Skip to content
2000
Volume 31, Issue 17
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Aim

The aim of the current study was to explore nano-formulation for effective neuroprotection by auranofin.

Background

Currently, the treatment options for various CNS disorders, particularly neurodegenerative disorders, are greatly constrained. A significant obstacle in this pursuit is the blood-brain barrier, a shielding covering that hinders the route of numerous biochemical treatments into the brain. To overcome this problem, nanoformulation-based approaches are gaining interest, increasing the compound's BBB penetrability.

Objective

The objective of this study was to evaluate whether nanoparticles fabricated from poly(lactic-co-glycolic acid) encapsulated with auranofin could oppose aluminium chloride-induced Alzheimer's disease.

Methods

Auranofin-encapsulated PLGA nanoparticles were prepared, and their particle size, entrapment efficiency (EE), distribution of particles, morphological surface charge, and structural characteristics were characterized. During the study, rats were orally administered AlCl at 100 mg/kg for 21 days. Meanwhile, auranofin and auranofin nanoparticles were orally administered at doses of 5 and 10 mg/kg and 2.5 and 5 mg/kg, respectively, within 2 weeks. After the course therapy, the rats were decapitated, and the hippocampus was collected for the estimated biochemical and neuroinflammatory markers.

Results

The auranofin nanoparticles were characterized, revealing % entrapment efficiency (98%) and % loading dose (76%). The nanoparticles exhibited a morphological surface charge of 27.5 ± 5.10 mV, a polydispersity index of 0.438 ± 0.12, and a mean particle size of 101.5 ± 10.3 nm. In the study, administering a gold compound (auranofin) and formulation (auranofin nanoparticles) resulted in a significant improvement in cognitive deficits, changes in biochemical parameters, and markers of neuroinflammation triggered with aluminium chloride.

Conclusion

The results have suggested that auranofin nanoparticles demonstrate abilities to protect neurons compared to auranofin alone. The noticed therapeutic benefits of the auranofin-encapsulated PLGA nanoparticles can be attributed to modulation in particle size with antioxidative and anti-inflammatory impacts of auranofin. Consequently, the outcome of the research has revealed that gold compound nanoparticles hold the potential to be a promising option for altering the therapeutic course of Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128336703241202182209
2025-01-17
2025-10-10
Loading full text...

Full text loading...

