Skip to content
2000
Volume 31, Issue 31
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Objective of the Study

This review aims to critically analyze the scope for targeting drugs towards the treatment of improving outcomes in PDAC, focusing on DNA repair inhibitors, antiangiogenic therapy, inhibitors of the KRAS pathway, anti-stromal, and nanoparticle-based therapy.

Materials and Methods

A critical review of preclinical and clinical studies was conducted to summarize the therapeutic interventions that target specific mutations in PDAC, components of the tumor microenvironment, and drug delivery systems, especially nanotechnology, to enhance targeting and efficacy.

Results

Inhibitors and nanotechnology-based targeted therapies have reported promise in preclinical models: drug delivery is enhanced with the loss of PDAC resistance mechanisms. Formulations and combinations targeting KRAS as well as other pathways point toward improved drug delivery over 'orthodox' treatment approaches.

Conclusion

This review concludes that although improvement in therapies for PDAC has incrementally been proven in recent literature, however, more research is expected to enhance these approaches so that they can be applied appropriately at the clinical stage. In future studies, it is expected to optimize treatment combinations, address mechanisms of resistance, and improve the delivery of drugs.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128334659241223113743
2025-02-27
2025-09-08
Loading full text...

Full text loading...

References

  1. SarantisP. KoustasE. PapadimitropoulouA. PapavassiliouA.G. KaramouzisM.V. Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy.World J. Gastrointest. Oncol.202012217318110.4251/wjgo.v12.i2.17332104548
    [Google Scholar]
  2. ZhouZ LiM. Comment pancreatic cancer: Targeted therapy holds the promise.eBioMedicine202275103755
    [Google Scholar]
  3. StoffelE.M. BrandR.E. GogginsM. Pancreatic cancer: Changing epidemiology and new approaches to risk assessment, early detection, and prevention.Gastroenterology2023164575276510.1053/j.gastro.2023.02.01236804602
    [Google Scholar]
  4. SpiliopoulosS. ZurloM.T. CasellaA. LaeraL. SuricoG. SurgoA. FiorentinoA. de’AngelisN. CalbiR. MemeoR. InchingoloR. Current status of non- surgical treatment of locally advanced pancreatic cancer.World J. Gastrointest. Oncol.202113122064207510.4251/wjgo.v13.i12.206435070042
    [Google Scholar]
  5. ObidiroO. BattogtokhG. AkalaE.O. Triple negative breast cancer treatment options and limitations: Future outlook.Pharmaceutics2023157179610.3390/pharmaceutics1507179637513983
    [Google Scholar]
  6. GiriP.M. BanerjeeA. LayekB. A recent review on cancer nanomedicine.Cancers2023158225610.3390/cancers1508225637190185
    [Google Scholar]
  7. DuanH. LiL. HeS. Advances and prospects in the treatment of pancreatic cancer.Int. J. Nanomedicine2023183973398810.2147/IJN.S41349637489138
    [Google Scholar]
  8. BoydL.N.C. AndiniK.D. PetersG.J. KazemierG. GiovannettiE. Heterogeneity and plasticity of cancer-associated fibroblasts in the pancreatic tumor microenvironment.Semin. Cancer Biol.20228218419610.1016/j.semcancer.2021.03.00633737108
    [Google Scholar]
  9. DangY. GuanJ. Nanoparticle-based drug delivery systems for cancer therapy.Smart Mater. Med.20201101910.1016/j.smaim.2020.04.00134553138
    [Google Scholar]
  10. HuH. YeZ. QinY. XuX. YuX. ZhuoQ. JiS. Mutations in key driver genes of pancreatic cancer: Molecularly targeted therapies and other clinical implications.Acta Pharmacol. Sin.202142111725174110.1038/s41401‑020‑00584‑233574569
    [Google Scholar]
  11. WangZ. HeR. DongS. ZhouW. Pancreatic stellate cells in pancreatic cancer: As potential targets for future therapy.Front. Oncol.202313118509310.3389/fonc.2023.118509337409257
    [Google Scholar]
  12. SreejithT KamalasananK. SnehaS KeechilatP. HarbH. Advancing cancer treatment through nanotechnology driven immunotherapy for pancreatic cancer.ACS Appl. Nano Mater.2023620186701869710.1021/acsanm.3c03454
    [Google Scholar]
  13. FangY.T. YangW.W. NiuY.R. SunY.K. Recent advances in targeted therapy for pancreatic adenocarcinoma.World J. Gastrointest. Oncol.202315457159510.4251/wjgo.v15.i4.57137123059
    [Google Scholar]
  14. QianY. GongY. FanZ. LuoG. HuangQ. DengS. ChengH. JinK. NiQ. YuX. LiuC. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma.J. Hematol. Oncol.202013113010.1186/s13045‑020‑00958‑333008426
    [Google Scholar]
  15. HoseinA.N. DouganS.K. AguirreA.J. MaitraA. Translational advances in pancreatic ductal adenocarcinoma therapy.Nat. Cancer20223327228610.1038/s43018‑022‑00349‑235352061
    [Google Scholar]
  16. TesfayeA.A. AzmiA.S. PhilipP.A. miRNA and gene expression in pancreatic ductal adenocarcinoma.Am. J. Pathol.20191891587010.1016/j.ajpath.2018.10.00530558723
    [Google Scholar]
  17. SampedroG.A. GaggiaG. NeyA. The state-of-the-art of phase II/III clinical trials for targeted pancreatic cancer therapies.J Clin Med202110456610.3390/jcm10040566
    [Google Scholar]
  18. WenY OuyangD ZouQ A literature review of the promising future of TROP2: A potential drug therapy target.Ann Transl Med.20221024140310.21037/atm‑22‑5976
    [Google Scholar]
  19. KatoS. SubbiahV. MarchlikE. ElkinS.K. CarterJ.L. KurzrockR. RET aberrations in diverse cancers: Next-generation sequencing of 4,871 patients.Clin. Cancer Res.20172381988199710.1158/1078‑0432.CCR‑16‑167927683183
    [Google Scholar]
  20. SinghiA.D. GeorgeB. GreenboweJ.R. ChungJ. SuhJ. MaitraA. KlempnerS.J. HendifarA. MilindJ.M. GolanT. BrandR.E. ZureikatA.H. RoyS. SchrockA.B. MillerV.A. RossJ.S. AliS.M. BaharyN. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers.Gastroenterology2019156822422253.e410.1053/j.gastro.2019.02.03730836094
    [Google Scholar]
  21. SubbiahV. WolfJ. KondaB. KangH. SpiraA. WeissJ. TakedaM. OheY. KhanS. OhashiK. SoldatenkovaV. SzymczakS. SullivanL. WrightJ. DrilonA. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): A phase 1/2, open-label, basket trial.Lancet Oncol.202223101261127310.1016/S1470‑2045(22)00541‑136108661
    [Google Scholar]
  22. FDA D.I.S.C.OBurst edition: FDA approvals of retevmo (selpercatinib) for adult patients with locally advanced or metastatic RET fusion-positive solid tumors, and retevmo (selpercatinib) for adult patients with locally advanced or metastatic RET fusion-positive non-small cell lung cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approvals-retevmo-selpercatinib-adult-patients-locally-advanced-or2022
  23. SolomonJ.P. LinkovI. RosadoA. MullaneyK. RosenE.Y. FrosinaD. JungbluthA.A. ZehirA. BenayedR. DrilonA. HymanD.M. LadanyiM. SireciA.N. HechtmanJ.F. NTRK fusion detection across multiple assays and 33,997 cases: Diagnostic implications and pitfalls.Mod. Pathol.2020331384610.1038/s41379‑019‑0324‑731375766
    [Google Scholar]
