Skip to content
2000
Volume 31, Issue 17
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Psychosis, marked by detachment from reality, includes symptoms like hallucinations and delusions. Traditional herbal remedies like kratom are gaining attention for psychiatric conditions. This was aimed at comprehending the molecular mechanisms of Kratom's antipsychotic effects utilizing a multi-modal computational approach.

Materials and Methods

This study employed network pharmacology followed by molecular docking and molecular dynamics simulation study to investigate the potential antipsychotic properties of kratom compounds by identifying their key molecular targets and interactions.

Results

Compounds present in kratom interact with a variety of receptors and proteins that play a pivotal role in neurotransmission, neurodevelopment, and cellular signaling. These interactions, particularly with dopamine and serotonin receptors, various proteins, and pathways, suggest a complex influence on psychiatric conditions. Both mitragynine and zotepine (an atypical antipsychotic drug) display significant binding affinities for 5HTR2A receptors, suggesting their potential for modulating related physiological pathways. Mitragynine displayed higher flexibility in binding compared to zotepine, which showed a more stable interaction. Hydrogen bond analysis revealed a more variable interaction profile for mitragynine than zotepine.

Conclusion

The research findings suggest that the interaction between kratom compounds and essential brain receptors could influence psychiatric conditions. Notably, both mitragynine (a key kratom component) and zotepine (an antipsychotic) bind to the 5HTR2A receptor, suggesting the potential for kratom to modulate similar pathways. Interestingly, mitragynine's flexible binding mode compared to zotepine might indicate a more diverse range of effects. Overall, the findings suggest complex interactions between kratom and the brain's signaling system, warranting further investigation into its potential therapeutic effects.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128335217241031033104
2025-01-01
2025-10-10
Loading full text...

Full text loading...