References

  1. d’ErricoP. Meyer-LuehmannM. Mechanisms of pathogenic tau and Aβ protein spreading in Alzheimer’s disease.Front. Aging Neurosci.20201226510.3389/fnagi.2020.0026533061903
    [Google Scholar]
  2. MillarN.L. SilbernagelK.G. ThorborgK. KirwanP.D. GalatzL.M. AbramsG.D. MurrellG.A.C. McInnesI.B. RodeoS.A. Tendinopathy.Nat. Rev. Dis. Primers20217112110.1038/s41572‑020‑00234‑133414454
    [Google Scholar]
  3. AbolhasaniF. PourshojaeiY. MohammadiF. EsmaeilpourK. AsadipourA. IlaghiM. ShabaniM. Exploring the potential of a novel phenoxyethyl piperidine derivative with cholinesterase inhibitory properties as a treatment for dementia: Insights from STZ animal model of dementia.Neurosci. Lett.202381013733210.1016/j.neulet.2023.13733237302565
    [Google Scholar]
  4. JackC.R.Jr BennettD.A. BlennowK. CarrilloM.C. DunnB. HaeberleinS.B. HoltzmanD.M. JagustW. JessenF. KarlawishJ. LiuE. MolinuevoJ.L. MontineT. PhelpsC. RankinK.P. RoweC.C. ScheltensP. SiemersE. SnyderH.M. SperlingR. ElliottC. MasliahE. RyanL. SilverbergN. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease.Alzheimers Dement.201814453556210.1016/j.jalz.2018.02.01829653606
    [Google Scholar]
  5. RostagnoA.A. Pathogenesis of Alzheimer’s Disease.Int. J. Mol. Sci.202224110710.3390/ijms2401010736613544
    [Google Scholar]
  6. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.1343928872215
    [Google Scholar]
  7. KalesH.C. GitlinL.N. LyketsosC.G. Assessment and management of behavioral and psychological symptoms of dementia.BMJ201535010.1136/bmj.h36925731881
    [Google Scholar]
  8. LanctôtK.L. AmatniekJ. Ancoli-IsraelS. ArnoldS.E. BallardC. Cohen-MansfieldJ. IsmailZ. LyketsosC. MillerD.S. MusiekE. OsorioR.S. RosenbergP.B. SatlinA. SteffensD. TariotP. BainL.J. CarrilloM.C. HendrixJ.A. JurgensH. BootB. Neuropsychiatric signs and symptoms of Alzheimer’s disease: New treatment paradigms.Alzheimers Dement. (N. Y.)20173344044910.1016/j.trci.2017.07.00129067350
    [Google Scholar]
  9. CerejeiraJ. LagartoL. Mukaetova-LadinskaE.B. Behavioral and psychological symptoms of dementia.Front. Neurol.201237310.3389/fneur.2012.0007322586419
    [Google Scholar]
  10. ShunanD. YuM. GuanH. ZhouY. Neuroprotective effect of Betalain against AlCl3-induced Alzheimer’s disease in Sprague Dawley Rats via putative modulation of oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway.Biomed. Pharmacother.202113711136910.1016/j.biopha.2021.11136933582452
    [Google Scholar]
  11. GanL. JohnsonJ.A. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases.Biochim. Biophys. Acta Mol. Basis Dis.2014184281208121810.1016/j.bbadis.2013.12.01124382478
    [Google Scholar]
  12. TiwariS. AtluriV. KaushikA. YndartA. NairM. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics.Int. J. Nanomedicine2019145541555410.2147/IJN.S20049031410002
    [Google Scholar]
  13. BaiR. GuoJ. YeX.Y. XieY. XieT. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease.Ageing Res. Rev.20227710161910.1016/j.arr.2022.10161935395415
    [Google Scholar]
  14. AlhowailA.H. Pioglitazone ameliorates DOX-induced cognitive impairment by mitigating inflammation, oxidative stress, and apoptosis of hippocampal neurons in rats.Behav. Brain Res.202445711471410.1016/j.bbr.2023.11471437838244
    [Google Scholar]
  15. NampoothiriM. GurramP.C. ManandharS. SatarkerS. MudgalJ. AroraD. Dopaminergic signaling as a plausible modulator of astrocytic toll-like receptor 4: A crosstalk between neuroinflammation and cognition.CNS Neurol. Disord. Drug Targets202322453955710.2174/187152732166622041309054135422229
    [Google Scholar]
