Skip to content
2000
Volume 31, Issue 21
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Intrauterine adhesion (IUA) is a condition caused by damage to the basal uterine layer which can lead to partial or full occlusion of the uterine cavity. Although traditional treatment options have been useful in mild and moderate cases, they have been unsatisfactory in severe IUA cases. Therefore, it is essential to improve the treatment strategies of IUA. Recent studies have demonstrated that Mesenchymal stem cells (MSCs) exert their therapeutic effects the paracrine secretion of several substances including extracellular vesicles (EV) also called exosomes. MSC-derived exosomes (MSC-Exos) do not have the limitations of MSCs including immunogenicity and tumorigenicity. However, exosomes have limitations in terms of identification, isolation, purification, and origin. The clinical application of exosomes requires quality control and increased standardization in isolation and culture serum. This review summarizes therapeutic potentials of MSC-Exos and explores their potential clinical implications as diagnostic, therapeutic targets as well as prognostic markers in managing IUA.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128337236241210080728
2025-01-06
2025-09-06
Loading full text...

Full text loading...

References

  1. ManciniV. PensabeneV. Organs-on-chip models of the female reproductive system.Bioengineering (Basel)20196410310.3390/bioengineering604010331703369
    [Google Scholar]
  2. TomicV. KasumM. VucicK. Impact of embryo quality and endometrial thickness on implantation in natural cycle IVF.Arch. Gynecol. Obstet.202030151325133010.1007/s00404‑020‑05507‑432211954
    [Google Scholar]
  3. KouL. JiangX. XiaoS. ZhaoYZ. YaoQ. ChenR. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions.J Control Release2020318253710.1016/j.jconrel.2019.12.007
    [Google Scholar]
  4. ConfortiA. AlviggiC. MolloA. De PlacidoG. MagosA. The management of Asherman syndrome: A review of literature.Reprod. Biol. Endocrinol.201311111810.1186/1477‑7827‑11‑11824373209
    [Google Scholar]
  5. KhanZ. GoldbergJ.M. Hysteroscopic management of asherman’s syndrome.J. Minim. Invasive Gynecol.201825221822810.1016/j.jmig.2017.09.02029024798
    [Google Scholar]
  6. ReinD.T. SchmidtT. HessA.P. VolkmerA. SchöndorfT. BreidenbachM. Hysteroscopic management of residual trophoblastic tissue is superior to ultrasound-guided curettage.J. Minim. Invasive Gynecol.201118677477810.1016/j.jmig.2011.08.00322024264
    [Google Scholar]
  7. GalipeauJ. SensébéL. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities.Cell Stem Cell201822682483310.1016/j.stem.2018.05.00429859173
    [Google Scholar]
  8. RøslandG.V. SvendsenA. TorsvikA. SobalaE. McCormackE. ImmervollH. MysliwietzJ. TonnJ.C. GoldbrunnerR. LønningP.E. BjerkvigR. SchichorC. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation.Cancer Res.200969135331533910.1158/0008‑5472.CAN‑08‑463019509230
    [Google Scholar]
  9. PhinneyD.G. PittengerM.F. Concise review: MSC-derived exosomes for cell-free therapy.Stem Cells201735485185810.1002/stem.257528294454
    [Google Scholar]
  10. WitwerK.W. BuzásE.I. BemisL.T. BoraA. LässerC. LötvallJ. Nolte-’t HoenE.N. PiperM.G. SivaramanS. SkogJ. ThéryC. WaubenM.H. HochbergF. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research.J. Extracell. Vesicles2013212036010.3402/jev.v2i0.2036024009894
    [Google Scholar]
  11. GalloA. TandonM. AlevizosI. IlleiG.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes.PLoS One201273e3067910.1371/journal.pone.003067922427800
    [Google Scholar]
  12. ColomboM. RaposoG. ThéryC. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu. Rev. Cell Dev. Biol.201430125528910.1146/annurev‑cellbio‑101512‑12232625288114
