Skip to content
2000
Volume 31, Issue 16
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The ocular nanoemulsions (NE) are biphasic systems mainly composed of oil and water emulsified by surfactants/cosurfactants. The extensive surface area of ocular NE enhances corneal contact, leading to improved drug penetration and making it a preferable delivery system. They can also increase the solubility of drugs across the ocular barrier with improved residence time. Oils, surfactants, and co-surfactants used in formulating ocular NEs present a significant challenge in developing safe, stable, less irritant, more permeable, improved residence time, and highly bioavailable products. The choice of oil, surfactant, and co-surfactant significantly impacts the development of ocular Nano emulsions (NE) with desirable characteristics, such as small globule size, enhanced penetration, high drug content, and prolonged retention in the eye. This mini-review aims to contribute valuable insights into the selection criteria of oils, surfactants, and co-surfactants for ocular NE. Finally, the correlation between the properties of ocular NEs and the choice of oils, surfactants, and co-surfactants with emphasis on sterilization and stability aspects are considered in short.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128350573241202105210
2025-01-15
2025-09-02
Loading full text...

Full text loading...

References

  1. SteinmetzJ.D. BourneR.R.A. BriantP.S. FlaxmanS.R. TaylorH.R.B. JonasJ.B. AbdoliA.A. AbrhaW.A. AbualhasanA. Abu-GharbiehE.G. AdalT.G. AfshinA. AhmadiehH. AlemayehuW. AlemzadehS.A.S. AlfaarA.S. AlipourV. AndroudiS. ArablooJ. ArditiA.B. AregawiB.B. ArrigoA. AshbaughC. AshrafiE.D. AtnafuD.D. BagliE.A. BaigA.A.W. BärnighausenT.W. Battaglia ParodiM. BeheshtiM.S. BhagavathulaA.S. BhardwajN. BhardwajP. BhattacharyyaK. BijaniA. BikbovM. BottoneM. BraithwaiteT.M. BronA.M. Burugina NagarajaS.A. ButtZ.A. Caetano dos SantosF.L.L. CarneiroV.L.J. CassonR.J. ChengC-Y.J. ChoiJ-Y.J. ChuD-T. CicinelliM.V.M. CoelhoJ.M.G. CongdonN.G.A. CoutoR.A.A. CromwellE.A.M. DahlawiS.M. DaiX. DanaR. DandonaL. DandonaR.A. Del MonteM.A. Derbew MollaM. DervenisN.A. DestaA.A.P. DevaJ.P. DiazD. DjalaliniaS.E. EhrlichJ.R. ElayedathR.R. ElhabashyH.R.B. EllweinL.B. EmamianM.H. EskandariehS. FarzadfarF.G. FernandesA.G. FischerF.S. FriedmanD.S.M. FurtadoJ.M. GaidhaneS. GazzardG. GebremichaelB. GeorgeR. GhashghaeeA. GilaniS.A. GolechhaM. HamidiS.R. HammondB.R.R. HartnettM.E.R.K. HartonoR.K. HashiA.I. HayS.I. HayatK. HeidariG. HoH.C. HollaR. HousehM.J. HuangJ.J.E. IbitoyeS.E.M. IlicI.M.D. IlicM.D.D. IngramA.D.N. IrvaniS.S.N. IslamS.M.S. ItumallaR. JayaramS.P. JhaR.P. KahlounR. KalhorR. KandelH. KasaA.S. KavetskyyT.A. KayodeG.A.H. KempenJ.H. KhairallahM. KhalilovR.A. KhanE.A.C. KhannaR.C. KhatibM.N.A. KhojaT.A.E. KimJ.E. KimY.J. KimG.R. KisaS. KisaA. KosenS. KoyanagiA. Kucuk BicerB. KulkarniV.P. KurmiO.P. LandiresI.C. LansinghV.C.L. LeasherJ.L.E. LeGrandK.E. LevezielN. LimburgH. LiuX. Madhava KunjathurS. MalekiS. ManafiN. MansouriK. McAlindenC.G. MelesG.G.M. MershaA.M. MichalekI.M.R. MillerT.R. MisraS. MohammadY. MohammadiS.F.A. MohammedJ.A.H. MokdadA.H. MoniM.A.A. MontasirA.A.R. MorseA.R.F. MulawG.F.C. NaderiM. NaderifarH.S. NaidooK.S. NaimzadaM.D. NangiaV. Narasimha