  24. OkamuraR. BoichardA. KatoS. SicklickJ.K. BazhenovaL. KurzrockR. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: Implications for NTRK-targeted therapeutics.JCO Precis. Oncol.20182018212010.1200/PO.18.0018330637364
    [Google Scholar]
  25. DoebeleR.C. DrilonA. AresP.L. SienaS. ShawA.T. FaragoA.F. BlakelyC.M. SetoT. ChoB.C. TosiD. BesseB. ChawlaS.P. BazhenovaL. KraussJ.C. ChaeY.K. BarveM. LagunaG.I. LiuS.V. ConklingP. JohnT. FakihM. SigalD. LoongH.H. BuchschacherG.L.Jr GarridoP. NievaJ. SteuerC. OverbeckT.R. BowlesD.W. FoxE. RiehlT. ManevalC.E. SimmonsB. CuiN. JohnsonA. EngS. WilsonT.R. DemetriG.D. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials.Lancet Oncol.202021227128210.1016/S1470‑2045(19)30691‑631838007
    [Google Scholar]
  26. O’ReillyEM HechtmanJF Tumour response to TRK inhibition in a patient with pancreatic adenocarcinoma harbouring an NTRK gene fusion.Ann Oncol201930Suppl_8viii36viii4010.1093/annonc/mdz385
    [Google Scholar]
  27. GoodwinC.M. WatersA.M. KlompJ.E. JavaidS. BryantK.L. StalneckerC.A. MillerD.K. PapkeB. YangR. AmparoA.M. DagliyanO.I. BaldelliE. CalvertV. PierobonM. SorrentinoJ.A. BeelenA.P. BublitzN. LüthenM. WoodK.C. PetricoinE.F.III SersC. McReeA.J. CoxA.D. DerC.J. Combination therapies with CDK4/6 inhibitors to treat KRAS- mutant pancreatic cancer.Cancer Res.202383114115710.1158/0008‑5472.CAN‑22‑039136346366
    [Google Scholar]
  28. HayashiA. HongJ. DonahueI.C.A. The pancreatic cancer genome revisited.Nat. Rev. Gastroenterol. Hepatol.202118746948110.1038/s41575‑021‑00463‑z34089011
    [Google Scholar]
  29. EmeryC.M. CorgiatB. DavisJ. SorrellD. JohnsonM. KreiderB. KnoerzerD. Abstract 1057: Significant efficacy demonstrated with the combination of ulixertinib (ERK1/2 inhibitor) and CDK4/6 inhibitors in MAPK altered models.Cancer Res.20228212_Supplement105710.1158/1538‑7445.AM2022‑1057
    [Google Scholar]
  30. RaybouldA.L. BurgessB. UrbanC. NaimR. LeeM.S. McReeA.J. A phase Ib trial of ERK inhibition with ulixertinib combined with palbociclib in patients (Pts) with advanced solid tumors.J. Clin. Oncol.20213915_suppl310310.1200/JCO.2021.39.15_suppl.3103
    [Google Scholar]
  31. GavandeN.S. CarozzaV.P.S. HinshawH.D. JalalS.I. SearsC.R. PawelczakK.S. TurchiJ.J. DNA repair targeted therapy: The past or future of cancer treatment?Pharmacol. Ther.2016160658310.1016/j.pharmthera.2016.02.00326896565
    [Google Scholar]
  32. MillerA.L. GarciaP.L. YoonK.J. Developing effective combination therapy for pancreatic cancer: An overview.Pharmacol. Res.202015510474010.1016/j.phrs.2020.10474032135247
    [Google Scholar]
  33. LaquenteB. MartinL.J. RichardsD. IllerhausG. ChangD.Z. KimG. StellaP. RichelD. SzcylikC. CascinuS. FrassinetiG.L. CiuleanuT. HurtK. HynesS. LinJ. LinA.B. HoffV.D. CalvoE. A phase II study to evaluate LY2603618 in combination with gemcitabine in pancreatic cancer patients.BMC Cancer201717113710.1186/s12885‑017‑3131‑x28202004
    [Google Scholar]
  34. RajeshkumarN.V. De OliveiraE. OttenhofN. WattersJ. BrooksD. DemuthT. ShumwayS.D. MizuaraiS. HiraiH. MaitraA. HidalgoM. MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts.Clin. Cancer Res.20111792799280610.1158/1078‑0432.CCR‑10‑258021389100
    [Google Scholar]
  35. WallezY. DunlopC.R. JohnsonT.I. KohS.B. FornariC. YatesJ.W.T. FernándezB.Q.S. LauA. RichardsF.M. JodrellD.I. The ATR inhibitor AZD6738 synergizes with gemcitabine in vitro and in vivo to induce pancreatic ductal adenocarcinoma regression.Mol. Cancer Ther.20181781670168210.1158/1535‑7163.MCT‑18‑001029891488
    [Google Scholar]
  36. FokasE. PrevoR. PollardJ.R. ReaperP.M. CharltonP.A. CornelissenB. VallisK.A. HammondE.M. OlcinaM.M. McKennaG.W. MuschelR.J. BrunnerT.B. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation.Cell Death Dis.2012312e44110.1038/cddis.2012.18123222511
    [Google Scholar]
  37. WongW. RaufiA.G. SafyanR.A. BatesS.E. ManjiG.A. BRCA mutations in pancreas cancer: Spectrum, current management, challenges and future prospects.Cancer Manag. Res.2020122731274210.2147/CMAR.S21115132368150
    [Google Scholar]
  38. GolanT. HammelP. ReniM. CutsemV.E. MacarullaT. HallM.J. ParkJ.O. HochhauserD. ArnoldD. OhD.Y. SchickR.A. TortoraG. AlgülH. O’ReillyE.M. McGuinnessD. CuiK.Y. SchliengerK. LockerG.Y. KindlerH.L. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer.N. Engl. J. Med.2019381431732710.1056/NEJMoa190338731157963
    [Google Scholar]
  39. BendellJ. O’ReillyE.M. MiddletonM.R. ChauI. HochsterH. FieldingA. BurkeW. BurrisH.III Phase I study of olaparib plus gemcitabine in patients with advanced solid tumours and comparison with gemcitabine alone in patients with locally advanced/metastatic pancreatic cancer.Ann. Oncol.201526480481110.1093/annonc/mdu58125573533
    [Google Scholar]
  40. CoquardR.I. PautierP. PignataS. PérolD. MartínG.A. BergerR. FujiwaraK. VergoteI. ColomboN. MäenpääJ. SelleF. SehouliJ. LorussoD. AlíaG.E.M. ReinthallerA. NagaoS. PlesseL.C. CanzlerU. ScambiaG. LortholaryA. MarméF. CombeP. de GregorioN. RodriguesM. BuderathP. DubotC. BurgesA. YouB. LauraineP.E. HarterP. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer.N. Engl. J. Med.2019381252416242810.1056/NEJMoa191136131851799
    [Google Scholar]
  41. WangF. KumarP. The role of radiotherapy in management of pancreatic cancer.J. Gastrointest. Oncol.20112315716722811846
    [Google Scholar]
  42. WhiteR.R. TylerD.S. Neoadjuvant therapy for pancreatic cancer: The Duke experience.Surg. Oncol. Clin. N. Am.2004134675684, ix-x10.1016/j.soc.2004.06.00115350941
    [Google Scholar]
  43. EvansD.B. VaradhacharyG.R. CraneC.H. Preoperative gemcitabine-based chemoradiation for digestive medicine research, 2021 patients with resectable adenocarcinoma of the pancreatic head.J. Clin. Oncol.2008263496350210.1200/JCO.2007.15.863418640930
    [Google Scholar]
  44. VaradhacharyG.R. WolffR.A. CraneC.H. SunC.C. LeeJ.E. PistersP.W.T. VautheyJ.N. AbdallaE. WangH. StaerkelG.A. LeeJ.H. RossW.A. TammE.P. BhosaleP.R. KrishnanS. DasP. HoL. XiongH. AbbruzzeseJ.L. EvansD.B. Preoperative gemcitabine and cisplatin followed by gemcitabine-based chemoradiation for resectable adenocarcinoma of the pancreatic head.J. Clin. Oncol.200826213487349510.1200/JCO.2007.15.864218640929
    [Google Scholar]
  45. SnadyH. BrucknerH. CoopermanA. ParadisoJ. KieferL. Survival advantage of combined chemoradiotherapy compared with resection as the initial treatment of patients with regional pancreatic carcinoma.Cancer200089231432710.1002/1097‑0142(20000715)89:2<314::AID‑CNCR16>3.0.CO;2‑V10918161
    [Google Scholar]
  46. YangS.H. KuoT.C. WuH. GuoJ.C. HsuC. HsuC.H. TienY.W. YehK.H. ChengA.L. KuoS.H. Perspectives on the combination of radiotherapy and targeted therapy with DNA repair inhibitors in the treatment of pancreatic cancer.World J. Gastroenterol.201622327275728810.3748/wjg.v22.i32.727527621574
    [Google Scholar]