    [Google Scholar]
  13. LouP. LiuS. XuX. PanC. LuY. LiuJ. Extracellular vesicle-based therapeutics for the regeneration of chronic wounds: current knowledge and future perspectives.Acta Biomater.2021119425610.1016/j.actbio.2020.11.00133161186
    [Google Scholar]
  14. YinK. WangS. ZhaoR.C. Exosomes from mesenchymal stem/stromal cells: A new therapeutic paradigm.Biomark. Res.201971810.1186/s40364‑019‑0159‑x30992990
    [Google Scholar]
  15. LaiR.C. ArslanF. LeeM.M. SzeN.S.K. ChooA. ChenT.S. Salto-TellezM. TimmersL. LeeC.N. El OakleyR.M. PasterkampG. de KleijnD.P.V. LimS.K. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury.Stem Cell Res. (Amst.)20104321422210.1016/j.scr.2009.12.00320138817
    [Google Scholar]
  16. BakhtyarN. JeschkeM.G. MainvilleL. HererE. Amini-NikS. Acellular gelatinous material of human umbilical cord enhances wound healing: A Candidate remedy for deficient wound healing.Front. Physiol.2017820010.3389/fphys.2017.0020028421003
    [Google Scholar]
  17. YangB. ChenY. ShiJ. Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms.Adv Mater2019312e180289610.1002/adma.201802896
    [Google Scholar]
  18. HeC. ZhengS. LuoY. WangB. Exosome theranostics: Biology and translational medicine.Theranostics20188123725510.7150/thno.2194529290805
    [Google Scholar]
  19. ZhangY. BiJ. HuangJ. TangY. DuS. LiP. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications.Int. J. Nanomedicine2020156917693410.2147/IJN.S26449833061359
    [Google Scholar]
  20. LiangY. DuanL. LuJ. XiaJ. Engineering exosomes for targeted drug delivery.Theranostics20211173183319510.7150/thno.5257033537081
    [Google Scholar]
  21. KouM. HuangL. YangJ. ChiangZ. ChenS. LiuJ. GuoL. ZhangX. ZhouX. XuX. YanX. WangY. ZhangJ. XuA. TseH. LianQ. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: A next generation therapeutic tool?Cell Death Dis.202213758010.1038/s41419‑022‑05034‑x35787632
    [Google Scholar]
  22. HoangD.H. NguyenT.D. NguyenH.P. NguyenX.H. DoP.T.X. DangV.D. DamP.T.M. BuiH.T.H. TrinhM.Q. VuD.M. HoangN.T.M. ThanhL.N. ThanU.T.T. Differential wound healing capacity of mesenchymal stem cell-derived exosomes originated from bone marrow, adipose tissue and umbilical cord under Serum- and Xeno-free condition.Front. Mol. Biosci.2020711910.3389/fmolb.2020.0011932671095
    [Google Scholar]
  23. DasM. MayilsamyK. MohapatraS.S. MohapatraS. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: Progress and prospects.Rev. Neurosci.201930883985510.1515/revneuro‑2019‑000231203262
    [Google Scholar]
  24. ZhangL. LiY. GuanC.Y. TianS. LvX.D. LiJ.H. MaX. XiaH.F. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase.Stem Cell Res. Ther.2018913610.1186/s13287‑018‑0777‑529433563
    [Google Scholar]
  25. NakaoY. FukudaT. ZhangQ. SanuiT. ShinjoT. KouX. ChenC. LiuD. WatanabeY. HayashiC. YamatoH. YotsumotoK. TanakaU. TaketomiT. UchiumiT. LeA.D. ShiS. NishimuraF. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss.Acta Biomater.202112230632410.1016/j.actbio.2020.12.04633359765
    [Google Scholar]
  26. XuL. DingL. WangL. CaoY. ZhuH. LuJ. LiX. SongT. HuY. DaiJ. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars.Stem Cell Res. Ther.2017818410.1186/s13287‑017‑0535‑028420433
    [Google Scholar]
  27. BianD. WuY. SongG. AziziR. ZamaniA. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review.Stem Cell Res. Ther.20221312410.1186/s13287‑021‑02697‑935073970
    [Google Scholar]
  28. LiB. CaoY. SunM. FengH. Expression, regulation, and function of exosome-derived miRNAs in cancer progression and therapy.FASEB J.20213510e2191610.1096/fj.202100294RR34510546
    [Google Scholar]