  16. ZhaoY. DangM. ZhangW. LeiY. RameshT. Priya VeeraraghavanV. HouX. Neuroprotective effects of Syringic acid against aluminium chloride induced oxidative stress mediated neuroinflammation in rat model of Alzheimer’s disease.J. Funct. Foods20207110400910.1016/j.jff.2020.104009
    [Google Scholar]
  17. ChenJ. WangM. RuanD. SheJ. Early chronic aluminium exposure impairs long-term potentiation and depression to the rat dentate gyrus in vivo. Neuroscience2002112487988710.1016/S0306‑4522(02)00138‑012088747
    [Google Scholar]
  18. HussienH.M. Abd-ElmegiedA. GhareebD.A. HafezH.S. AhmedH.E.A. El-moneamN.A. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats.Food Chem. Toxicol.201811143244410.1016/j.fct.2017.11.02529170048
    [Google Scholar]
  19. ExleyC. ClarksonE. Aluminium in human brain tissue from donors without neurodegenerative disease: A comparison with Alzheimer’s disease, multiple sclerosis and autism.Sci. Rep.2020101777010.1038/s41598‑020‑64734‑632385326
    [Google Scholar]
  20. CampbellA. KumarA. La RosaF.G. PrasadK.N. BondyS.C. Aluminum increases levels of beta-amyloid and ubiquitin in neuroblastoma but not in glioma cells.Proc. Soc. Exp. Biol. Med.2000223439740210.1046/j.1525‑1373.2000.22356.x10721010
    [Google Scholar]
  21. KawaharaM. Kato-NegishiM. Link between Aluminium and the pathogenesis of Alzheimer’s Disease: The Integration of the Aluminium and amyloid cascade hypotheses.Int. J. Alzheimers Dis.20112011127639310.4061/2011/27639321423554
    [Google Scholar]
  22. BondyS.C. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration.Neurotoxicology20165222222910.1016/j.neuro.2015.12.00226687397
    [Google Scholar]
  23. GarciaT. EsparzaJ.L. NoguésM.R. RomeuM. DomingoJ.L. GómezM. Oxidative stress status and RNA expression in hippocampus of an animal model of Alzheimer’s disease after chronic exposure to aluminum.Hippocampus201020121822510.1002/hipo.2061219405147
    [Google Scholar]
  24. BolanG.A. SparlingP.F. WasserheitJ.N. The emerging threat of untreatable gonococcal infection.N. Engl. J. Med.2012366648548710.1056/NEJMp111245622316442
    [Google Scholar]
  25. ElkashifA. SeleemM.N. Investigation of auranofin and gold-containing analogues antibacterial activity against multidrug-resistant Neisseria gonorrhoeae. Sci. Rep.2020101560210.1038/s41598‑020‑62696‑332221472
    [Google Scholar]
  26. FiferH. NatarajanU. JonesL. AlexanderS. HughesG. GolparianD. UnemoM. Failure of dual antimicrobial therapy in the treatment of gonorrhea.N. Engl. J. Med.2016374252504250610.1056/NEJMc151275727332921
    [Google Scholar]
  27. SchäberleT.F. HackI.M. Overcoming the current deadlock in antibiotic research.Trends Microbiol.201422416516710.1016/j.tim.2013.12.00724698433
    [Google Scholar]
  28. ThangamaniS. MalandM. MohammadH. PascuzziP.E. AvramovaL. KoehlerC.M. HazbunT.R. SeleemM.N. Repurposing approach identifies auranofin with broad-spectrum antifungal activity that targets Mia40-Erv1 pathway.Front. Cell. Infect. Microbiol.201774410.3389/fcimb.2017.0000428149831
    [Google Scholar]
  29. WallS.B. LiR. ButlerB. BurgA.R. TseH.M. Larson-CaseyJ.L. CarterA.B. WrightC.J. RogersL.K. TippleT.E. Auranofin-mediated NRF2 induction attenuates interleukin 1 beta expression in alveolar macrophages.Antioxidants202110563210.3390/antiox1005063233919055
    [Google Scholar]
  30. UpīteJ. KadishI. van GroenT. JansoneB. Subchronic administration of auranofin reduced amyloid-β plaque pathology in a transgenic APPNL-GF/NL-GF mouse model.Brain Res.2020174614702210.1016/j.brainres.2020.14702232707043
    [Google Scholar]
  31. WangD. LiuL. LiS. WangC. Effects of paeoniflorin on neurobehavior, oxidative stress, brain insulin signaling, and synaptic alterations in intracerebroventricular streptozotocin-induced cognitive impairment in mice.Physiol. Behav.2018191122010.1016/j.physbeh.2018.03.01629572012