  47. WaissiW. PaixA. NicolA. NoëlG. BurckelH. Targeting DNA repair in combination with radiotherapy in pancreatic cancer: A systematic review of preclinical studies.Crit. Rev. Oncol. Hematol.202015310306010.1016/j.critrevonc.2020.10306032707435
    [Google Scholar]
  48. KarnakD. EngelkeC.G. ParselsL.A. KausarT. WeiD. RobertsonJ.R. MarshK.B. DavisM.A. ZhaoL. MaybaumJ. LawrenceT.S. MorganM.A. Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer.Clin. Cancer Res.201420195085509610.1158/1078‑0432.CCR‑14‑103825117293
    [Google Scholar]
  49. TuliR. SurmakA.J. ReyesJ. ArmourM. PrietzH.A. WongJ. DeWeeseT.L. HermanJ.M. Radiosensitization of pancreatic cancer cells in vitro and in vivo through poly (ADP-ribose) polymerase inhibition with ABT-888.Transl. Oncol.20147343944510.1016/j.tranon.2014.04.00324836647
    [Google Scholar]
  50. MorganM.A. ParselsL.A. ZhaoL. ParselsJ.D. DavisM.A. HassanM.C. ArumugarajahS. GansH.L. MorosiniD. SimeoneD.M. CanmanC.E. NormolleD.P. ZabludoffS.D. MaybaumJ. LawrenceT.S. Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair.Cancer Res.201070124972498110.1158/0008‑5472.CAN‑09‑357320501833
    [Google Scholar]
  51. EngelkeC.G. ParselsL.A. QianY. ZhangQ. KarnakD. RobertsonJ.R. TanskaD.M. WeiD. DavisM.A. ParselsJ.D. ZhaoL. GreensonJ.K. LawrenceT.S. MaybaumJ. MorganM.A. Sensitization of pancreatic cancer to chemoradiation by the Chk1 inhibitor MK8776.Clin. Cancer Res.201319164412442110.1158/1078‑0432.CCR‑12‑374823804422
    [Google Scholar]
  52. KausarT. SchreiberJ.S. KarnakD. ParselsL.A. ParselsJ.D. DavisM.A. ZhaoL. MaybaumJ. LawrenceT.S. MorganM.A. Sensitization of pancreatic cancers to gemcitabine chemoradiation by WEE1 kinase inhibition depends on homologous recombination repair.Neoplasia2015171075776610.1016/j.neo.2015.09.00626585231
    [Google Scholar]
  53. LanmanB.A. AllenJ.R. AllenJ.G. AmegadzieA.K. AshtonK.S. BookerS.K. ChenJ.J. ChenN. FrohnM.J. GoodmanG. KopeckyD.J. LiuL. LopezP. LowJ.D. MaV. MinattiA.E. NguyenT.T. NishimuraN. PickrellA.J. ReedA.B. ShinY. SiegmundA.C. TamayoN.A. TegleyC.M. WaltonM.C. WangH.L. WurzR.P. XueM. YangK.C. AchantaP. BartbergerM.D. CanonJ. HollisL.S. McCarterJ.D. MohrC. RexK. SaikiA.Y. MiguelS.T. VolakL.P. WangK.H. WhittingtonD.A. ZechS.G. LipfordJ.R. CeeV.J. Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors.J. Med. Chem.2020631526510.1021/acs.jmedchem.9b0118031820981
    [Google Scholar]
  54. HallinJ. EngstromL.D. HargisL. CalinisanA. ArandaR. BriereD.M. SudhakarN. BowcutV. BaerB.R. BallardJ.A. BurkardM.R. FellJ.B. FischerJ.P. VigersG.P. XueY. GattoS. BanetF.J. PavlicekA. VelastaguiK. ChaoR.C. BartonJ. PierobonM. BaldelliE. PatricoinE.F.III CassidyD.P. MarxM.A. RybkinI.I. JohnsonM.L. OuS.H.I. LitoP. PapadopoulosK.P. JänneP.A. OlsonP. ChristensenJ.G. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients.Cancer Discov.2020101547110.1158/2159‑8290.CD‑19‑116731658955
    [Google Scholar]
  55. BrunnerT.B. HahnS.M. GuptaA.K. MuschelR.J. McKennaW.G. BernhardE.J. Farnesyltransferase inhibitors: An overview of the results of preclinical and clinical investigations.Cancer Res.200363185656566814522880
    [Google Scholar]
  56. CutsemV.E. van de VeldeH. KarasekP. OettleH. VervenneW.L. SzawlowskiA. SchoffskiP. PostS. VerslypeC. NeumannH. SafranH. HumbletY. RuixoP.J. MaY. HoffV.D. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer.J. Clin. Oncol.20042281430143810.1200/JCO.2004.10.11215084616
    [Google Scholar]
  57. SciverV.R. LeeM. LeeC. LafeverA. SvyatovaE. KandaK. CollierA. van ReesemaS.L. TanT.A. ZhelevaV. BwayiM. BianM. SchmidtR. MatrisianL. PetersenG. TangA. A new strategy to control and eradicate “undruggable” oncogenic K-RAS- driven pancreatic cancer: Molecular insights and core principles learned from developmental and evolutionary biology.Cancers201810514210.3390/cancers1005014229757973
    [Google Scholar]
  58. ZimmermannG. PapkeB. IsmailS. VartakN. ChandraA. HoffmannM. HahnS.A. TriolaG. WittinghoferA. BastiaensP.I.H. WaldmannH. Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling.Nature2013497745163864210.1038/nature1220523698361
    [Google Scholar]
  59. MottiniC. CardoneL. Beyond the genomic mutation: Rethinking the molecular biomarkers of K-RAS dependency in pancreatic cancers.Int. J. Mol. Sci.20202114502310.3390/ijms2114502332708716
    [Google Scholar]
  60. LaheruD. ShahP. RajeshkumarN.V. McAllisterF. TaylorG. GoldsweigH. LeD.T. DonehowerR. JimenoA. LindenS. ZhaoM. SongD. RudekM.A. HidalgoM. Integrated preclinical and clinical development of S-trans, trans-farnesylthiosalicylic acid (FTS, Salirasib) in pancreatic cancer.Invest. New Drugs20123062391239910.1007/s10637‑012‑9818‑622547163
    [Google Scholar]
  61. DavisM.E. ChenZ. ShinD.M. Nanoparticle therapeutics: An emerging treatment modality for cancer.Nat. Rev. Drug Discov.20087977178210.1038/nrd261418758474
    [Google Scholar]
  62. RéjibaS. ReddyL.H. BigandC. ParmentierC. CouvreurP. HajriA. Squalenoyl gemcitabine nanomedicine overcomes the low efficacy of gemcitabine therapy in pancreatic cancer.Nanomedicine20117684184910.1016/j.nano.2011.02.01221419876
    [Google Scholar]
  63. SinghA. XuJ. MattheolabakisG. AmijiM. EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model.Nanomedicine201612358960010.1016/j.nano.2015.11.01026656632
    [Google Scholar]
  64. R SP. MalA. ValviS.K. SrivastavaR. DeA. BandyopadhyayaR. Noninvasive preclinical evaluation of targeted nanoparticles for the delivery of curcumin in treating pancreatic cancer.ACS Appl. Bio Mater.2020374643465410.1021/acsabm.0c0051535025463
    [Google Scholar]
  65. ZhaoJ. WangH. HsiaoC.H. ChowD.S.L. KoayE.J. KangY. WenX. HuangQ. MaY. BanksonJ.A. UllrichS.E. OverwijkW. MaitraA. WormsP.D. FlemingJ.B. LiC. Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy.Biomaterials201815921522810.1016/j.biomaterials.2018.01.01429331808
    [Google Scholar]
  66. PatraA. SatpathyS. HussainM.D. Nanodelivery and anticancer effect of a limonoid, nimbolide, in breast and pancreatic cancer cells.Int. J. Nanomedicine2019148095810410.2147/IJN.S20854031632020
    [Google Scholar]
  67. MirM. AhmedN. RehmanA. Recent applications of PLGA based nanostructures in drug delivery.Colloids Surf. B Biointerfaces201715921723110.1016/j.colsurfb.2017.07.03828797972
    [Google Scholar]
  68. FeltrinF.S. AgnerT. SayerC. LonaL.M.F. Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies.Adv. Colloid Interface Sci.202230010258210.1016/j.cis.2021.10258234953375
    [Google Scholar]
  69. WangQ. YenY.T. XieC. LiuF. LiuQ. WeiJ. YuL. WangL. MengF. LiR. LiuB. Combined delivery of salinomycin and docetaxel by dual-targeting gelatinase nanoparticles effectively inhibits cervical cancer cells and cancer stem cells.Drug Deliv.202128151051910.1080/10717544.2021.188637833657950
    [Google Scholar]
  70. TomehM.A. HadianamreiR. ZhaoX. A review of curcumin and its derivatives as anticancer agents.Int. J. Mol. Sci.2019205103310.3390/ijms2005103330818786