  29. LiR. LiD. WangH. ChenK. WangS. XuJ. JiP. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF.Stem Cell Res. Ther.202213114910.1186/s13287‑022‑02823‑135395782
    [Google Scholar]
  30. HuangY. HeB. WangL. YuanB. ShuH. ZhangF. SunL. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats.Stem Cell Res. Ther.202011149610.1186/s13287‑020‑02005‑x33239091
    [Google Scholar]
  31. HeX. DongZ. CaoY. WangH. LiuS. LiaoL. JinY. YuanL. LiB. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing.Stem Cells Int.2019201911610.1155/2019/713270831582986
    [Google Scholar]
  32. GuanP. CuiR. WangQ. SunY. A 3D hydrogel loaded with exosomes derived from bone marrow stem cells promotes cartilage repair in rats by modulating immunological microenvironment.Nan Fang Yi Ke Da Xue Xue Bao2022424528537
    [Google Scholar]
  33. LvH. LiuH. SunT. WangH. ZhangX. XuW. Exosome derived from stem cell: A promising therapeutics for wound healing.Front. Pharmacol.20221395777110.3389/fphar.2022.95777136003496
    [Google Scholar]
  34. TiD. HaoH. TongC. LiuJ. DongL. ZhengJ. ZhaoY. LiuH. FuX. HanW. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b.J. Transl. Med.201513130810.1186/s12967‑015‑0642‑626386558
    [Google Scholar]
  35. ZhangY. XieY. HaoZ. ZhouP. WangP. FangS. LiL. XuS. XiaY. Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing Angiogenesis.ACS Appl. Mater. Interfaces20211316184721848710.1021/acsami.0c2267133856781
    [Google Scholar]
  36. LiX.T. ZhaoJ. XuD.S. ZhangY. ZhouS.T. Bone marrow mesenchymal stem cell exosomes promote brain microvascular endothelial cell proliferation and migration in rats.Sichuan Da Xue Xue Bao Yi Xue Ban202051559960432975071
    [Google Scholar]
  37. ShiY. KangX. WangY. BianX. HeG. ZhouM. TangK. Exosomes derived from bone marrow stromal cells (BMSCs) enhance Tendon-bone healing by regulating macrophage polarization.Med. Sci. Monit.202026e92332810.12659/MSM.92332832369458
    [Google Scholar]
  38. YaoY. ChenR. WangG. ZhangY. LiuF. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium.Stem Cell Res. Ther.201910122510.1186/s13287‑019‑1332‑831358049
    [Google Scholar]
  39. LiuJ. QiuR. LiuR. SongP. LinP. ChenH. ZhouD. WangA. JinY. Autophagy mediates Escherichia Coli-induced cellular inflammatory injury by regulating calcium mobilization, mitochondrial dysfunction, and endoplasmic reticulum stress.Int. J. Mol. Sci.202223221417410.3390/ijms23221417436430657
    [Google Scholar]
  40. HanC.Y. RhoH.S. KimA. KimT.H. JangK. JunD.W. KimJ.W. KimB. KimS.G. FXR inhibits endoplasmic reticulum stress-induced NLRP3 inflammasome in hepatocytes and ameliorates liver injury.Cell Rep.201824112985299910.1016/j.celrep.2018.07.06830208322
    [Google Scholar]
  41. BaoM. FengQ. ZouL. HuangJ. ZhuC. XiaW. Endoplasmic reticulum stress promotes endometrial fibrosis through the TGF-β/SMAD pathway.Reproduction2023165217118210.1530/REP‑22‑029436342661
    [Google Scholar]
  42. SalunkheS. Dheeraj BasakMoumita ChitkaraDeepak MittalAnupama Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance.J Control Release2020326599614
    [Google Scholar]
  43. TamuraR. UemotoS. TabataY. Augmented liver targeting of exosomes by surface modification with cationized pullulan.Acta Biomater.20175727428410.1016/j.actbio.2017.05.01328483695
    [Google Scholar]
  44. ZhuQ. TangS. ZhuY. ChenD. HuangJ. LinJ. Exosomes derived from CTF1-modified bone marrow stem cells promote endometrial regeneration and restore fertility.Front. Bioeng. Biotechnol.20221086873410.3389/fbioe.2022.86873435497344
    [Google Scholar]
  45. LiX. ZhangY. WangY. ZhaoD. SunC. ZhouS. XuD. ZhaoJ. Exosomes derived from CXCR4-overexpressing BMSC promoted activation of microvascular endothelial cells in cerebral ischemia/reperfusion injury.Neural Plast.2020202011310.1155/2020/881423933381162