References

  1. GaebelW. ZielasekJ. Focus on psychosis.Dialogues Clin. Neurosci.201517191810.31887/DCNS.2015.17.1/wgaebel 25987859
    [Google Scholar]
  2. SistiD.A. CalkinsM.E. Psychosis risk: What is it and how should we talk about it?AMA J. Ethics201618662463210.1001/journalofethics.2016.18.6.msoc1‑1606 27322996
    [Google Scholar]
  3. KartA. ÖzdelK. TürkçaparH. Cognitive behavioral therapy in treatment of schizophrenia.Noro Psikiyatri Arsivi202158Suppl. 1S61S6510.29399/npa.27418 34658637
    [Google Scholar]
  4. FalloonI.R.H. BoydJ.L. McGillC.W. Family Care of Schizophrenia: A Problem-solving Approach to the Treatment of Mental Illness.New YorkThe Guilford Press1984
    [Google Scholar]
  5. BachP. HayesS.C. The use of acceptance and commitment therapy to prevent the rehospitalization of psychotic patients: A randomized controlled trial.J. Consult. Clin. Psychol.20027051129113910.1037/0022‑006X.70.5.1129 12362963
    [Google Scholar]
  6. DrakeR.E. WhitleyR. Recovery and severe mental illness: Description and analysis.Can. J. Psychiatry201459523624210.1177/070674371405900502 25007276
    [Google Scholar]
  7. EeC. LakeJ. FirthJ. An integrative collaborative care model for people with mental illness and physical comorbidities.Int. J. Ment. Health Syst.20201418310.1186/s13033‑020‑00410‑6 33292354
    [Google Scholar]
  8. WemrellM. OlssonA. LandgrenK. The use of complementary and alternative medicine (CAM) in psychiatric units in Sweden.Issues Ment. Health Nurs.2020411094695710.1080/01612840.2020.1744203 32497455
    [Google Scholar]
  9. BermanS. MischoulonD. NaidooU. Complementary medicine and natural medications in psychiatry: A guide for the consultation-liaison psychiatrist.Psychosomatics202061550851710.1016/j.psym.2020.04.010 32460988
    [Google Scholar]
  10. SchulzP. HedeV. Alternative and complementary approaches in psychiatry: Beliefs versus evidence.Dialogues Clin. Neurosci.201820320721410.31887/DCNS.2018.20.3/pschulz 30581290
    [Google Scholar]
  11. MeirelesV. RosadoT. BarrosoM. Mitragyna speciosa: Clinical, toxicological aspects and analysis in biological and non-biological samples.Medicines (Basel)2019613510.3390/medicines6010035 30836609
    [Google Scholar]
  12. EastlackS.C. CornettE.M. KayeA.D. Kratom - Pharmacology, clinical implications, and outlook: A comprehensive review.Pain Ther.202091556910.1007/s40122‑020‑00151‑x 31994019
    [Google Scholar]
  13. JohnsonL.E. BalyanL. MagdalanyA. The potential for kratom as an antidepressant and antipsychotic.Yale J. Biol. Med.2020932283289 32607089
    [Google Scholar]
  14. PreveteE. KuypersK.P.C. TheunissenE.L. Clinical implications of kratom (Mitragyna speciosa) use: A literature review.Curr. Addict. Rep.202310231733410.1007/s40429‑023‑00478‑3 37266188
    [Google Scholar]
  15. Badan Narkotika Nasional. Kratom dan Permasalahannya. Deputi Bidang Pemberdayaan Masyarakat Badan Narkotika Nasional. Available from: https://bnn.go.id/konten/unggahan/2020/01/Kratom_Dayamas.pdf (cited 2024 May19).
  16. Flores-BocanegraL. RajaH.A. GrafT.N. The chemistry of kratom Mitragyna speciosa: Updated characterization data and methods to elucidate indole and oxindole alkaloids.J. Nat. Prod.20208372165217710.1021/acs.jnatprod.0c00257 32597657
    [Google Scholar]
  17. VeeramohanR. AzizanK.A. AizatW.M. Metabolomics data of Mitragyna speciosa leaf using LC-ESI-TOF-MS.Data Brief2018181212121610.1016/j.dib.2018.04.001 29900296
    [Google Scholar]
  18. HoughtonP.J. LatiffA. SaidI.M. Alkaloids from Mitragyna speciosa.Phytochemistry199130134735010.1016/0031‑9422(91)84152‑I
    [Google Scholar]
  19. AvulaB. SagiS. WangY.H. Identification and characterization of indole and oxindole alkaloids from leaves of mitragyna speciosa korth using liquid chromatography - Accurate QToF mass spectrometry.J. AOAC Int.2015981132110.5740/jaoacint.14‑110 25857873
    [Google Scholar]
  20. SzklarczykD. KirschR. KoutrouliM. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  21. ShannonP. MarkielA. OzierO. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  22. ShermanB.T. HaoM. QiuJ. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216-2110.1093/nar/gkac194 35325185
    [Google Scholar]
  23. KhuranaN. IsharM.P.S. GajbhiyeA. GoelR.K. PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice.Eur. J. Pharmacol.20116621-3223010.1016/j.ejphar.2011.04.048 21554868
    [Google Scholar]