SwamyS.M. NaveedD.M. NegashH.L. NguyenH.L. Nunez-SamudioV.A. OgboF.A. OgundimuK.T. OlagunjuA.T.E. OnwujekweO.E. OtstavnovN.O. OwolabiM.O. PakshirK. Panda-JonasS. ParekhU. ParkE-C. PasovicM. PawarS. PesudovsK. PetoT.Q. PhamH.Q. PinheiroM. PodderV. Rahimi-MovagharV. RahmanM.H.U.Y. RamuluP.Y. RathiP. RawafS.L. RawafD.L. RawalL. ReinigN.M. RenzahoA.M. RezapourA.L. RobinA.L. RossettiL. SabourS. SafiS. SahebkarA. SahraianM.A.M. SamyA.M. SathianB. SayaG.K. SaylanM.A. ShaheenA.A.A. ShaikhM.A.T. ShenT.T. ShibuyaK.S. ShiferawW.S. ShigematsuM. ShinJ.I. SilvaJ.C. SilvesterA.A. SinghJ.A. SinghalD.S. SitorusR.S. SkiadaresiE.Y. SkryabinV.Y.A. SkryabinaA.A. SoheiliA.B. SorrieM.B.A.R.C. SousaR.A.R.C.T. SreeramareddyC.T. StambolianD.G. TadesseE.G. TahhanN.I. TarequeM.I. TopouzisF.X. TranB.X. TsegayeG.K. TsilimbarisM.K. VarmaR. VirgiliG. VongpradithA.T. VuG.T. WangY.X. WangN.H. WeldemariamA.H.K. WestS.K.G. WondmenehT.G.Y. WongT.Y. YaseriM. YonemotoN. YuC.S. ZastrozhinM.S. ZhangZ-J.R. ZimsenS.R. ResnikoffS. VosT. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: An analysis for the Global Burden of Disease Study.Lancet Glob. Health202192e144e16010.1016/S2214‑109X(20)30489‑733275949
    [Google Scholar]
  2. FrickeT.R. TahhanN. ResnikoffS. PapasE. BurnettA. HoS.M. NaduvilathT. NaidooK.S. Global prevalence of presbyopia and vision impairment from uncorrected presbyopia.Ophthalmology2018125101492149910.1016/j.ophtha.2018.04.01329753495
    [Google Scholar]
  3. KhannaR.C. CicinelliM.V. MarmamulaS. Comprehensive eye care - Issues, challenges, and way forward.Indian J. Ophthalmol.202068231632310.4103/ijo.IJO_17_1931957719
    [Google Scholar]
  4. MostafaM. Al FateaseA. AlanyR.G. AbdelkaderH. Recent advances of ocular drug delivery systems: Prominence of ocular implants for chronic eye diseases.Pharmaceutics2023156174610.3390/pharmaceutics1506174637376194
    [Google Scholar]
  5. SolansC IzquierdoP NollaJ AzemarN Garcia-CelmaMJ Nano-emulsions.Curr. Opin. Colloid Interface Sci2005103-4102110
    [Google Scholar]
  6. AsuaJ.M. Miniemulsion Polymerization.OxfordProgress in Polymer Science200210.1016/S0079‑6700(02)00010‑2
    [Google Scholar]
  7. SinghM. BharadwajS. LeeK.E. KangS.G. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery.J. Control. Release202032889591610.1016/j.jconrel.2020.10.02533069743
    [Google Scholar]
  8. DhahirR.K. Al-NimaA.M. Al-BazzazF. Nanoemulsions as ophthalmic drug delivery systems.Turk. J. Pharm. Sci.202118565266410.4274/tjps.galenos.2020.5931934708428
    [Google Scholar]
  9. Gawin-MikołajewiczA. NartowskiK.P. DybaA.J. GołkowskaA.M. MalecK. KarolewiczB. Ophthalmic nanoemulsions: From composition to technological processes and quality control.Mol. Pharm.202118103719374010.1021/acs.molpharmaceut.1c0065034533317
    [Google Scholar]
  10. GutiérrezJ.M. GonzálezC. MaestroA. SolèI. PeyC.M. NollaJ. Nanoemulsions: New applications and optimization of their preparation.Curr. Opin. Colloid Interface Sci.200813424525110.1016/j.cocis.2008.01.005
    [Google Scholar]
  11. JärvinenK. JärvinenT. UrttiA. Ocular absorption following topical delivery.Adv. Drug Deliv. Rev.199516131910.1016/0169‑409X(95)00010‑5
    [Google Scholar]
  12. MehuysE. DelaeyC. ChristiaensT. Van BortelL. Van TongelenI. RemonJ.P. BousseryK. Eye drop technique and patient-reported problems in a real-world population of eye drop users.Eye (Lond.)20203481392139810.1038/s41433‑019‑0665‑y31690823