    [Google Scholar]
  46. SunJ. ShenH. ShaoL. TengX. ChenY. LiuX. YangZ. ShenZ. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis.Stem Cell Res. Ther.202011137310.1186/s13287‑020‑01881‑732859268
    [Google Scholar]
  47. McGettrickA.F. O’NeillL.A.J. The role of HIF in immunity and inflammation.Cell Metab.202032452453610.1016/j.cmet.2020.08.00232853548
    [Google Scholar]
  48. LiuW. LiL. RongY. QianD. ChenJ. ZhouZ. LuoY. JiangD. ChengL. ZhaoS. KongF. WangJ. ZhouZ. XuT. GongF. HuangY. GuC. ZhaoX. BaiJ. WangF. ZhaoW. ZhangL. LiX. YinG. FanJ. CaiW. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126.Acta Biomater.202010319621210.1016/j.actbio.2019.12.02031857259
    [Google Scholar]
  49. Ochoa-BernalM.A. FazleabasA.T. Physiologic events of embryo implantation and decidualization in human and non-human primates.Int. J. Mol. Sci.2020216197310.3390/ijms2106197332183093
    [Google Scholar]
  50. AchacheH. RevelA. Endometrial receptivity markers, the journey to successful embryo implantation.Hum. Reprod. Update200612673174610.1093/humupd/dml00416982667
    [Google Scholar]
  51. LiuH. ZhangX. ZhangM. ZhangS. LiJ. ZhangY. WangQ. CaiJ.P. ChengK. WangS. Mesenchymal stem cell derived exosomes repair uterine injury by targeting transforming growth factor-β signaling.ACS Nano20241843509351910.1021/acsnano.3c1088438241636
    [Google Scholar]
  52. LinY. LiY. ChenP. ZhangY. SunJ. SunX. LiJ. JinJ. XueJ. ZhengJ. JiangX.C. ChenC. LiX. WuY. ZhaoW. LiuJ. YeX. ZhangR. GaoJ. ZhangD. Exosome-based regimen rescues endometrial fibrosis in intrauterine adhesions via targeting clinical fibrosis biomarkers.Stem Cells Transl. Med.202312315416810.1093/stcltm/szad00736893290
    [Google Scholar]
  53. ShiY. YangX. WangS. WuY. ZhengL. TangY. GaoY. NiuJ. Human umbilical cord mesenchymal stromal cell-derived exosomes protect against MCD-induced NASH in a mouse model.Stem Cell Res. Ther.202213151710.1186/s13287‑022‑03201‑736371344
    [Google Scholar]
  54. WangJ. HuR. XingQ. FengX. JiangX. XuY. WeiZ. Exosomes derived from umbilical cord mesenchymal stem cells alleviate mifepristone-induced human endometrial stromal cell injury.Stem Cells Int.202020201910.1155/2020/609126932399046
    [Google Scholar]
  55. BosholmC.C. ZhuH. YuP. ChengK. MurphyS.V. McNuttP.M. ZhangY. Therapeutic benefits of stem cells and exosomes for sulfur-mustard-induced tissue damage.Int. J. Mol. Sci.20232412994710.3390/ijms2412994737373093
    [Google Scholar]
  56. ChenJ. HuangQ. ZhaoY. ChenW. LinS. ShiQ. The latest developments in immunomodulation of mesenchymal stem cells in the treatment of intrauterine adhesions, both allogeneic and autologous.Front. Immunol.20211278571710.3389/fimmu.2021.78571734868069
    [Google Scholar]
  57. JinY. LiS. YuQ. ChenT. LiuD. Application of stem cells in regeneration medicine.MedComm202344e29110.1002/mco2.291
    [Google Scholar]
  58. GaoM. YuZ. YaoD. QianY. WangQ. JiaR. Mesenchymal stem cells therapy: A promising method for the treatment of uterine scars and premature ovarian failure.Tissue Cell20227410167610.1016/j.tice.2021.10167634798583
    [Google Scholar]
  59. WangJ. ZhuM. HuY. ChenR. HaoZ. WangY. LiJ. Exosome-hydrogel system in bone tissue engineering: A promising therapeutic strategy.Macromol. Biosci.2023234220049610.1002/mabi.20220049636573715
    [Google Scholar]
  60. WangL. WangJ. ZhouX. SunJ. ZhuB. DuanC. ChenP. GuoX. ZhangT. GuoH. A new self-healing hydrogel containing hucMSC-derived exosomes promotes bone regeneration.Front. Bioeng. Biotechnol.2020856473110.3389/fbioe.2020.56473133042966
    [Google Scholar]
  61. YangJ. ChenZ. PanD. LiH. ShenJ. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration.Int. J. Nanomedicine2020155911592610.2147/IJN.S24912932848396