    [Google Scholar]
  71. AryaG. DasM. SahooS.K. Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer.Biomed. Pharmacother.201810255556610.1016/j.biopha.2018.03.10129597089
    [Google Scholar]
  72. CaoX. HuY. LuoS. WangY. GongT. SunX. FuY. ZhangZ. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma.Acta Pharm. Sin. B20199357558910.1016/j.apsb.2018.12.00931193785
    [Google Scholar]
  73. SuJ. SunH. MengQ. ZhangP. YinQ. LiY. Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes.Theranostics20177352353710.7150/thno.1725928255347
    [Google Scholar]
  74. ThiH.T.T. CaoV.D. NguyenT.N.Q. HoangD.T. NgoV.C. NguyenD.H. Functionalized mesoporous silica nanoparticles and biomedical applications.Mater. Sci. Eng. C20199963165610.1016/j.msec.2019.01.12930889738
    [Google Scholar]
  75. KankalaR.K. HanY.H. NaJ. LeeC.H. SunZ. WangS.B. KimuraT. OkY.S. YamauchiY. ChenA.Z. WuK.C.W. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles.Adv. Mater.20203223190703510.1002/adma.20190703532319133
    [Google Scholar]
  76. YinF. ZhangB. ZengS. LinG. TianJ. YangC. WangK. XuG. YongK.T. Folic acid-conjugated organically modified silica nanoparticles for enhanced targeted delivery in cancer cells and tumor in vivo.J. Mater. Chem. B Mater. Biol. Med.20153296081609310.1039/C5TB00587F32262663
    [Google Scholar]
  77. WangC.E. StaytonP.S. PunS.H. ConvertineA.J. Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery.J. Control. Release201521934535410.1016/j.jconrel.2015.08.05426342661
    [Google Scholar]
  78. LiuX. JiangJ. LiaoY.P. TangI. ZhengE. QiuW. LinM. WangX. JiY. MeiK.C. LiuQ. ChangC.H. WainbergZ.A. NelA.E. MengH. Combination chemo-immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome nanocarrier plus Anti-PD-1.Adv. Sci.202186200214710.1002/advs.20200214733747719
    [Google Scholar]
  79. SlapakE.J. KongL. el MandiliM. NieuwlandR. KrosA. BijlsmaM.F. SpekC.A. ADAM9-responsive mesoporous silica nanoparticles for targeted drug delivery in pancreatic cancer.Cancers20211313332110.3390/cancers1313332134282781
    [Google Scholar]
  80. TarannumM. HoltzmanK. DréauD. MukherjeeP. EscotoV.J.L. Nanoparticle combination for precise stroma modulation and improved delivery for pancreatic cancer.J. Control. Release202234742543410.1016/j.jconrel.2022.05.01935569588
    [Google Scholar]
  81. AsefaT. TaoZ. Biocompatibility of mesoporous silica nanoparticles.Chem. Res. Toxicol.201225112265228410.1021/tx300166u22823891
    [Google Scholar]
  82. DouL. LiuH. WangK. LiuJ. LiuL. YeJ. WangR. DengH. QianF. Albumin binding revitalizes NQO1 bioactivatable drugs as novel therapeutics for pancreatic cancer.J. Control. Release202234987688910.1016/j.jconrel.2022.07.03335907592
    [Google Scholar]
  83. LuH. NooraniL. JiangY. DuA.W. StenzelM.H. Penetration and drug delivery of albumin nanoparticles into pancreatic multicellular tumor spheroids.J. Mater. Chem. B Mater. Biol. Med.20175489591959910.1039/C7TB02902K32264572
    [Google Scholar]
  84. HuY. ChenX. XuY. HanX. WangM. GongT. ZhangZ.R. KaoJ.W. FuY. Hierarchical assembly of hyaluronan coated albumin nanoparticles for pancreatic cancer chemoimmunotherapy.Nanoscale20191135164761648710.1039/C9NR03684A31453622
    [Google Scholar]
  85. YuQ. TangX. ZhaoW. QiuY. HeJ. WanD. LiJ. WangX. HeX. LiuY. LiM. ZhangZ. HeQ. Mild hyperthermia promotes immune checkpoint blockade-based immunotherapy against metastatic pancreatic cancer using size-adjustable nanoparticles.Acta Biomater.202113324425610.1016/j.actbio.2021.05.00234000465
    [Google Scholar]
  86. BhushanB. KhanadeevV. KhlebtsovB. KhlebtsovN. GopinathP. Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery.Adv. Colloid Interface Sci.2017246133910.1016/j.cis.2017.06.01228716187
    [Google Scholar]
  87. ElzoghbyA.O. SamyW.M. ElgindyN.A. Albumin-based nanoparticles as potential controlled release drug delivery systems.J. Control. Release2012157216818210.1016/j.jconrel.2011.07.03121839127
    [Google Scholar]
  88. ChannonL.M. TymaV.M. XuZ. GreeningD.W. WilsonJ.S. PereraC.J. ApteM.V. Small extracellular vesicles (exosomes) and their cargo in pancreatic cancer: Key roles in the hallmarks of cancer.Biochim. Biophys. Acta Rev. Cancer20221877318872810.1016/j.bbcan.2022.18872835385773
    [Google Scholar]
  89. NameeN.M. O’DriscollL. Extracellular vesicles and anti-cancer drug resistance.Biochim. Biophys. Acta Rev. Cancer20181870212313610.1016/j.bbcan.2018.07.00330003999
    [Google Scholar]
  90. LiuJ. RenL. LiS. LiW. ZhengX. YangY. FuW. YiJ. WangJ. DuG. The biology, function, and applications of exosomes in cancer.Acta Pharm. Sin. B20211192783279710.1016/j.apsb.2021.01.00134589397
    [Google Scholar]
  91. RashedH.M. BayraktarE. HelalK.G. EllahA.M.F. AmeroP. ReyesC.A. AguayoR.C. Exosomes: From garbage bins to promising therapeutic targets.Int. J. Mol. Sci.201718353810.3390/ijms1803053828257101
    [Google Scholar]
  92. WareM.B. RayesE.B.F. LesinskiG.B. Mirage or long-awaited oasis: Reinvigorating T-cell responses in pancreatic cancer.J. Immunother. Cancer202082e00110010.1136/jitc‑2020‑00110032843336
    [Google Scholar]
  93. RoyalR.E. LevyC. TurnerK. MathurA. HughesM. KammulaU.S. SherryR.M. TopalianS.L. YangJ.C. LowyI. RosenbergS.A. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma.J. Immunother.201033882883310.1097/CJI.0b013e3181eec14c20842054
    [Google Scholar]
  94. AstraZenecaA phase II, multi-center, open-label study of tremelimumab monotherapy in patients with advanced solid tumors.Available from: https://onderzoekmetmensen.nl/en/trial/47002 2020
  95. BrahmerJ.R. TykodiS.S. ChowL.Q.M. HwuW.J. TopalianS.L. HwuP. DrakeC.G. CamachoL.H. KauhJ. OdunsiK. PitotH.C. HamidO. BhatiaS. MartinsR. EatonK. ChenS. SalayT.M. AlaparthyS. GrossoJ.F. KormanA.J. ParkerS.M. AgrawalS. GoldbergS.M. PardollD.M. GuptaA. WiggintonJ.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer.N. Engl. J. Med.2012366262455246510.1056/NEJMoa120069422658128
    [Google Scholar]
  96. MohindraN.A. KircherS.M. NimeiriH.S. BensonA.B. RademakerA. AlonsoE. BlatnerN. KhazaieK. MulcahyM.F. Results of the phase Ib study of ipilimumab and gemcitabine for advanced pancreas cancer.J. Clin. Oncol.20153315_supple1528110.1200/jco.2015.33.15_suppl.e15281
    [Google Scholar]
  97. KalyanA. KircherS.M. MohindraN.A. NimeiriH.S. MaurerV. RademakerA. BensonA.B. MulcahyM.F. Ipilimumab and gemcitabine for advanced pancreas cancer: A phase Ib study.J. Clin. Oncol.20163415_supple1574710.1200/JCO.2016.34.15_suppl.e15747
    [Google Scholar]
  98. WeissG.J. BlaydornL. BeckJ. KolatzkiB.K. UrnovitzH. SchützE. KhemkaV. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma.Invest. New Drugs20183619610210.1007/s10637‑017‑0525‑129119276
    [Google Scholar]