  24. ParasuramanS. Prediction of activity spectra for substances.J. Pharmacol. Pharmacother.201121525310.4103/0976‑500X.77119 21701651
    [Google Scholar]
  25. McNuttA.T. FrancoeurP. AggarwalR. GNINA 1.0: Molecular docking with deep learning.J. Cheminform.20211314310.1186/s13321‑021‑00522‑2 34108002
    [Google Scholar]
  26. Tallei TE, Fatimawali , Adam AA, et al. 2023; Molecular insights into the anti-inflammatory activity of fermented pineapple juice using multimodal computational studies.Arch. Pharm. (Weinheim)3577e230042210.1002/ardp.202300422 37861276
    [Google Scholar]
  27. AbrahamM.J. MurtolaT. SchulzR. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  28. WangY. JosephJ. GaoY. Revealing the interaction modes of 5-HT2A receptor antagonists and the structure-based virtual screening from FDA and TCMNP database.J. Biomol. Struct. Dyn.202139103681369210.1080/07391102.2020.1768900 32406337
    [Google Scholar]
  29. XiongG. WuZ. YiJ. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab255 33893803
    [Google Scholar]
  30. DrwalM.N. BanerjeeP. DunkelM. WettigM.R. PreissnerR. ProTox: A web server for the in silico prediction of rodent oral toxicity.Nucleic Acids Res.201442W1W53-810.1093/nar/gku401 24838562
    [Google Scholar]
  31. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  32. ToddD.A. KelloggJ.J. WallaceE.D. Chemical composition and biological effects of kratom (Mitragyna speciosa): In vitro studies with implications for efficacy and drug interactions.Sci. Rep.20201011915810.1038/s41598‑020‑76119‑w 33154449
    [Google Scholar]
  33. HossainR. SultanaA. NuinoonM. A critical review of the neuropharmacological effects of kratom: An insight from the functional array of identified natural compounds.Molecules20232821737210.3390/molecules28217372 37959790
    [Google Scholar]
  34. HanapiN.A. ChearN.J.Y. AziziJ. YusofS.R. Kratom alkaloids: Interactions with enzymes, receptors, and cellular barriers.Front. Pharmacol.20211275165610.3389/fphar.2021.751656 34867362
    [Google Scholar]
  35. Morris-SchafferK. McCoyM.J. A review of the LD50 and its current role in hazard communication.J. Chem. Health Saf.2021281253310.1021/acs.chas.0c00096
    [Google Scholar]
  36. SalvadorJ. GutierrezG. LlaveroM. GargalloJ. EscaladaJ. LópezJ. Endocrine disorders and psychiatric manifestations.Endocrinol Sys Dis201913510.1007/978‑3‑319‑66362‑3_12‑1
    [Google Scholar]
  37. Cabana-DomínguezJ. TorricoB. ReifA. Fernàndez-CastilloN. CormandB. Comprehensive exploration of the genetic contribution of the dopaminergic and serotonergic pathways to psychiatric disorders.Transl. Psychiatry20221211110.1038/s41398‑021‑01771‑3 35013130
    [Google Scholar]
  38. MataI ArranzMJ PatiñoA LaiT BeperetM SierrasesumagaL Serotonergic polymorphisms and psychotic disorders in populations from North Spain.Am J Med Genet B Neuropsychiatr Genet 126B(1)889410.1002/ajmg.b.2015015048655
    [Google Scholar]
  39. QuednowB.B. GeyerM.A. HalberstadtA.L. Serotonin and schizophrenia.Handb. Behav. Neurosci.20102158562010.1016/S1569‑7339(10)70102‑8
    [Google Scholar]
  40. NascimentoJ.M. Saia-CeredaV.M. ZuccoliG.S. Proteomic signatures of schizophrenia-sourced iPSC-derived neural cells and brain organoids are similar to patients’ postmortem brains.Cell Biosci.202212118910.1186/s13578‑022‑00928‑x 36451159
    [Google Scholar]
  41. AntunesA.S.L.M. Reis-de-OliveiraG. Martins-de-SouzaD. Molecular overlaps of neurological manifestations of COVID-19 and schizophrenia from a proteomic perspective.Eur. Arch. Psychiatry Clin. Neurosci.2025275110912210.1007/s00406‑024‑01842‑8 39028452
    [Google Scholar]
  42. MaoY. FisherD.W. YangS. KeszyckiR.M. DongH. Protein-protein interactions underlying the behavioral and psychological symptoms of dementia (BPSD) and Alzheimer’s disease.PLoS One2020151e022602110.1371/journal.pone.0226021 31951614
    [Google Scholar]
  43. RajalingamA. GanjiwaleA. Identification of common genetic factors and immune-related pathways associating more than two autoimmune disorders: Implications on risk, diagnosis, and treatment.Genomics Inform.20242211010.1186/s44342‑024‑00004‑5 38956704
    [Google Scholar]
  44. XiaJ. BennerM.J. HancockR.E.W. NetworkAnalyst - Iintegrative approaches for protein–protein interaction network analysis and visual exploration.Nucleic Acids Res.201442W1W167-7410.1093/nar/gku443 24861621
    [Google Scholar]