    [Google Scholar]
  13. MaulviF.A. ShettyK.H. DesaiD.T. ShahD.O. WillcoxM.D.P. Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration.Int. J. Pharm.202160812110510.1016/j.ijpharm.2021.12110534537269
    [Google Scholar]
  14. AgarwalR. IezhitsaI. AgarwalP. Abdul NasirN.A. RazaliN. AlyautdinR. IsmailN.M. Liposomes in topical ophthalmic drug delivery: An update.Drug Deliv.20162341075109110.3109/10717544.2014.94333625116511
    [Google Scholar]
  15. ShirasakiY. Molecular design for enhancement of ocular penetration.J. Pharm. Sci.20089772462249610.1002/jps.2120017918725
    [Google Scholar]
  16. XuJ XueY HuG LinT GouJ YinT A comprehensive review on contact lens for ophthalmic drug delivery.J Control Release201828197118
    [Google Scholar]
  17. OhashiY. DogruM. TsubotaK. Laboratory findings in tear fluid analysis.Clin. Chim. Acta20063691172810.1016/j.cca.2005.12.03516516878
    [Google Scholar]
  18. DickinsonE. Adsorbed protein layers at fluid interfaces: Interactions, structure and surface rheology.Colloids Surf. B Biointerfaces199915216117610.1016/S0927‑7765(99)00042‑9
    [Google Scholar]
  19. OzturkB. ArginS. OzilgenM. McClementsD.J. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.Food Chem.201518825626310.1016/j.foodchem.2015.05.00526041190
    [Google Scholar]
  20. Shabaaz BegumJP. Antimicrobial nanoemulsion: A futuristic approach in antibacterial drug delivery system.J. Saudi Chem. Soc.20242024101896
    [Google Scholar]
  21. KumarM. BishnoiR.S. ShuklaA.K. JainC.P. Techniques for formulation of nanoemulsion drug delivery system: A review.Prev. Nutr. Food Sci.201924322523410.3746/pnf.2019.24.3.22531608247
    [Google Scholar]
  22. QadirA. FaiyazuddinM.D. Talib HussainM.D. AlshammariT.M. ShakeelF. Critical steps and energetics involved in a successful development of a stable nanoemulsion.J. Mol. Liq.201621471810.1016/j.molliq.2015.11.050
    [Google Scholar]
  23. GonçalvesA. NikmaramN. RoohinejadS. EstevinhoB.N. RochaF. GreinerR. McClementsD.J. Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries.Colloids Surf. A Physicochem. Eng. Asp.201853810812610.1016/j.colsurfa.2017.10.076
    [Google Scholar]
  24. HalnorV.V. PandeV.V. BorawakeD.D. NagareH.S. Nanoemulsion: A novel platform for drug delivery system nanoemulsion: A novel platform for drug delivery system classification of nanoemulsions.J. Mater. Sci. Nanotechnol.201861104
    [Google Scholar]
  25. BaranowskiP. KarolewiczB. GajdaM. PlutaJ. Ophthalmic drug dosage forms: Characterisation and research methods.Sci. World J.2014201411410.1155/2014/86190424772038
    [Google Scholar]
  26. LallemandF. DaullP. BenitaS. BuggageR. GarrigueJ.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb.J. Drug Deliv.2012201211610.1155/2012/60420422506123
    [Google Scholar]
  27. LimC. KimD. SimT. HoangN.H. LeeJ.W. LeeE.S. YounY.S. OhK.T. Preparation and characterization of a lutein loading nanoemulsion system for ophthalmic eye drops.J. Drug Deliv. Sci. Technol.20163616817410.1016/j.jddst.2016.10.009
    [Google Scholar]
  28. Santana-Garrido Á, Durán-Lobato M, Mate A, Martín-Banderas L, Vázquez CM. Ophthalmic wild olive (ACEBUCHE) oil nanoemulsions exert oculoprotective effects against oxidative stress induced by arterial hypertension. Int J Pharm 2024; 649: 123602.