    [Google Scholar]
  62. ZhouY. ZhangX.L. LuS.T. ZhangN.Y. ZhangH.J. ZhangJ. ZhangJ. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration.Stem Cell Res. Ther.202213140710.1186/s13287‑022‑02980‑335941707
    [Google Scholar]
  63. WangC. WangM. XuT. ZhangX. LinC. GaoW. XuH. LeiB. MaoC. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration.Theranostics201991657610.7150/thno.2976630662554
    [Google Scholar]
  64. ZhaoS. QiW. ZhengJ. TianY. QiX. KongD. ZhangJ. HuangX. Exosomes derived from adipose mesenchymal stem cells restore functional endometrium in a rat model of intrauterine adhesions.Reprod. Sci.20202761266127510.1007/s43032‑019‑00112‑631933162
    [Google Scholar]
  65. SaribasG.S. OzogulC. TiryakiM. Alpaslan PinarliF. Hamdemir KilicS. Effects of uterus derived mesenchymal stem cells and their exosomes on asherman’s syndrome.Acta Histochem.2020122115146510.1016/j.acthis.2019.15146531776004
    [Google Scholar]
  66. ChangY. LiuY. LiX. Exosomes derived from human umbilical cord mesenchymal stem cells promote proliferation of endometrial stromal cell.Fertil. Steril.20201143e53010.1016/j.fertnstert.2020.09.035
    [Google Scholar]
  67. XinL. LinX. ZhouF. LiC. WangX. YuH. PanY. FeiH. MaL. ZhangS. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation.Acta Biomater.202011325226610.1016/j.actbio.2020.06.02932574858
    [Google Scholar]
  68. GowenA. ShahjinF. ChandS. OdegaardK.E. YelamanchiliS.V. Mesenchymal stem cell-derived extracellular vesicles: Challenges in clinical applications.Front. Cell Dev. Biol.2020814910.3389/fcell.2020.0014932226787
    [Google Scholar]
  69. WuJ. SongD. LiZ. GuoB. XiaoY. LiuW. LiangL. FengC. GaoT. ChenY. LiY. WangZ. WenJ. YangS. LiuP. WangL. WangY. PengL. StaceyG.N. HuZ. FengG. LiW. HuoY. JinR. Shyh-ChangN. ZhouQ. WangL. HuB. DaiH. HaoJ. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis.Cell Res.202030979480910.1038/s41422‑020‑0354‑132546764
    [Google Scholar]
  70. LiuL. LiuY. FengC. ChangJ. FuR. WuT. YuF. WangX. XiaL. WuC. FangB. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis.Biomaterials201919252353610.1016/j.biomaterials.2018.11.00730529871
    [Google Scholar]
  71. GongM. YuB. WangJ. WangY. LiuM. PaulC. MillardR.W. XiaoD.S. AshrafM. XuM. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis.Oncotarget2017828452004521210.18632/oncotarget.1677828423355
    [Google Scholar]
  72. LiangX. ZhangL. WangS. HanQ. ZhaoR.C. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a.J. Cell Sci.2016129112182218910.1242/jcs.17037327252357
    [Google Scholar]
  73. HanY. RenJ. BaiY. PeiX. HanY. Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R.Int. J. Biochem. Cell Biol.2019109596810.1016/j.biocel.2019.01.01730710751
    [Google Scholar]
  74. TooiM. KomakiM. MoriokaC. HondaI. IwasakiK. YokoyamaN. AyameH. IzumiY. MoritaI. Placenta mesenchymal stem cell derived exosomes confer plasticity on Fibroblasts.J. Cell. Biochem.201611771658167010.1002/jcb.2545926640165
    [Google Scholar]
  75. WangJ. XiaJ. HuangR. HuY. FanJ. ShuQ. XuJ. Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization.Stem Cell Res. Ther.202011142410.1186/s13287‑020‑01937‑832993783
    [Google Scholar]
  76. Del FattoreA. LucianoR. PascucciL. GoffredoB.M. GiordaE. ScapaticciM. FierabracciA. MuracaM. Immunoregulatory effects of mesenchymal stem cell-derived extracellular Vesicles on T Lymphocytes.Cell Transplant.201524122615262710.3727/096368915X68754325695896
    [Google Scholar]
  77. CrainS.K. RobinsonS.R. ThaneK.E. DavisA.M. MeolaD.M. BartonB.A. YangV.K. HoffmanA.M. Extracellular vesicles from Wharton’s Jelly mesenchymal stem cells suppress CD4 expressing T cells through transforming growth factor beta and Adenosine signaling in a Canine model.Stem Cells Dev.201928321222610.1089/scd.2018.009730412034