    [Google Scholar]
  32. CunhaA. GaubertA. LatxagueL. DehayB. PLGA-based nanoparticles for neuroprotective drug delivery in neurodegenerative diseases.Pharmaceutics2021137104210.3390/pharmaceutics1307104234371733
    [Google Scholar]
  33. DadwalA. BaldiA. Kumar NarangR. Nanoparticles as carriers for drug delivery in cancer.Artif. Cells Nanomed. Biotechnol.201846sup229530510.1080/21691401.2018.145703930043651
    [Google Scholar]
  34. KumarL. BaldiA. VermaS. UtrejaP. Exploring the therapeutic potential of nanocarrier systems against breast cancer.Pharm. Nanotechnol.2018629411010.2174/221173850666618060410192029866028
    [Google Scholar]
  35. ZhiK. RajiB. NookalaA.R. KhanM.M. NguyenX.H. SakshiS. PourmotabbedT. YallapuM.M. KochatH. TadrousE. PernellS. KumarS. PLGA nanoparticle-based formulations to cross the blood-brain barrier for Drug Delivery: From R&D to cGMP.Pharmaceutics202113450010.3390/pharmaceutics1304050033917577
    [Google Scholar]
  36. KushawahaS.K. AshawatM.S. BaldiA. Auranofin-loaded PLGA nanoparticles alleviate cognitive deficit induced by streptozotocin in rats model: modulation of oxidative stress, neuroinflammatory markers, and neurotransmitters.Naunyn Schmiedebergs Arch. Pharmacol.2024397100311004710.1007/s00210‑024‑03253‑x38967827
    [Google Scholar]
  37. BaranE.J. Tobón-ZapataG.E. EtcheverryS.B. Infrared and electronic spectra of Auranofin.Spectrochim. Acta A Mol. Biomol. Spectrosc.1999557-81569157310.1016/S1386‑1425(98)00337‑0
    [Google Scholar]
  38. KushawahaS.K. AshawatM.S. SoniD. KumarP. Rimpi BaldiA. Aurothioglucose encapsulated nanoparticles fostered neuroprotection in streptozotocin-induced Alzheimer’s disease.Brain Res.2024183414890610.1016/j.brainres.2024.14890638570152
    [Google Scholar]
  39. Kumar KushawahaS. Singh AshawatM. BaldiA. Neuroprotective effect of aurothioglucose-loaded PLGA nanoparticles in an Aluminium chloride-induced rat model of Alzheimer’s disease.Res J Pharm Technol202417275676210.52711/0974‑360X.2024.00118
    [Google Scholar]
  40. SharmaV. BalaA. DeshmukhR. BediK.L. SharmaP.L. Neuroprotective effect of RO-20-1724-a phosphodiesterase4 inhibitor against intracerebroventricular streptozotocin induced cognitive deficit and oxidative stress in rats.Pharmacol. Biochem. Behav.2012101223924510.1016/j.pbb.2012.01.00422285388
    [Google Scholar]
  41. GiorgettiM. GibbonsJ.A. BernalesS. AlfaroI.E. Drieu La RochelleC. CremersT. AltarC.A. WronskiR. Hutter-PaierB. ProtterA.A. Cognition-enhancing properties of Dimebon in a rat novel object recognition task are unlikely to be associated with acetylcholinesterase inhibition or N-methyl-D-aspartate receptor antagonism.J. Pharmacol. Exp. Ther.2010333374875710.1124/jpet.109.16449120194526
    [Google Scholar]
  42. KaizerR.R. CorrêaM.C. SpanevelloR.M. MorschV.M. MazzantiC.M. GonçalvesJ.F. SchetingerM.R.C. Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions.J. Inorg. Biochem.20059991865187010.1016/j.jinorgbio.2005.06.01516055195
    [Google Scholar]
  43. EllmanG.L. Tissue sulfhydryl groups.Arch. Biochem. Biophys.1959821707710.1016/0003‑9861(59)90090‑613650640
    [Google Scholar]
  44. KonoY. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase.Arch. Biochem. Biophys.1978186118919510.1016/0003‑9861(78)90479‑424422
    [Google Scholar]
  45. KoroliukM.A. IvanovaL.I. MaĭorovaI.G. TokarevV.E. A method of determining catalase activity.Lab. Delo1988116192451064
    [Google Scholar]
  46. EllmanG.L. CourtneyK.D. AndresV.Jr FeatherstoneR.M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196172889510.1016/0006‑2952(61)90145‑913726518
    [Google Scholar]