  29. MeshksarS. Hadipour JahromyM. QomiM. SamiN. FaaliF. Formulation and evaluation of the effects of ophthalmic nanoemulsion of Nigella sativa seed extract on atropine-induced dry eye in mice.Phytomed. Plus20244210054110.1016/j.phyplu.2024.100541
    [Google Scholar]
  30. HaniehP.N. BonaccorsoA. ZingaleE. CimarelliS. SoutoE.B. RinaldiF. MarianecciC. PignatelloR. CarafaM. Almond oil O/W nanoemulsions: Potential application for ocular delivery.J. Drug Deliv. Sci. Technol.20227210342410.1016/j.jddst.2022.103424
    [Google Scholar]
  31. MorsiN.M. MohamedM.I. RefaiH. El SorogyH.M. Nanoemulsion as a novel ophthalmic delivery system for acetazolamide.Int. J. Pharm. Pharm. Sci.201461122736
    [Google Scholar]
  32. WengY. LiuJ. JinS. GuoW. LiangX. HuZ. Nanotechnology-based strategies for treatment of ocular disease.Acta Pharm. Sin. B20177328129110.1016/j.apsb.2016.09.00128540165
    [Google Scholar]
  33. Hadipour JahromyM. QomiM. FazelipourS. SamiN. FaaliF. KarimiM. Adhami MoghadamF. Evaluation of curcumin-based ophthalmic nano-emulsion on atropine-induced dry eye in mice.Heliyon2024107e2900910.1016/j.heliyon.2024.e2900938601632
    [Google Scholar]
  34. ZingaleE. BonaccorsoA. D’AmicoA.G. LombardoR. D’AgataV. RautioJ. PignatelloR. Formulating resveratrol and melatonin Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for ocular administration using design of experiments.Pharmaceutics202416112510.3390/pharmaceutics1601012538258134
    [Google Scholar]
  35. AttiaM.A. ElerakyN.E. AbdelazeemK. SafwatM.A. Prednisolone loaded-cationic nanoemulsion formulation for uveitis management.J. Drug Deliv. Sci. Technol.20249210540610.1016/j.jddst.2024.105406
    [Google Scholar]
  36. AboumaneiM.H. MahmoudA.F. Development of tamoxifen in situ gel nanoemulsion for ocular delivery in photoreceptor degeneration disorder: In vitro characterization, 131I-radiolabeling, and in vivo biodistribution studies.J Pharm2023182369380
    [Google Scholar]
  37. TranV.N. StrnadO. ŠumanJ. VeverkováT. SukupováA. CejnarP. HynekR. KronusováO. ŠachJ. KaštánekP. RumlT. ViktorováJ. Cannabidiol nanoemulsion for eye treatment - Anti-inflammatory, wound healing activity and its bioavailability using in vitro human corneal substitute.Int. J. Pharm.202364312320210.1016/j.ijpharm.2023.12320237406946
    [Google Scholar]
  38. Gawin-MikołajewiczA. NawrotU. MalecK.H. KrajewskaK. NartowskiK.P. KarolewiczB.L. The effect of high-pressure homogenization conditions on the physicochemical properties and stability of designed fluconazole-loaded ocular nanoemulsions.Pharmaceutics20231011138276489
    [Google Scholar]
  39. Chávez-HurtadoP. Pesqueda-PinedoL. Ceballos-DelgadilloH.A. Liñán-SeguraA. Figueroa-PonceH. Quintana-HauJ.D. Physicochemical characterization of a DMPC-based nanoemulsion for dry eye and compatibility test with soft contact lenses in vitro.Cont Lens Anterior Eye.202245210142810.1016/j.clae.2021.02.014
    [Google Scholar]
  40. ChoradiyaB.R. PatilS.B. Design, development, and characterization of brinzolamide and brimonidine tartrate nanoemulsion for ophthalmic drug delivery.Thaiphesatchasan202246441342410.56808/3027‑7922.2623
    [Google Scholar]
  41. ZhangR. YangJ. LuoQ. ShiJ. XuH. ZhangJ. Preparation and in vitro and in vivo evaluation of an isoliquiritigenin-loaded ophthalmic nanoemulsion for the treatment of corneal neovascularization.Drug Deliv.20222912217223310.1080/10717544.2022.209671435815765