    [Google Scholar]
  78. PerriniC. StrillacciM.G. BagnatoA. EspostiP. MariniM.G. CorradettiB. BizzaroD. IddaA. LeddaS. CapraE. PizziF. Lange-ConsiglioA. CremonesiF. Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in vitro model.Stem Cell Res. Ther.20167116910.1186/s13287‑016‑0429‑627863532
    [Google Scholar]
  79. ParkK.S. SvennerholmK. ShelkeG.V. BandeiraE. LässerC. JangS.C. ChandodeR. GribonikaI. LötvallJ. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10.Stem Cell Res. Ther.201910123110.1186/s13287‑019‑1352‑431370884
    [Google Scholar]
  80. ChaubeyS. ThuesonS. PonnalaguD. AlamM.A. GheorgheC.P. AghaiZ. SinghH. BhandariV. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6.Stem Cell Res. Ther.20189117310.1186/s13287‑018‑0903‑429941022
    [Google Scholar]
  81. ShabbirA. CoxA. Rodriguez-MenocalL. SalgadoM. BadiavasE.V. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound Fibroblasts, and enhance Angiogenesis in vitro.Stem Cells Dev.201524141635164710.1089/scd.2014.031625867197
    [Google Scholar]
  82. WuF. LeiN. YangS. ZhouJ. ChenM. ChenC. QiuL. GuoR. LiY. ChangL. Treatment strategies for intrauterine adhesion: Focus on the exosomes and hydrogels.Front. Bioeng. Biotechnol.202311126400610.3389/fbioe.2023.126400637720318
    [Google Scholar]
  83. ElahiF.M. FarwellD.G. NoltaJ.A. AndersonJ.D. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells.Stem Cells2020381152110.1002/stem.306131381842
    [Google Scholar]
  84. KohH.B. KimH.J. KangS.W. YooT.H. Exosome-based drug delivery: Translation from bench to clinic.Pharmaceutics2023158204210.3390/pharmaceutics1508204237631256
    [Google Scholar]
  85. WangC.K. TsaiT.H. LeeC.H. Regulation of exosomes as biologic medicines: Regulatory challenges faced in exosome development and manufacturing processes.Clin. Transl. Sci.2024178e1390410.1111/cts.1390439115257
    [Google Scholar]
  86. ChenY.S. LinE.Y. ChiouT.W. HarnH.J. Exosomes in clinical trial and their production in compliance with good manufacturing practice.Tzu-Chi Med. J.201932211312032269942
    [Google Scholar]
  87. LouG. ChenZ. ZhengM. LiuY. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases.Exp. Mol. Med.2017496e34610.1038/emm.2017.6328620221
    [Google Scholar]
  88. GuoM. YinZ. ChenF. LeiP. Mesenchymal stem cell-derived exosome: A promising alternative in the therapy of Alzheimer’s disease.Alzheimers Res. Ther.202012110910.1186/s13195‑020‑00670‑x32928293
    [Google Scholar]
  89. Kimiz-GebologluI. OncelSS. Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake.J Control Release2022347533543
    [Google Scholar]
  90. XiongM. ZhangQ. HuW. ZhaoC. LvW. YiY. WangY. TangH. WuM. WuY. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics.Pharmacol. Res.202116610549010.1016/j.phrs.2021.10549033582246
    [Google Scholar]
  91. XiongM. ZhangQ. HuW. ZhaoC. LvW. YiY. WuY. WuM. Exosomes from adipose-derived stem cells: The emerging roles and applications in tissue regeneration of plastic and cosmetic surgery.Front. Cell Dev. Biol.2020857422310.3389/fcell.2020.57422333015067
    [Google Scholar]
  92. KaminskaA. WedzinskaA. KotM. SarnowskaA. Effect of long-term 3D spheroid culture on WJ-MSC.Cells202110471910.3390/cells1004071933804895
    [Google Scholar]
  93. HarasztiR.A. MillerR. StoppatoM. SereY.Y. ColesA. DidiotM.C. Exosomes produced from 3D cultures of mscs by tangential flow filtration show higher yield and improved activity.Mol. Ther.2018261228382847
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128337236241210080728
Loading
/content/journals/cpd/10.2174/0113816128337236241210080728
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test