  99. SchizasD. CharalampakisN. KoleC. EconomopoulouP. KoustasE. GkotsisE. ZiogasD. PsyrriA. KaramouzisM.V. Immunotherapy for pancreatic cancer: A 2020 update.Cancer Treat. Rev.20208610201610.1016/j.ctrv.2020.10201632247999
    [Google Scholar]
  100. LeD.T. DurhamJ.N. SmithK.N. WangH. BartlettB.R. AulakhL.K. LuS. KemberlingH. WiltC. LuberB.S. WongF. AzadN.S. RuckiA.A. LaheruD. DonehowerR. ZaheerA. FisherG.A. CrocenziT.S. LeeJ.J. GretenT.F. DuffyA.G. CiomborK.K. EyringA.D. LamB.H. JoeA. KangS.P. HoldhoffM. DanilovaL. CopeL. MeyerC. ZhouS. GoldbergR.M. ArmstrongD.K. BeverK.M. FaderA.N. TaubeJ. HousseauF. SpetzlerD. XiaoN. PardollD.M. PapadopoulosN. KinzlerK.W. EshlemanJ.R. VogelsteinB. AndersR.A. DiazL.A.Jr Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.Science2017357634940941310.1126/science.aan673328596308
    [Google Scholar]
  101. LuchiniC. BrosensL.A.A. WoodL.D. ChatterjeeD. ShinJ.I. SciammarellaC. FiadoneG. MalleoG. SalviaR. KryklyvaV. PireddaM.L. ChengL. LawlorR.T. AdsayV. ScarpaA. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: Histology, molecular pathology and clinical implications.Gut202170114815610.1136/gutjnl‑2020‑32072632350089
    [Google Scholar]
  102. SohalD.P.S. KennedyE.B. KhoranaA. CopurM.S. CraneC.H. LagunaG.I. KrishnamurthiS. MoravekC. O’ReillyE.M. PhilipP.A. RamanathanR.K. RuggieroJ.T. ShahM.A. UrbaS. UronisH.E. LauM.W. LaheruD. Metastatic pancreatic cancer: ASCO clinical practice guideline update.J. Clin. Oncol.201836242545255610.1200/JCO.2018.78.963629791286
    [Google Scholar]
  103. TemperoM.A. MalafaM.P. ChioreanE.G. CzitoB. ScaifeC. NarangA.K. FountzilasC. WolpinB.M. Al-HawaryM. AsbunH. BehrmanS.W. BensonA.B. BinderE. CardinD.B. ChaC. ChungV. DillhoffM. DotanE. FerroneC.R. FisherG. HardacreJ. HawkinsW.G. KoA.H. LoConteN. LowyA.M. MoravekC. NakakuraE.K. O’ReillyE.M. ObandoJ. ReddyS. ThayerS. WolffR.A. BurnsJ.L. CataniaZ.G. Pancreatic adenocarcinoma, version 1.2019.J. Natl. Compr. Canc. Netw.201917320221010.6004/jnccn.2019.001430865919
    [Google Scholar]
  104. FanJ. WangM.F. ChenH.L. ShangD. DasJ.K. SongJ. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma.Mol. Cancer20201913210.1186/s12943‑020‑01151‑332061257
    [Google Scholar]
  105. MontemagnoC. CassimS. TrichanhD. SavaryC. PouyssegurJ. PagèsG. FagretD. BroisatA. GhezziC. 99mTc-A1 as a novel imaging agent targeting mesothelin-expressing pancreatic ductal adenocarcinoma.Cancers20191110153110.3390/cancers1110153131658755
    [Google Scholar]
  106. HassanR. CohenS.J. PhillipsM. PastanI. SharonE. KellyR.J. SchweizerC. WeilS. LaheruD. Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers.Clin. Cancer Res.201016246132613810.1158/1078‑0432.CCR‑10‑227521037025
    [Google Scholar]
  107. FujisakaY. KurataT. TanakaK. KudoT. OkamotoK. TsurutaniJ. KanedaH. OkamotoI. NamikiM. KitamuraC. NakagawaK. Phase I study of amatuximab, a novel monoclonal antibody to mesothelin, in Japanese patients with advanced solid tumors.Invest. New Drugs201533238038810.1007/s10637‑014‑0196‑025502863
    [Google Scholar]
  108. TonguM. HarashimaN. MonmaH. InaoT. YamadaT. KawauchiH. HaradaM. Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo.Cancer Immunol. Immunother.201362238339110.1007/s00262‑012‑1343‑022926062
    [Google Scholar]
  109. WinogradR. ByrneK.T. EvansR.A. OdorizziP.M. MeyerA.R.L. BajorD.L. ClendeninC. StangerB.Z. FurthE.E. WherryE.J. VonderheideR.H. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma.Cancer Immunol. Res.20153439941110.1158/2326‑6066.CIR‑14‑021525678581
    [Google Scholar]
  110. LeD.T. GillamW.A. PicozziV. GretenT.F. CrocenziT. SpringettG. MorseM. ZehH. CohenD. FineR.L. OnnersB. UramJ.N. LaheruD.A. LutzE.R. SoltS. MurphyA.L. SkobleJ. LemmensE. GrousJ. DubenskyT.Jr BrockstedtD.G. JaffeeE.M. Safety and survival with GVAX pancreas prime and listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer.J. Clin. Oncol.201533121325133310.1200/JCO.2014.57.424425584002
    [Google Scholar]
  111. BeattyG.L. O’HaraM.H. LaceyS.F. TorigianD.A. NazimuddinF. ChenF. KulikovskayaI.M. SoulenM.C. McGarveyM. NelsonA.M. GladneyW.L. LevineB.L. MelenhorstJ.J. PlesaG. JuneC.H. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial.Gastroenterology20181551293210.1053/j.gastro.2018.03.02929567081
    [Google Scholar]
  112. HaasA.R. TanyiJ.L. O’HaraM.H. GladneyW.L. LaceyS.F. TorigianD.A. SoulenM.C. TianL. McGarveyM. NelsonA.M. FarabaughC.S. MoonE. LevineB.L. MelenhorstJ.J. PlesaG. JuneC.H. AlbeldaS.M. BeattyG.L. Phase I study of lentiviral- transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers.Mol. Ther.201927111919192910.1016/j.ymthe.2019.07.01531420241
    [Google Scholar]
  113. LiuY. GuoY. WuZ. FengK. TongC. WangY. DaiH. ShiF. YangQ. HanW. Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: A phase I clinical trial.Cytotherapy2020221057358010.1016/j.jcyt.2020.04.08832527643
    [Google Scholar]
  114. FengK. LiuY. GuoY. QiuJ. WuZ. DaiH. YangQ. WangY. HanW. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers.Protein Cell201891083884710.1007/s13238‑017‑0440‑428710747
    [Google Scholar]
  115. BeattyG.L. O’HaraM. Chimeric antigen receptor-modified T cells for the treatment of solid tumors: Defining the challenges and next steps.Pharmacol. Ther.2016166303910.1016/j.pharmthera.2016.06.01027373504
    [Google Scholar]
  116. LeidnerR. SilvaS.N. HuangH. SprottD. ZhengC. ShihY.P. LeungA. PayneR. SutcliffeK. CramerJ. RosenbergS.A. FoxB.A. UrbaW.J. TranE. Neoantigen T-cell receptor gene therapy in pancreatic cancer.N. Engl. J. Med.2022386222112211910.1056/NEJMoa211966235648703
    [Google Scholar]
  117. KuhnD.E. MartinM.M. FeldmanD.S. TerryA.V.Jr NuovoG.J. EltonT.S. Experimental validation of miRNA targets.Methods2008441475410.1016/j.ymeth.2007.09.00518158132
    [Google Scholar]
  118. MatsuiA. UchidaS. IshiiT. ItakaK. KataokaK. Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases.Sci. Rep.2015511581010.1038/srep1581026507781
    [Google Scholar]
  119. WangJ. ChenJ. ChangP. LeBlancA. LiD. AbbruzzesseJ.L. FrazierM.L. KillaryA.M. SenS. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease.Cancer Prev. Res.20092980781310.1158/1940‑6207.CAPR‑09‑009419723895
    [Google Scholar]
  120. KongX. DuY. WangG. GaoJ. GongY. LiL. ZhangZ. ZhuJ. JingQ. QinY. LiZ. Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: MiR-196a could be a potential marker for poor prognosis.Dig. Dis. Sci.201156260260910.1007/s10620‑010‑1285‑320614181
    [Google Scholar]
  121. SzafranskaA.E. DavisonT.S. JohnJ. CannonT. SiposB. MaghnoujA. LabourierE. HahnS.A. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma.Oncogene200726304442445210.1038/sj.onc.121022817237814
    [Google Scholar]
  122. HabbeN. KoorstraJ.B.M. MendellJ.T. OfferhausG.J. RyuJ.K. FeldmannG. MullendoreM.E. GogginsM.G. HongS.M. MaitraA. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia.Cancer Biol. Ther.20098434034610.4161/cbt.8.4.733819106647
    [Google Scholar]