    [Google Scholar]
  42. YangJ. LiangZ. LuP. SongF. ZhangZ. ZhouT. Development of a luliconazole nanoemulsion as a prospective ophthalmic delivery system for the treatment of fungal keratitis: In vitro and in vivo evaluation.Pharmaceutics202214102052
    [Google Scholar]
  43. MahmoudiA. JaafariM.R. Malaekeh-NikoueiB. Preparation, characterization and preliminary in vivo safety evaluation of cationic nano-emulsions containing α-lipoic acid after ocular administration in NZW rabbits.Nanomed. J.2023101
    [Google Scholar]
  44. GriffinW.C. Calculation of HLB values of non-ionic surfactants.J. Soc. Cosmet. Chem.19545249256
    [Google Scholar]
  45. GrantR.L. YaoC. GabaldonD. AcostaD. Evaluation of surfactant cytotoxicity potential by primary cultures of ocular tissues: I. Characterization of rabbit corneal epithelial cells and initial injury and delayed toxicity studies.Toxicology199276215317610.1016/0300‑483X(92)90162‑81281345
    [Google Scholar]
  46. SahooR.K. BiswasN. GuhaA. SahooN. KuotsuK. Nonionic surfactant vesicles in ocular delivery: Innovative approaches and perspectives.BioMed Res. Int.20142014126360410.1155/2014/26360424995280
    [Google Scholar]
  47. KimT.W. ChungH. KwonI.C. SungH.C. JeongS.Y. Optimization of lipid composition in cationic emulsion as in vitro and in vivo transfection agents.Pharm. Res.2001181546010.1023/A:101107461010011336353
    [Google Scholar]
  48. HagigitT. AbdulrazikM. OrucovF. ValamaneshF. LambertM. LambertG. Behar-CohenF. BenitaS. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye.J. Control. Release2010145329730510.1016/j.jconrel.2010.04.01320420865
    [Google Scholar]
  49. VogelF.R. PowellM.F. A compendium of vaccine adjuvants and excipients.Pharm. Biotechnol.1995614122810.1007/978‑1‑4615‑1823‑5_77551218
    [Google Scholar]
  50. FuangswasdiA. CharoensaengA. SabatiniD.A. ScamehornJ.F. AcostaE.J. OsathaphanK. KhaodhiarS. Mixtures of anionic and cationic surfactants with single and twin head groups: Adsorption and precipitation studies.J. Surfactants Deterg.200691212810.1007/s11743‑006‑0370‑2
    [Google Scholar]
  51. MarshR.J. MauriceD.M. The influence of non-ionic detergents and other surfactants on human corneal permeability.Exp. Eye Res.1971111434810.1016/S0014‑4835(71)80063‑55002159
    [Google Scholar]
  52. KassemM.G.A. AhmedA.M.M. Abdel-RahmanH.H. MoustafaA.H.E. Use of Span 80 and Tween 80 for blending gasoline and alcohol in spark ignition engines.Energy Rep.2019522123010.1016/j.egyr.2019.01.009
    [Google Scholar]
  53. FernandesA.R. Sanchez-LopezE. SantosT. GarciaM.L. SilvaA.M. SoutoE.B. Development and characterization of nanoemulsions for ophthalmic applications: Role of cationic surfactants.Materials (Basel)20211424754110.3390/ma1424754134947136
    [Google Scholar]
  54. SarkarR. PalA. RakshitA. SahaB. Properties and applications of amphoteric surfactant: A concise review.J. Surfactants Deterg.202124570973010.1002/jsde.12542
    [Google Scholar]
  55. SchmidtsT. SchluppP. GrossA. DoblerD. RunkelF. Required HLB determination of some pharmaceutical oils in submicron emulsions.J. Dispers. Sci. Technol.201233681682010.1080/01932691.2011.584800
    [Google Scholar]
  56. GuoX. RongZ. YingX. Calculation of hydrophile-lipophile balance for polyethoxylated surfactants by group contribution method.J. Colloid Interface Sci.2006298144145010.1016/j.jcis.2005.12.00916414065