  45. ZhangX. ConnellyJ. ChaoY. WangQ.J. Multifaceted functions of protein kinase D in pathological processes and human diseases.Biomolecules202111348310.3390/biom11030483 33807058
    [Google Scholar]
  46. DuL. WilsonB.A.P. LiN. Discovery and synthesis of a naturally derived protein kinase inhibitor that selectively inhibits distinct classes of serine/threonine kinases.J. Nat. Prod.202386102283229310.1021/acs.jnatprod.3c00394 37843072
    [Google Scholar]
  47. VanA.A.N. KunkelM.T. BaffiT.R. Protein kinase C fusion proteins are paradoxically loss of function in cancer.J. Biol. Chem.202129610044510.1016/j.jbc.2021.100445 33617877
    [Google Scholar]
  48. ColganL.A. HuM. MislerJ.A. PKCα integrates spatiotemporally distinct Ca2+ and autocrine BDNF signaling to facilitate synaptic plasticity.Nat. Neurosci.20182181027103710.1038/s41593‑018‑0184‑3 30013171
    [Google Scholar]
  49. StevensC.F. SullivanJ.M. Regulation of the readily releasable vesicle pool by protein kinase C.Neuron199821488589310.1016/S0896‑6273(00)80603‑0 9808473
    [Google Scholar]
  50. ZhouM.H. ChenS.R. WangL. Protein kinase C-mediated phosphorylation and α2δ-1 interdependently regulate NMDA receptor trafficking and activity.J. Neurosci.202141306415642910.1523/JNEUROSCI.0757‑21.2021 34252035
    [Google Scholar]
  51. LallemendF. HadjabS. HansG. MoonenG. LefebvreP.P. MalgrangeB. Activation of protein kinase CβI constitutes a new neurotrophic pathway for deafferented spiral ganglion neurons.J. Cell Sci.2005118194511452510.1242/jcs.02572 16179609
    [Google Scholar]
  52. NoguèsX. Protein kinase C, learning and memory: A circular determinism between physiology and behaviour.Prog. Neuropsychopharmacol. Biol. Psychiatry199721350752910.1016/S0278‑5846(97)00015‑8 9153070
    [Google Scholar]
  53. OdaY. KanaharaN. IyoM. Alterations of dopamine D2 receptors and related receptor-interacting proteins in schizophrenia: The pivotal position of dopamine supersensitivity psychosis in treatment-resistant schizophrenia.Int. J. Mol. Sci.20151612301443016310.3390/ijms161226228 26694375
    [Google Scholar]
  54. QuintanaC. BeaulieuJ.M. A fresh look at cortical dopamine D2 receptor expressing neurons.Pharmacol. Res.201913944044510.1016/j.phrs.2018.12.001 30528973
    [Google Scholar]
  55. TungM.C. LinY.W. LeeW.J. Targeting DRD2 by the antipsychotic drug, penfluridol, retards growth of renal cell carcinoma via inducing stemness inhibition and autophagy-mediated apoptosis.Cell Death Dis.202213440010.1038/s41419‑022‑04828‑3 35461314
    [Google Scholar]
  56. FengS. SunP. QuC. Exploring the core genes of schizophrenia based on bioinformatics analysis.Genes (Basel)202213696710.3390/genes13060967 35741729
    [Google Scholar]
  57. BoyerE.W. BabuK.M. AdkinsJ.E. McCurdyC.R. HalpernJ.H. Self‐treatment of opioid withdrawal using kratom (Mitragynia speciosa korth).Addiction200810361048105010.1111/j.1360‑0443.2008.02209.x 18482427
    [Google Scholar]
  58. EdinoffA.N. SwinfordC.R. OdishoA.S. Clinically relevant drug interactions with monoamine oxidase inhibitors.Health Psychol. Res.20221043957610.52965/001c.39576 36425231
    [Google Scholar]
  59. DawsonT.M. DawsonV.L. Nitric oxide synthase: Role as a transmitter/mediator in the brain and endocrine system.Annu. Rev. Med.19964721922710.1146/annurev.med.47.1.219 8712777
    [Google Scholar]
  60. WegenerG. VolkeV. Nitric oxide synthase inhibitors as antidepressants.Pharmaceuticals (Basel)20103127329910.3390/ph3010273 27713253
    [Google Scholar]
  61. PourhamzehM. MoravejF.G. ArabiM. The roles of serotonin in neuropsychiatric disorders.Cell. Mol. Neurobiol.20224261671169210.1007/s10571‑021‑01064‑9 33651238
    [Google Scholar]
  62. CeladaP. BortolozziA. ArtigasF. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: Rationale and current status of research.CNS Drugs201327970371610.1007/s40263‑013‑0071‑0 23757185
    [Google Scholar]
  63. SimpsonE.H. GalloE.F. BalsamP.D. JavitchJ.A. KellendonkC. How changes in dopamine D2 receptor levels alter striatal circuit function and motivation.Mol. Psychiatry202227143644410.1038/s41380‑021‑01253‑4 34385603
    [Google Scholar]
  64. LiX. TengT. YanW. AKT and MAPK signaling pathways in hippocampus reveals the pathogenesis of depression in four stress-induced models.Transl. Psychiatry202313120010.1038/s41398‑023‑02486‑3 37308476
    [Google Scholar]