  123. YangJ.Y. SunY.W. LiuD.J. ZhangJ.F. LiJ. HuaR. MicroRNAs in stool samples as potential screening biomarkers for pancreatic ductal adenocarcinoma cancer.Am. J. Cancer Res.20144666367325520858
    [Google Scholar]
  124. KawaguchiT. KomatsuS. IchikawaD. MorimuraR. TsujiuraM. KonishiH. TakeshitaH. NagataH. AritaT. HirajimaS. ShiozakiA. IkomaH. OkamotoK. OchiaiT. TaniguchiH. OtsujiE. Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer.Br. J. Cancer2013108236136910.1038/bjc.2012.54623329235
    [Google Scholar]
  125. GiovannettiE. FunelN. PetersG.J. ChiaroD.M. ErozenciL.A. VasileE. LeonL.G. PollinaL.E. GroenA. FalconeA. DanesiR. CampaniD. VerheulH.M. BoggiU. MicroRNA-21 in pancreatic cancer: Correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity.Cancer Res.201070114528453810.1158/0008‑5472.CAN‑09‑446720460539
    [Google Scholar]
  126. LiY. VandenBoomT.G.II KongD. WangZ. AliS. PhilipP.A. SarkarF.H. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells.Cancer Res.200969166704671210.1158/0008‑5472.CAN‑09‑129819654291
    [Google Scholar]
  127. HamadaS. MasamuneA. MiuraS. SatohK. ShimosegawaT. MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX.Cell. Signal.201426217918510.1016/j.cellsig.2013.11.00324216611
    [Google Scholar]
  128. WongK.K. DNMT1 as a therapeutic target in pancreatic cancer: Mechanisms and clinical implications.Cell Oncol.202043577979210.1007/s13402‑020‑00526‑432504382
    [Google Scholar]
  129. ZagoracS. AlcalaS. BayonF.G. KheirB.T. SchoenhalsM. NeiraG.A. FragaF.M. AicherA. HeeschenC. SainzB.Jr DNMT1 inhibition reprograms pancreatic cancer stem cells via upregulation of the miR-17-92 cluster.Cancer Res.201676154546455810.1158/0008‑5472.CAN‑15‑326827261509
    [Google Scholar]
  130. RostyC. GeradtsJ. SatoN. WilentzR.E. RobertsH. SohnT. CameronJ.L. YeoC.J. HrubanR.H. GogginsM. p16 Inactivation in pancreatic intraepithelial neoplasias (PanINs) arising in patients with chronic pancreatitis.Am. J. Surg. Pathol.200327121495150110.1097/00000478‑200312000‑0000114657708
    [Google Scholar]
  131. SatoN. FukushimaN. MaitraA. MatsubayashiH. YeoC.J. CameronJ.L. HrubanR.H. GogginsM. Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays.Cancer Res.200363133735374212839967
    [Google Scholar]
  132. ThottasseryJ.V. SambandamV. AllanP.W. MaddryJ.A. MaxuitenkoY.Y. TiwariK. HollingsheadM. ParkerW.B. Novel DNA methyltransferase-1 (DNMT1) depleting anticancer nucleosides, 4′-thio-2′-deoxycytidine and 5-aza-4′-thio-2′-deoxycytidine.Cancer Chemother. Pharmacol.201474229130210.1007/s00280‑014‑2503‑z24908436
    [Google Scholar]
  133. TianX. ZhangS. LiuH.M. ZhangY.B. BlairC. MercolaD. CorsiS.P. ZiX. Histone lysine-specific methyltransferases and demethylases in carcinogenesis: New targets for cancer therapy and prevention.Curr. Cancer Drug Targets201313555857910.2174/156800961131305000723713993
    [Google Scholar]
  134. RichardsD.A. BoehmK.A. WaterhouseD.M. WagenerD.J. KrishnamurthiS.S. RosemurgyA. GroveW. MacdonaldK. GulyasS. ClarkM. DasseK.D. Gemcitabine plus CI-994 offers no advantage over gemcitabine alone in the treatment of patients with advanced pancreatic cancer: Results of a phase II randomized, double-blind, placebo-controlled, multicenter study.Ann. Oncol.20061771096110210.1093/annonc/mdl08116641168
    [Google Scholar]
  135. ChanE. ArlinghausL.R. CardinD.B. GoffL. BerlinJ.D. ParikhA. AbramsonR.G. YankeelovT.E. HiebertS. MerchantN. BhaskaraS. ChakravarthyA.B. Phase I trial of vorinostat added to chemoradiation with capecitabine in pancreatic cancer.Radiother. Oncol.2016119231231810.1016/j.radonc.2016.04.01327106554
    [Google Scholar]
  136. WangH. CaoQ. DudekA.Z. Phase II study of panobinostat and bortezomib in patients with pancreatic cancer progressing on gemcitabine-based therapy.Anticancer Res.20123231027103122399627
    [Google Scholar]
  137. WangY.H. SuiY.N. YanK. WangL.S. WangF. ZhouJ.H. BRD4 promotes pancreatic ductal adenocarcinoma cell proliferation and enhances gemcitabine resistance.Oncol. Rep.20153341699170610.3892/or.2015.377425647019
    [Google Scholar]
  138. SahaiV. KumarK. KnabL.M. ChowC.R. RazaS.S. BentremD.J. EbineK. MunshiH.G. BET bromodomain inhibitors block growth of pancreatic cancer cells in three-dimensional collagen.Mol. Cancer Ther.20141371907191710.1158/1535‑7163.MCT‑13‑092524807963
    [Google Scholar]
  139. YamamotoK. TateishiK. KudoY. HoshikawaM. TanakaM. NakatsukaT. FujiwaraH. MiyabayashiK. TakahashiR. TanakaY. IjichiH. NakaiY. IsayamaH. MorishitaY. AokiT. SakamotoY. HasegawaK. KokudoN. FukayamaM. KoikeK. Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer.Oncotarget2016738614696148410.18632/oncotarget.1112927528027
    [Google Scholar]
  140. Pandol S, Edderkaoui M, Gukovsky I, Lugea A, Gukovskaya A. Desmoplasia of pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol. 2009; 7(11 Suppl): S44-7.10.1016/j.cgh.2009.07.03919896098
  141. FalchookG. RosenS. LoRussoP. WattsJ. GuptaS. CoombsC.C. TalpazM. KurzrockR. MitaM. CassadayR. HarbW. PegueroJ. SmithD.C. PaulP.S.A. SzmulewitzR. NoelM.S. YeleswaramS. LiuP. SwitzkyJ. ZhouG. ZhengF. MehtaA. Development of 2 bromodomain and extraterminal inhibitors with distinct pharmacokinetic and pharmacodynamic profiles for the treatment of advanced malignancies.Clin. Cancer Res.20202661247125710.1158/1078‑0432.CCR‑18‑407131527168
    [Google Scholar]
  142. FrenchC.A. MiyoshiI. KubonishiI. GrierH.E. AtaydeP.A.R. FletcherJ.A. BRD4-NUT fusion oncogene: A novel mechanism in aggressive carcinoma.Cancer Res.200363230430712543779
    [Google Scholar]
  143. PaulP.S.A. HannC.L. FrenchC.A. CousinS. BrañaI. CassierP.A. MorenoV. de BonoJ.S. HarwardS.D. BradyF.G. BarbashO. WyceA. WuY. HornerT. AnnanM. ParrN.J. PrinjhaR.K. CarpenterC.L. HiltonJ. HongD.S. HaasN.B. MarkowskiM.C. DharA. O’DwyerP.J. ShapiroG.I. Phase 1 study of molibresib (GSK525762), a bromodomain and extra-terminal domain protein inhibitor, in nut carcinoma and other solid tumors.JNCI Cancer Spectr.202042pkz09310.1093/jncics/pkz09332328561
    [Google Scholar]
  144. LewinJ. SoriaJ.C. StathisA. DelordJ.P. PetersS. AwadaA. AftimosP.G. BekraddaM. RezaiK. ZengZ. HussainA. PerezS. SiuL.L. MassardC. Phase Ib trial with birabresib, a small-molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors.J. Clin. Oncol.201836303007301410.1200/JCO.2018.78.229229733771
    [Google Scholar]
  145. WaddellN. PajicM. PatchA.M. ChangD.K. KassahnK.S. BaileyP. JohnsA.L. MillerD. NonesK. QuekK. QuinnM.C.J. RobertsonA.J. FadlullahM.Z.H. BruxnerT.J.C. ChristA.N. HarliwongI. IdrisogluS. ManningS. NourseC. NourbakhshE. WaniS. WilsonP.J. MarkhamE. CloonanN. AndersonM.J. FinkJ.L. HolmesO. KazakoffS.H. LeonardC. NewellF. PoudelB. SongS. TaylorD. WaddellN. WoodS. XuQ. WuJ. PineseM. CowleyM.J. LeeH.C. JonesM.D. NagrialA.M. HumphrisJ. ChantrillL.A. ChinV. SteinmannA.M. MawsonA. HumphreyE.S. ColvinE.K. ChouA. ScarlettC.J. PinhoA.V. LaterriereG.M. RoomanI. SamraJ.S. KenchJ.G. PettittJ.A. MerrettN.D. ToonC. EpariK. NguyenN.Q. BarbourA. ZepsN. JamiesonN.B. GrahamJ.S. NiclouS.P. BjerkvigR. GrützmannR. AustD. HrubanR.H. MaitraA. DonahueI.C.A. WolfgangC.L. MorganR.A. LawlorR.T. CorboV. BassiC. FalconiM. ZamboniG. TortoraG. TemperoM.A. GillA.J. EshlemanJ.R. PilarskyC. ScarpaA. MusgroveE.A. PearsonJ.V. BiankinA.V. GrimmondS.M. Whole genomes redefine the mutational landscape of pancreatic cancer.Nature2015518754049550110.1038/nature1416925719666