    [Google Scholar]
  57. AlmeidaF. CorrêaM. ZaeraA.M. GarriguesT. IsaacV. Influence of different surfactants on development of nanoemulsion containing fixed oil from an Amazon palm species.Colloids Surf. A Physicochem. Eng. Asp.202264312872110.1016/j.colsurfa.2022.128721
    [Google Scholar]
  58. SantosJ. Alfaro-RodríguezM.C. VegaL. MuñozJ. Relationship between HLB number and predominant destabilization process in microfluidized nanoemulsions formulated with lemon essential oil.Appl. Sci.2023138520810.3390/app13085208
    [Google Scholar]
  59. KommuruT.R. GurleyB. KhanM.A. ReddyI.K. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: Formulation development and bioavailability assessment.Int. J. Pharm.2001212223324610.1016/S0378‑5173(00)00614‑111165081
    [Google Scholar]
  60. HaitS.K. MoulikS.P. Determination of critical micelle concentration (CMC) of nonionic surfactants by donor-acceptor interaction with lodine and correlation of CMC with hydrophile-lipophile balance and other parameters of the surfactants.J. Surfactants Deterg.20014330330910.1007/s11743‑001‑0184‑2
    [Google Scholar]
  61. XuH. LiP.X. MaK. ThomasR.K. PenfoldJ. LuJ.R. Limitations in the application of the Gibbs equation to anionic surfactants at the air/water surface: Sodium dodecylsulfate and sodium dodecylmonooxyethylenesulfate above and below the CMC.Langmuir201329309335935110.1021/la401835d23819862
    [Google Scholar]
  62. McClementsD.J. RaoJ. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity.Crit. Rev. Food Sci. Nutr.201151428533010.1080/10408398.2011.55955821432697
    [Google Scholar]
  63. WaniT.A. MasoodiF.A. JafariS.M. McClementsD.J. Chapter 19 - Safety of nanoemulsions and their regulatory status.Nanoemulsions- Formulation, Applications, and Characterization201861362810.1016/B978‑0‑12‑811838‑2.00019‑9
    [Google Scholar]
  64. JafariS.M. KatouzianI. AkhavanS. 15 - Safety and regulatory issues of nanocapsules.Nanoencapsulation Technologies for the Food and Nutraceutical IndustriesAcademic Press201754559010.1016/B978‑0‑12‑809436‑5.00015‑X
    [Google Scholar]
  65. ShafiqS. ShakeelF. TalegaonkarS. AhmadF.J. KharR.K. AliM. Development and bioavailability assessment of ramipril nanoemulsion formulation.Eur. J. Pharm. Biopharm.200766222724310.1016/j.ejpb.2006.10.01417127045
    [Google Scholar]
  66. DautzenberqH. Surfactant solutions. New methods of investigation. Hg. von RAOUL ZANA. ISBN 0-8247-7623-2. New York/Basel: Marcel Dekker, Inc. XII, 479 S., geb US$99.75.Acta Polymerica1988398470
    [Google Scholar]
  67. ZhangJ. LiuZ. TaoC. LinX. ZhangM. ZengL. ChenX. SongH. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus.Eur. J. Pharm. Sci.202014410522910.1016/j.ejps.2020.10522931958581
    [Google Scholar]
  68. HandaM. UjjwalR.R. VasdevN. FloraS.J.S. ShuklaR. Optimization of surfactant and cosurfactant-aided pine oil nanoemulsions by isothermal low-energy methods for anticholinesterase activity.ACS Omega20216155956810.1021/acsomega.0c0503333458508
    [Google Scholar]
  69. BoxK ComerJ. Using measured pKa, LogP and solubility to investigate supersaturation and predict BCS class.Curr Drug Metab.200899869878
    [Google Scholar]
  70. AlanyR.G. RadesT. Agatonovic-KustrinS. DaviesN.M. TuckerI.G. Effects of alcohols and diols on the phase behaviour of quaternary systems.Int. J. Pharm.2000196214114510.1016/S0378‑5173(99)00408‑110699705