  65. ZhangR. YangY. DongW. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1.Proc. Natl. Acad. Sci. USA20221198e211485111910.1073/pnas.2114851119 35181605
    [Google Scholar]
  66. ChenY. GuanW. WangM.L. LinX.Y. PI3K-Akt/mTOR signaling in psychiatric disorders: A valuable target to stimulate or suppress?Int. J. Neuropsychopharmacol.2024272pyae01010.1093/ijnp/pyae010 38365306
    [Google Scholar]
  67. ChenZ.R. HuangJ.B. YangS.L. HongF.F. Role of cholinergic signaling in Alzheimer’s disease.Molecules2022276181610.3390/molecules27061816 35335180
    [Google Scholar]
  68. SultzerD.L. LimA.C. GordonH.L. YarnsB.C. MelroseR.J. Cholinergic receptor binding in unimpaired older adults, mild cognitive impairment, and Alzheimer’s disease dementia.Alzheimers Res. Ther.20221412510.1186/s13195‑021‑00954‑w 35130968
    [Google Scholar]
  69. HesselS.S. DwivanyF.M. ZainuddinI.M. A computational simulation appraisal of banana lectin as a potential anti-SARS-CoV-2 candidate by targeting the receptor-binding domain.J. Genet. Eng. Biotechnol.202321114810.1186/s43141‑023‑00569‑8 38015308
    [Google Scholar]
  70. RudrapalM. CelikI. KhanJ. Identification of bioactive molecules from Triphala (Ayurvedic herbal formulation) as potential inhibitors of SARS-CoV-2 main protease (Mpro) through computational investigations.J. King Saud Univ. Sci.202234310182610.1016/j.jksus.2022.101826 35035181
    [Google Scholar]
  71. DžoljićE. GrbatinićI. KostićV. Why is nitric oxide important for our brain?Funct. Neurol.201530315916310.11138/FNeur/2015.30.3.159 26910176
    [Google Scholar]
  72. ChenK. PittmanR.N. PopelA.S. Nitric oxide in the vasculature: Where does it come from and where does it go? A quantitative perspective.Antioxid. Redox Signal.20081071185119810.1089/ars.2007.1959 18331202
    [Google Scholar]
  73. TripathiP. Nitric oxide and immune response.Indian J. Biochem. Biophys.2007445310319 18341206
    [Google Scholar]
  74. GhasemiM. ClaunchJ. NiuK. Pathologic role of nitrergic neurotransmission in mood disorders.Prog. Neurobiol.2019173548710.1016/j.pneurobio.2018.06.002 29890213
    [Google Scholar]
  75. PennanenL. van der HartM. YuL. TecottL.H. Impact of serotonin (5-HT)2C receptors on executive control processes.Neuropsychopharmacology201338695796710.1038/npp.2012.258 23303047
    [Google Scholar]
  76. MatsumotoK. MizowakiM. TakayamaH. SakaiS.I. AimiN. WatanabeH. Suppressive effect of mitragynine on the 5-methoxy-N,N-dimethyltryptamine-induced head-twitch response in mice.Pharmacol. Biochem. Behav.1997571-231932310.1016/S0091‑3057(96)00314‑0 9164589
    [Google Scholar]
  77. ZhangG. StackmanR.W. The role of serotonin 5-HT2A receptors in memory and cognition.Front. Pharmacol.2015622510.3389/fphar.2015.00225 26500553
    [Google Scholar]
  78. HoyerD. 5-HT-2C Receptor.In: Enna SJ, Bylund DBBTTCPR, Eds. xPharm: The Comprehensive Pharmacology.New YorkElsevier2007111
    [Google Scholar]
  79. NakaoK. SinghM. SapkotaK. FitzgeraldA. HablitzJ.J. NakazawaK. 5-HT2A receptor dysregulation in a schizophrenia relevant mouse model of NMDA receptor hypofunction.Transl. Psychiatry202212116810.1038/s41398‑022‑01930‑0 35459266
    [Google Scholar]
  80. KimS.A. 5-HT1A and 5-HT2A signaling, desensitization, and downregulation: Serotonergic dysfunction and abnormal receptor density in schizophrenia and the prodrome.Cureus2021136e1581110.7759/cureus.15811 34306878
    [Google Scholar]
  81. García-BeaA. Miranda-AzpiazuP. MuguruzaC. Serotonin 5-HT2A receptor expression and functionality in postmortem frontal cortex of subjects with schizophrenia: Selective biased agonism via Gαi1-proteins.Eur. Neuropsychopharmacol.201929121453146310.1016/j.euroneuro.2019.10.013 31734018
    [Google Scholar]
  82. AkilM. KolachanaB.S. RothmondD.A. HydeT.M. WeinbergerD.R. KleinmanJ.E. Catechol-O-methyltransferase genotype and dopamine regulation in the human brain.J. Neurosci.20032362008201310.1523/JNEUROSCI.23‑06‑02008.2003 12657658
    [Google Scholar]
  83. MuruganN.A. MuvvaC. JeyarajpandianC. JeyakanthanJ. SubramanianV. Performance of force-field- and machine learning-based scoring functions in ranking MAO-B protein–inhibitor complexes in relevance to developing Parkinson’s therapeutics.Int. J. Mol. Sci.20202120764810.3390/ijms21207648 33081086
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128335217241031033104
Loading
/content/journals/cpd/10.2174/0113816128335217241031033104
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test