  47. HiraS. β-Carotene: A natural compound improves cognitive impairment and oxidative stress in a mouse model of streptozotocin-induced Alzheimer's Disease.Biomolecules20199944110.3390/biom9090441
    [Google Scholar]
  48. KakudaN. MiyasakaT. IwasakiN. NirasawaT. Wada-KakudaS. Takahashi-FujigasakiJ. MurayamaS. IharaY. IkegawaM. Distinct deposition of amyloid-β species in brains with Alzheimer’s disease pathology visualized with MALDI imaging mass spectrometry.Acta Neuropathol. Commun.2017517310.1186/s40478‑017‑0477‑x29037261
    [Google Scholar]
  49. BaysalI. UcarG. GultekinogluM. UlubayramK. Yabanoglu-CiftciS. Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J. Neural Transm. (Vienna)20171241334510.1007/s00702‑016‑1527‑426911385
    [Google Scholar]
  50. Sánchez-LópezE. EttchetoM. EgeaM.A. EspinaM. CanoA. CalpenaA.C. CaminsA. CarmonaN. SilvaA.M. SoutoE.B. GarcíaM.L. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization.J. Nanobiotechnology20181613210.1186/s12951‑018‑0356‑z29587747
    [Google Scholar]
  51. GlennåsA. KvienT.K. AndrupO. Clarke-JenssenO. KarstensenB. BrodinU. Auranofin is safe and superior to placebo in elderly-onset rheumatoid arthritis.Rheumatology (Oxford)199736887087710.1093/rheumatology/36.8.8709291856
    [Google Scholar]
  52. KimN.H. OhM.K. ParkH.J. KimI.S. Auranofin, a gold(I)-containing antirheumatic compound, activates Keap1/Nrf2 signaling via Rac1/iNOS signal and mitogen-activated protein kinase activation.J. Pharmacol. Sci.2010113324625410.1254/jphs.09330FP20647686
    [Google Scholar]
  53. MadeiraJ.M. RenschlerC.J. MuellerB. HashiokaS. GibsonD.L. KlegerisA. Novel protective properties of auranofin: Inhibition of human astrocyte cytotoxic secretions and direct neuroprotection.Life Sci.201392221072108010.1016/j.lfs.2013.04.00523624233
    [Google Scholar]
  54. WalzD.T. DiMartinoM.J. GriswoldD.E. IntocciaA.P. FlanaganT.L. Biologic actions and pharmacokinetic studies of auranofin.Am. J. Med.19837569010810.1016/0002‑9343(83)90481‑36318557
    [Google Scholar]
  55. AyazA. Inan-ErogluE. Is aluminum exposure a risk factor for neurological disorders?J. Res. Med. Sci.20182315110.4103/jrms.JRMS_921_1730057635
    [Google Scholar]
  56. ButterfieldD.A. MattsonM.P. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease.Neurobiol. Dis.202013810479510.1016/j.nbd.2020.10479532036033
    [Google Scholar]
  57. AlyH. ElrigalN. AliS. RizkM. EbrahimN. Modulatory effects of Casimiroa edulis on aluminium nanoparticles-associated neurotoxicity in a rat model of induced Alzheimer’s disease.J. Mater. Environ. Sci.20189719311941
    [Google Scholar]
  58. AutiS.T. KulkarniY.A. Neuroprotective effect of cardamom oil against Aluminium induced neurotoxicity in rats.Front. Neurol.20191039910.3389/fneur.2019.0039931114535
    [Google Scholar]
  59. AzibL. Debbache-BenaidaN. CostaG.D. Atmani-KilaniD. SaideneN. AyouniK. RichardT. AtmaniD. Pistacia lentiscus L. leaves extract and its major phenolic compounds reverse aluminium-induced neurotoxicity in mice.Ind. Crops Prod.201913757658410.1016/j.indcrop.2019.05.062
    [Google Scholar]
  60. AroraR. DeshmukhR. Embelin mitigates amyloid-β-Induced neurotoxicity and cognitive impairment in Rats: Potential therapeutic implications for Alzheimer’s disease.Mol. Neurobiol.2024Epub ahead of print.10.1007/s12035‑024‑04308‑z39008170
    [Google Scholar]
  61. MayaS. PrakashT. GoliD. Evaluation of neuroprotective effects of wedelolactone and gallic acid on aluminium-induced neurodegeneration: Relevance to sporadic amyotrophic lateral sclerosis.Eur. J. Pharmacol.2018835415110.1016/j.ejphar.2018.07.05830075221
    [Google Scholar]
  62. PrakashD. GopinathK. SudhandiranG. Fisetin enhances behavioral performances and attenuates reactive gliosis and inflammation during aluminum chloride-induced neurotoxicity.Neuromolecular Med.201315119220810.1007/s12017‑012‑8210‑123315010