    [Google Scholar]
  71. WakisakaS. NakanishiM. GohtaniS. Phase behavior and formation of o/w nano-emulsion in vegetable oil/mixture of polyglycerol polyricinoleate and polyglycerin fatty acid ester/water systems.J. Oleo Sci.201463322923710.5650/jos.ess1313924521844
    [Google Scholar]
  72. LedetG. PamujulaS. WalkerV. SimonS. GravesR. MandalT.K. Development and in vitro evaluation of a nanoemulsion for transcutaneous delivery.Drug Dev. Ind. Pharm.201440337037910.3109/03639045.2012.76313723600657
    [Google Scholar]
  73. MazondeP. KhamangaS.M.M. WalkerR.B. Design, optimization, manufacture and characterization of efavirenz-loaded flaxseed oil nanoemulsions.Pharmaceutics202012979710.3390/pharmaceutics1209079732842501
    [Google Scholar]
  74. SmailS.S. GhareebM.M. OmerH.K. Al-KinaniA.A. AlanyR.G. Studies on surfactants, cosurfactants, and oils for prospective use in formulation of ketorolac tromethamine ophthalmic nanoemulsions.Pharmaceutics202113446710.3390/pharmaceutics1304046733808316
    [Google Scholar]
  75. AlgahtaniMS AhmadMZ AhmadJ Investigation of factors influencing formation of nanoemulsion by spontaneous emulsification: Impact on droplet size, polydispersity index, and stability.Bioengineering202292838410.3390/bioengineering9080384
    [Google Scholar]
  76. SarheedO. DibiM. RameshK.V.R.N.S. Studies on the effect of oil and surfactant on the formation of alginate-based O/W lidocaine nanocarriers using nanoemulsion template.Pharmaceutics20201212122310.3390/pharmaceutics1212122333348692
    [Google Scholar]
  77. OnaiziS.A. Effect of oil/water ratio on rheological behavior, droplet size, zeta potential, long-term stability, and acid-induced demulsification of crude oil/water nanoemulsions.J Pet Sci Eng.202220910985710.1016/j.petrol.2021.109857
    [Google Scholar]
  78. GoswamiA.S. RawatR. PillaiP. SawR.K. JoshiD. MandalA. Formulation and characterization of nanoemulsions stabilized by nonionic surfactant and their application in enhanced oil recovery.Pet Sci Technol2023422111910.1080/10916466.2023.2181357
    [Google Scholar]
  79. SharmaS. ShuklaP. MisraA. MishraP.R. Chapter 8 - Interfacial and colloidal properties of emulsified systems: Pharmaceutical and biological perspective.Colloid and Interface Science in Pharmaceutical Research and Development2014149172
    [Google Scholar]
  80. KanoujiaJ. KushwahaP.S. SarafS.A. Evaluation of gatifloxacin pluronic micelles and development of its formulation for ocular delivery.Drug Deliv. Transl. Res.20144433434310.1007/s13346‑014‑0194‑y25787066
    [Google Scholar]
  81. MalikM.R. Al-HarbiF.F. NawazA. AminA. FaridA. MohainiM.A. AlsalmanA.J. HawajM.A.A. AlhashemY.N. Formulation and characterization of chitosan-decorated multiple nanoemulsion for topical delivery in vitro and ex vivo.Molecules20222710318310.3390/molecules2710318335630660
    [Google Scholar]
  82. PolychniatouV. TziaC. Study of formulation and stability of co- surfactant free water-in-olive oil nano- and submicron emulsions with food grade non-ionic surfactants. JAOCS.J. Am. Oil Chem. Soc.2014911798810.1007/s11746‑013‑2356‑3
    [Google Scholar]
  83. WeerapolY. LimmatvapiratS. NunthanidJ. SriamornsakP. Self- nanoemulsifying drug delivery system of nifedipine: Impact of hydrophilic-lipophilic balance and molecular structure of mixed surfactants.AAPS PharmSciTech201415245646410.1208/s12249‑014‑0078‑y24452500