    [Google Scholar]
  146. JanesM.R. ZhangJ. LiL.S. HansenR. PetersU. GuoX. ChenY. BabbarA. FirdausS.J. DarjaniaL. FengJ. ChenJ.H. LiS. LiS. LongY.O. ThachC. LiuY. ZariehA. ElyT. KucharskiJ.M. KesslerL.V. WuT. YuK. WangY. YaoY. DengX. ZarrinkarP.P. BrehmerD. DhanakD. LorenziM.V. Hu-LoweD. PatricelliM.P. RenP. LiuY. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor.Cell20181723578589.e1710.1016/j.cell.2018.01.00629373830
    [Google Scholar]
  147. CanonJ. RexK. SaikiA.Y. MohrC. CookeK. BagalD. GaidaK. HoltT. KnutsonC.G. KoppadaN. LanmanB.A. WernerJ. RapaportA.S. MiguelS.T. OrtizR. OsgoodT. SunJ.R. ZhuX. McCarterJ.D. VolakL.P. HoukB.E. FakihM.G. O’NeilB.H. PriceT.J. FalchookG.S. DesaiJ. KuoJ. GovindanR. HongD.S. OuyangW. HenaryH. ArvedsonT. CeeV.J. LipfordJ.R. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity.Nature2019575778121722310.1038/s41586‑019‑1694‑131666701
    [Google Scholar]
  148. CutsemV.E. HidalgoM. CanonJ.L. MacarullaT. BazinI. PoddubskayaE. ManojlovicN. RadenkovicD. VerslypeC. RaymondE. CubilloA. SchuelerA. ZhaoC. HammelP. Phase I/II trial of pimasertib plus gemcitabine in patients with metastatic pancreatic cancer.Int. J. Cancer201814382053206410.1002/ijc.3160329756206
    [Google Scholar]
  149. InfanteJ.R. SomerB.G. ParkJ.O. LiC.P. ScheulenM.E. KasubhaiS.M. OhD.Y. LiuY. RedhuS. SteplewskiK. LeN. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas.Eur. J. Cancer201450122072208110.1016/j.ejca.2014.04.02424915778
    [Google Scholar]
  150. KinseyC.G. CamolottoS.A. BoespflugA.M. GuillenK.P. FothM. TruongA. SchumanS.S. SheaJ.E. SeippM.T. YapJ.T. BurrellL.D. LumD.H. WhisenantJ.R. GilcreaseG.W.III CavalieriC.C. RehbeinK.M. CutlerS.L. AffolterK.E. WelmA.L. WelmB.E. ScaifeC.L. SnyderE.L. McMahonM. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers.Nat. Med.201925462062710.1038/s41591‑019‑0367‑930833748
    [Google Scholar]
  151. BryantK.L. StalneckerC.A. ZeitouniD. KlompJ.E. PengS. TikunovA.P. GundaV. PierobonM. WatersA.M. GeorgeS.D. TomarG. PapkeB. HobbsG.A. YanL. HayesT.K. DiehlJ.N. GoodeG.D. ChaikaN.V. WangY. ZhangG.F. WitkiewiczA.K. KnudsenE.S. PetricoinE.F.III SinghP.K. MacdonaldJ.M. TranN.L. LyssiotisC.A. YingH. KimmelmanA.C. CoxA.D. DerC.J. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer.Nat. Med.201925462864010.1038/s41591‑019‑0368‑830833752
    [Google Scholar]
  152. RuscettiM. MorrisJ.P.IV MezzadraR. RussellJ. LeiboldJ. RomesserP.B. SimonJ. KulickA. HoY. FennellM. LiJ. NorgardR.J. WilkinsonJ.E. CurbeloA.D. SridharanR. HellerD.A. de StanchinaE. StangerB.Z. SherrC.J. LoweS.W. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer.Cell20201812424441.e2110.1016/j.cell.2020.03.00832234521
    [Google Scholar]
  153. WitkiewiczA.K. McMillanE.A. BalajiU. BaekG. LinW.C. MansourJ. MollaeeM. WagnerK.U. KoduruP. YoppA. ChotiM.A. YeoC.J. McCueP. WhiteM.A. KnudsenE.S. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets.Nat. Commun.201561674410.1038/ncomms774425855536
    [Google Scholar]
  154. RuggeriB.A. HuangL. WoodM. ChengJ.Q. TestaJ.R. Amplification and overexpression of theAKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas.Mol. Carcinog.1998212818610.1002/(SICI)1098‑2744(199802)21:2<81::AID‑MC1>3.0.CO;2‑R9496907
    [Google Scholar]
  155. KonstantinidouG. BeyE.A. RabellinoA. SchusterK. MairaM.S. GazdarA.F. AmiciA. BoothmanD.A. ScaglioniP.P. Dual phosphoinositide 3-kinase/mammalian target of rapamycin blockade is an effective radiosensitizing strategy for the treatment of non-small cell lung cancer harboring K-RAS mutations.Cancer Res.200969197644765210.1158/0008‑5472.CAN‑09‑082319789349
    [Google Scholar]
  156. EngelmanJ.A. ChenL. TanX. CrosbyK. GuimaraesA.R. UpadhyayR. MairaM. McNamaraK. PereraS.A. SongY. ChirieacL.R. KaurR. LightbownA. SimendingerJ. LiT. PaderaR.F. EcheverríaG.C. WeisslederR. MahmoodU. CantleyL.C. WongK.K. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers.Nat. Med.200814121351135610.1038/nm.189019029981
    [Google Scholar]
  157. AungW. TsujiA.B. SudoH. SugyoA. UkaiY. KoudaK. KurosawaY. FurukawaT. SagaT. HigashiT. Combined treatment of pancreatic cancer xenograft with 90Y-ITGA6B4-mediated radioimmunotherapy and PI3K/mTOR inhibitor.World J. Gastroenterol.201723427551756210.3748/wjg.v23.i42.755129204055
    [Google Scholar]
  158. PatnaikA. ApplemanL.J. TolcherA.W. PapadopoulosK.P. BeeramM. RascoD.W. WeissG.J. SachdevJ.C. ChadhaM. FulkM. EjadiS. MountzJ.M. LotzeM.T. ToledoF.G.S. ChuE. JeffersM. PeñaC. XiaC. ReifS. GenvresseI. RamanathanR.K. First-in-human phase I study of copanlisib (BAY 80-6946), an intravenous pan-class I phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-Hodgkin’s lymphomas.Ann. Oncol.201627101928194010.1093/annonc/mdw28227672108
    [Google Scholar]
  159. McReeA.J. SanoffH.K. CarlsonC. IvanovaA. O’NeilB.H. A phase I trial of mFOLFOX6 combined with the oral PI3K inhibitor BKM120 in patients with advanced refractory solid tumors.Invest. New Drugs20153361225123110.1007/s10637‑015‑0298‑326490655
    [Google Scholar]
  160. BedardP.L. TaberneroJ. JankuF. WainbergZ.A. AresP.L. VansteenkisteJ. CutsemV.E. GarcíaP.J. StathisA. BrittenC.D. LeN. CarterK. DemanseD. CsonkaD. PetersM. ZubelA. NauwelaertsH. SessaC. A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors.Clin. Cancer Res.201521473073810.1158/1078‑0432.CCR‑14‑181425500057
    [Google Scholar]
  161. ShapiroG.I. LoRussoP. KwakE. PandyaS. RudinC.M. KurkjianC. ClearyJ.M. PilatM.J. JonesS. de CrespignyA. FredricksonJ. MusibL. YanY. WongchenkoM. HsiehH.J. GatesM.R. ChanI.T. BendellJ. Phase Ib study of the MEK inhibitor cobimetinib (GDC-0973) in combination with the PI3K inhibitor pictilisib (GDC-0941) in patients with advanced solid tumors.Invest. New Drugs202038241943210.1007/s10637‑019‑00776‑631020608
    [Google Scholar]
  162. GaudioE. TarantelliC. KweeI. BarassiC. BernasconiE. RinaldiA. PonzoniM. CascioneL. TargaA. StathisA. GoodstalS. ZuccaE. BertoniF. Combination of the MEK inhibitor pimasertib with BTK or PI3K-delta inhibitors is active in preclinical models of aggressive lymphomas.Ann. Oncol.20162761123112810.1093/annonc/mdw13126961147
    [Google Scholar]
  163. BasuB. DeanE. PuglisiM. GreystokeA. OngM. BurkeW. CavallinM. BigleyG. WomackC. HarringtonE.A. GreenS. OelmannE. de BonoJ.S. RansonM. BanerjiU. First-in-human pharmacokinetic and pharmacodynamic study of the dual m-TORC 1/2 inhibitor AZD2014.Clin. Cancer Res.201521153412341910.1158/1078‑0432.CCR‑14‑242225805799