    [Google Scholar]
  63. JiangT. SunQ. ChenS. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease.Prog. Neurobiol.201614711910.1016/j.pneurobio.2016.07.00527769868
    [Google Scholar]
  64. AnikaA.R. AroraR. VirendraS.A. ChawlaP.A. Mechanistic study on the possible role of Embelin in treating neurodegenerative disorders.CNS Neurol. Disord. Drug Targets2024231556610.2174/187152732266623011910005336655531
    [Google Scholar]
  65. TanB.L. NorhaizanM.E. LiewW.P.P. Sulaiman RahmanH. Antioxidant and oxidative stress: A mutual interplay in age-related diseases.Front. Pharmacol.20189116210.3389/fphar.2018.0116230405405
    [Google Scholar]
  66. BaisS. KumariR. PrasharY. Ameliorative effect of trans-sinapic acid and its protective role in cerebral hypoxia in aluminium chloride induced dementia of Alzheimer's Type.CNS Neurol Disord Drug Targets.201817214415410.2174/1871527317666180309130912
    [Google Scholar]
  67. PrakashA. ShurB. KumarA. Naringin protects memory impairment and mitochondrial oxidative damage against aluminum-induced neurotoxicity in rats.Int. J. Neurosci.2013123963664510.3109/00207454.2013.78554223510099
    [Google Scholar]
  68. RimpiA. RahulD. Chebulinic acid negated the development of streptozotocin-induced experimental dementia in rats.Int. J. Pharm. Investig.2020101243110.5530/ijpi.2020.1.5
    [Google Scholar]
  69. WangD.P. YinH. LinQ. FangS.P. ShenJ.H. WuY.F. SuS.H. HaiJ. Andrographolide enhances hippocampal BDNF signaling and suppresses neuronal apoptosis, astroglial activation, neuroinflammation, and spatial memory deficits in a rat model of chronic cerebral hypoperfusion.Naunyn Schmiedebergs Arch. Pharmacol.2019392101277128410.1007/s00210‑019‑01672‑931187188
    [Google Scholar]
  70. ChenX. ZhangM. AhmedM. SurapaneniK.M. VeeraraghavanV.P. ArulselvanP. Neuroprotective effects of ononin against the aluminium chloride-induced Alzheimer’s disease in rats.Saudi J. Biol. Sci.20212884232423910.1016/j.sjbs.2021.06.03134354404
    [Google Scholar]
  71. GoalA. RajK. SinghS. AroraR. Protective effects of Embelin in Benzo[α]pyrene induced cognitive and memory impairment in experimental model of mice.Curr. Res. Neurobiol.20246610012210.1016/j.crneur.2023.10012238616958
    [Google Scholar]
  72. KinneyJ.W. BemillerS.M. MurtishawA.S. LeisgangA.M. SalazarA.M. LambB.T. Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement. (N. Y.)20184157559010.1016/j.trci.2018.06.01430406177
    [Google Scholar]
  73. ZouJ. CaiP. XiongC. RuanJ. Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice.J. Huazhong Univ. Sci. Technolog. Med. Sci.2016361213010.1007/s11596‑016‑1536‑426838735
    [Google Scholar]
  74. JangraA. KasbeP. PandeyS.N. DwivediS. GurjarS.S. KwatraM. MishraM. VenuA.K. SulakhiyaK. GogoiR. SarmaN. BezbaruahB.K. LahkarM. Hesperidin and silibinin ameliorate Aluminium-induced neurotoxicity: Modulation of antioxidants and inflammatory cytokines level in mice hippocampus.Biol. Trace Elem. Res.2015168246247110.1007/s12011‑015‑0375‑726018497
    [Google Scholar]
  75. AbbasF. EladlM.A. El-SherbinyM. AboziedN. NabilA. MahmoudS.M. MokhtarH.I. ZaitoneS.A. IbrahimD. Celastrol and thymoquinone alleviate aluminum chloride-induced neurotoxicity: Behavioral psychomotor performance, neurotransmitter level, oxidative-inflammatory markers, and BDNF expression in rat brain.Biomed. Pharmacother.202215111307210.1016/j.biopha.2022.11307235576663
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128336703241202182209
Loading
/content/journals/cpd/10.2174/0113816128336703241202182209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test