 1 164 10.1186/s12944‑020‑01342‑3 32646451
    [Google Scholar]
  131. Lee J.K. Hahn S.J. Kang H.W. Jung J.G. Choi H.S. Lee J.H. Han I.W. Jung J.H. Kwon J.H. Visceral obesity is associated with gallbladder polyps. Gut Liver 2016 10 1 133 139 10.5009/gnl14506 26260756
    [Google Scholar]
  132. John B.J. Irukulla S. Abulafi A.M. Kumar D. Mendall M.A. Systematic review: Adipose tissue, obesity and gastrointestinal diseases. Aliment. Pharmacol. Ther. 2006 23 11 1511 1523 10.1111/j.1365‑2036.2006.02915.x 16696799
    [Google Scholar]
  133. Kornprat P. Rehak P. Rüschoff J. Langner C. Expression of IGF-I, IGF-II, and IGF-IR in gallbladder carcinoma. A systematic analysis including primary and corresponding metastatic tumours. J. Clin. Pathol. 2006 59 2 202 206 16443739
    [Google Scholar]
  134. Sogabe M. Okahisa T. Kagawa M. Kashihara T. Fujmoto S. Kawaguchi T. Yokoyama R. Kagemoto K. Tanaka H. Kida Y. Tomonari T. Sato Y. Nakasono M. Takayama T. Metabolic dysfunction-associated steatotic liver disease and gallbladder polyp development: An observational study. Sci. Rep. 2024 14 1 22446 10.1038/s41598‑024‑73429‑1 39341964
    [Google Scholar]
  135. Kalligeros M. Henry L. Younossi Z.M. Metabolic dysfunction-associated steatotic liver disease and its link to cancer. Metabolism 2024 160 156004 10.1016/j.metabol.2024.156004 39182603
    [Google Scholar]
  136. Mantovani A. Lonardo A. Stefan N. Targher G. Metabolic dysfunction-associated steatotic liver disease and extrahepatic gastrointestinal cancers. Metabolism 2024 160 156014 10.1016/j.metabol.2024.156014 39182602
    [Google Scholar]
  137. Yuan X. Wang X. Wu S. Chen S. Wang Y. Wang J. Lu Y. Sun Y. Fu Q. Wang L. Associations between metabolic dysfunction-associated fatty liver disease and extrahepatic cancers: A cohort in China. Hepatobiliary Surg. Nutr. 2023 12 5 671 681 10.21037/hbsn‑21‑546 37886198
    [Google Scholar]
  138. Zhou B.G. Jiang X. She Q. Ding Y.B. Association of MASLD with the risk of extrahepatic cancers: A systematic review and meta-analysis of 18 cohort studies. Eur. J. Clin. Invest. 2024 54 11 e14276 10.1111/eci.14276 38943276
    [Google Scholar]
  139. Ebrahimi F. Hagström H. Sun J. Bergman D. Shang Y. Yang W. Roelstraete B. Ludvigsson J.F. Familial coaggregation of MASLD with hepatocellular carcinoma and adverse liver outcomes: Nationwide multigenerational cohort study. J. Hepatol. 2023 79 6 1374 1384 10.1016/j.jhep.2023.08.018 37647992
    [Google Scholar]
  140. Sahebkar A. Eid A.H. Hope on the horizon: Promising therapies for steatotic liver disease. Pharmacol. Rev. 2024 76 4 561 563 10.1124/pharmrev.124.001269 38876495
    [Google Scholar]
  141. Ubalde S.N. Khoury J. Sen S. Effect of diabetes mellitus (T2DM) medications on lipid parameters in veterans with T2DM and metabolic dysfunction associated steatotic liver disease (MASLD). J. Clin. Lipidol. 2024 18 4 e493
    [Google Scholar]
  142. Boutari C. Rizos C.V. Liamis G. Skoumas I. Rallidis L. Garoufi A. Kolovou G. Sfikas G. Tziomalos K. Skalidis E. Kotsis V. Doumas M. Stamatelopoulos K. Lambadiari V. Anagnostis P. Boufidou A. Giannakopoulou V. Anastasiou G. Petkou E. Vlachopoulos C. Dima I. Fakas G. Papathanasiou K.A. Attilakos A. Kolovou V. Koumaras C. Agapakis D. Zacharis E. Antza C. Milionis H. Liberopoulos E. Mantzoros C.S. The effect of lipid-lowering treatment on indices of MASLD in familial hypercholesterolemia patients. Clin. Nutr. 2024 43 12 84 91 39437569
    [Google Scholar]
  143. Lonardo A. Zheng M-H. Does an aspirin a day take the MASLD away? Adv. Ther. 2024 41 7 2559 2575 10.1007/s12325‑024‑02885‑y 38748333
    [Google Scholar]
  144. Stokkeland K. Villner P. Löfdal SK. Johan F. Aspirin and NSAIDs are associated with reduced cancer and mortality risk in patients with chronic liver diseases–a Swedish cohort study. Liver Int Commun 2024 6 1 10.21203/rs.3.rs‑3997240/v1
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128366825250307043756
Loading
/content/journals/cpd/10.2174/0113816128366825250307043756
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test