    [Google Scholar]
  84. WarisnoicharoenW. LansleyA.B. LawrenceM.J. Nonionic oil-in-water microemulsions: The effect of oil type on phase behaviour.Int. J. Pharm.2000198172710.1016/S0378‑5173(99)00406‑810722947
    [Google Scholar]
  85. Jurišić DukovskiB. LjubicaJ. KocbekP. Safundžić KučukM. KrtalićI. HafnerA. PepićI. LovrićJ. Towards the development of a biorelevant in vitro method for the prediction of nanoemulsion stability on the ocular surface.Int. J. Pharm.202363312262210.1016/j.ijpharm.2023.12262236669582
    [Google Scholar]
  86. MehrandishS MirzaeeiS. Design of novel nanoemulsion formulations for topical ocular delivery of itraconazole: Development, characterization and in vitro bioassay.Adv Pharm Bull202227112539
    [Google Scholar]
  87. LaxmiM. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether.Artif. Cells Nanomed. Biotechnol.201543533444
    [Google Scholar]
  88. GurpreetK. SinghS.K. Review of nanoemulsion formulation and characterization techniques.Indian J. Pharm. Sci.201880510.4172/pharmaceutical‑sciences.1000422
    [Google Scholar]
  89. SariT.P. MannB. KumarR. SinghR.R.B. SharmaR. BhardwajM. AthiraS. Preparation and characterization of nanoemulsion encapsulating curcumin.Food Hydrocoll.20154354054610.1016/j.foodhyd.2014.07.011
    [Google Scholar]
  90. ZielińskaA. SolesB.B. LopesA.R. VazB.F. RodriguesC.M. AlvesT.F.R. Klensporf-PawlikD. DurazzoA. LucariniM. SeverinoP. SantiniA. ChaudM.V. SoutoE.B. Nanopharmaceuticals for eye administration: Sterilization, depyrogenation and clinical applications.Biology202091033610.3390/biology910033633066555
    [Google Scholar]
  91. ChoradiyaB.R. PatilS.B. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system.J. Mol. Liq.202133911675110.1016/j.molliq.2021.116751
    [Google Scholar]
  92. CavalliR. CaputoO. CarlottiM.E. TrottaM. ScarnecchiaC. GascoM.R. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles.Int. J. Pharm.19971481475410.1016/S0378‑5173(96)04822‑3
    [Google Scholar]
  93. MahboobianM.M. MohammadiM. MansouriZ. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir.J. Drug Deliv. Sci. Technol.20205510140010.1016/j.jddst.2019.101400
    [Google Scholar]
  94. AbbasM.N. KhanS.A. SadozaiS.K. KhalilI.A. AnterA. FoulyM.E. OsmanA.H. KaziM. Nanoparticles loaded thermoresponsive in situ gel for ocular antibiotic delivery against bacterial keratitis.Polymers (Basel)2022146113510.3390/polym1406113535335465
    [Google Scholar]
  95. YoussefA.A.A. ThakkarR. SenapatiS. JoshiP.H. DudhipalaN. MajumdarS. Design of topical moxifloxacin mucoadhesive nanoemulsion for the management of ocular bacterial infections.Pharmaceutics2022146124610.3390/pharmaceutics1406124635745818
    [Google Scholar]
  96. SilvaB. São BrazB. DelgadoE. GonçalvesL. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery.Int. J. Pharm.202160612087310.1016/j.ijpharm.2021.12087334246741
    [Google Scholar]
  97. TangB. WangQ. ZhangG. ZhangA. ZhuL. ZhaoR. GuH. MengJ. ZhangJ. FangG. OCTN2- and ATB0,+-targeted nanoemulsions for improving ocular drug delivery.J. Nanobiotechnology202422113010.1186/s12951‑024‑02402‑x38532399
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128350573241202105210
Loading
/content/journals/cpd/10.2174/0113816128350573241202105210
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test