    [Google Scholar]
  164. PastorF.W.A. PrivesC. Mutant p53: One name, many proteins.Genes Dev.201226121268128610.1101/gad.190678.11222713868
    [Google Scholar]
  165. ParralesA. RanjanA. IyerS.V. PadhyeS. WeirS.J. RoyA. IwakumaT. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway.Nat. Cell Biol.201618111233124310.1038/ncb342727775703
    [Google Scholar]
  166. KnudsenE.S. O’ReillyE.M. BrodyJ.R. WitkiewiczA.K. Genetic diversity of pancreatic ductal adenocarcinoma and opportunities for precision medicine.Gastroenterology20161501486310.1053/j.gastro.2015.08.05626385075
    [Google Scholar]
  167. SenzerN. NemunaitisJ. NemunaitisD. BedellC. EdelmanG. BarveM. NunanR. PirolloK.F. RaitA. ChangE.H. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors.Mol. Ther.20132151096110310.1038/mt.2013.3223609015
    [Google Scholar]
  168. OliveK.P. JacobetzM.A. DavidsonC.J. GopinathanA. McIntyreD. HonessD. MadhuB. GoldgrabenM.A. CaldwellM.E. AllardD. FreseK.K. DeNicolaG. FeigC. CombsC. WinterS.P. ZecchiniI.H. ReicheltS. HowatW.J. ChangA. DharaM. WangL. RückertF. GrützmannR. PilarskyC. IzeradjeneK. HingoraniS.R. HuangP. DaviesS.E. PlunkettW. EgorinM. HrubanR.H. WhitebreadN. McGovernK. AdamsJ. DonahueI.C. GriffithsJ. TuvesonD.A. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer.Science200932459331457146110.1126/science.117136219460966
    [Google Scholar]
  169. BonnansC. ChouJ. WerbZ. Remodelling the extracellular matrix in development and disease.Nat. Rev. Mol. Cell Biol.2014151278680110.1038/nrm390425415508
    [Google Scholar]
  170. ProvenzanoP.P. CuevasC. ChangA.E. GoelV.K. HoffV.D.D. HingoraniS.R. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma.Cancer Cell201221341842910.1016/j.ccr.2012.01.00722439937
    [Google Scholar]
  171. JacobetzM.A. ChanD.S. NeesseA. BapiroT.E. CookN. FreseK.K. FeigC. NakagawaT. CaldwellM.E. ZecchiniH.I. LolkemaM.P. JiangP. KulttiA. ThompsonC.B. ManevalD.C. JodrellD.I. FrostG.I. ShepardH.M. SkepperJ.N. TuvesonD.A. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer.Gut201362111212010.1136/gutjnl‑2012‑30252922466618
    [Google Scholar]
  172. RamanathanR.K. McDonoughS.L. PhilipP.A. HingoraniS.R. LacyJ. KortmanskyJ.S. ThumarJ. ChioreanE.G. ShieldsA.F. BehlD. MehanP.T. GaurR. SeeryT. GuthrieK.A. HochsterH.S. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313.J. Clin. Oncol.201937131062106910.1200/JCO.18.0129530817250
    [Google Scholar]
  173. CutsemV.E. TemperoM.A. SigalD. OhD.Y. FazioN. MacarullaT. HitreE. HammelP. HendifarA.E. BatesS.E. LiC.P. HingoraniS.R. de la FouchardiereC. KasiA. HeinemannV. MaraveyasA. BaharyN. LayosL. SahaiV. ZhengL. LacyJ. ParkJ.O. PortalesF. ObersteinP. WuW. ChondrosD. BullockA.J. Randomized phase III trial of pegvorhyaluronidase Alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma.J. Clin. Oncol.202038273185319410.1200/JCO.20.0059032706635
    [Google Scholar]
  174. HaistM. StegeH. GrabbeS. BrosM. The functional crosstalk between myeloid-derived suppressor cells and regulatory t cells within the immunosuppressive tumor microenvironment.Cancers202113221010.3390/cancers1302021033430105
    [Google Scholar]
  175. WeizmanN. KrelinY. OrbachS.A. AmitM. BinenbaumY. WongR.J. GilZ. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase.Oncogene201433293812381910.1038/onc.2013.35723995783
    [Google Scholar]
  176. GriesmannH. DrexelC. MilosevicN. SiposB. RosendahlJ. GressT.M. MichlP. Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer.Gut20176671278128510.1136/gutjnl‑2015‑31004927013602
    [Google Scholar]
  177. GalluzziL. VitaleI. WarrenS. AdjemianS. AgostinisP. MartinezA.B. ChanT.A. CoukosG. DemariaS. DeutschE. DraganovD. EdelsonR.L. FormentiS.C. FucikovaJ. GabrieleL. GaiplU.S. GameiroS.R. GargA.D. GoldenE. HanJ. HarringtonK.J. HemminkiA. HodgeJ.W. HossainD.M.S. IllidgeT. KarinM. KaufmanH.L. KeppO. KroemerG. LasarteJ.J. LoiS. LotzeM.T. ManicG. MerghoubT. MelcherA.A. MossmanK.L. ProsperF. RekdalØ. RescignoM. RigantiC. SistiguA. SmythM.J. SpisekR. StaggJ. StraussB.E. TangD. TatsunoK. van GoolS.W. VandenabeeleP. YamazakiT. ZamarinD. ZitvogelL. CesanoA. MarincolaF.M. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death.J. Immunother. Cancer202081e00033710.1136/jitc‑2019‑00033732209603
    [Google Scholar]
  178. PlateJ.M.D. PlateA.E. ShottS. BogradS. HarrisJ.E. Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas.Cancer Immunol. Immunother.200554991592510.1007/s00262‑004‑0638‑115782312
    [Google Scholar]
  179. CatenacciD.V.T. JunttilaM.R. KarrisonT. BaharyN. HoribaM.N. NattamS.R. MarshR. WallaceJ. KozloffM. RajdevL. CohenD. WadeJ. SleckmanB. LenzH.J. StiffP. KumarP. XuP. HendersonL. TakebeN. SalgiaR. WangX. StadlerW.M. de SauvageF.J. KindlerH.L. Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer.J. Clin. Oncol.201533364284429210.1200/JCO.2015.62.871926527777
    [Google Scholar]
  180. AcostaD.J.A. SugarE.A. O’DwyerP.J. RamanathanR.K. Von HoffD.D. RasheedZ. ZhengL. BegumA. AndersR. MaitraA. McAllisterF. RajeshkumarN.V. YabuuchiS. de WildeR.F. BatukbhaiB. SahinI. LaheruD.A. Phase 2 study of vismodegib, a hedgehog inhibitor, combined with gemcitabine and nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma.Br. J. Cancer2020122449850510.1038/s41416‑019‑0683‑331857726
    [Google Scholar]
  181. KindlerH.L. NiedzwieckiD. HollisD. SutherlandS. SchragD. HurwitzH. InnocentiF. MulcahyM.F. O’ReillyE. WozniakT.F. PicusJ. BhargavaP. MayerR.J. SchilskyR.L. GoldbergR.M. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: Phase III trial of the cancer and leukemia group B (CALGB 80303).J. Clin. Oncol.201028223617362210.1200/JCO.2010.28.138620606091
    [Google Scholar]
  182. CutsemV.E. VervenneW.L. BennounaJ. HumbletY. GillS. LaethemV.J.L. VerslypeC. ScheithauerW. ShangA. CosaertJ. MooreM.J. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer.J. Clin. Oncol.200927132231223710.1200/JCO.2008.20.023819307500
    [Google Scholar]
  183. KindlerH.L. IokaT. RichelD.J. BennounaJ. LétourneauR. OkusakaT. FunakoshiA. FuruseJ. ParkY.S. OhkawaS. SpringettG.M. WasanH.S. TraskP.C. BycottP. RicartA.D. KimS. CutsemV.E. Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: A double-blind randomised phase 3 study.Lancet Oncol.201112325626210.1016/S1470‑2045(11)70004‑321306953
    [Google Scholar]
  184. GonçalvesA. GilabertM. FrançoisE. DahanL. PerrierH. LamyR. ReD. LargillierR. GasmiM. TchiknavorianX. EsterniB. GenreD. ZabottoM.L. GiovanniniM. SeitzJ-F. DelperoJ-R. TurriniO. ViensP. RaoulJ-L. BAYPAN study: A double-blind phase III randomized trial comparing gemcitabine plus sorafenib and gemcitabine plus placebo in patients with advanced pancreatic cancer.Ann. Oncol.201223112799280510.1093/annonc/mds13522771827
    [Google Scholar]
  185. ZehH.J. BaharyN. BooneB.A. SinghiA.D. OcuinM.J.L. NormolleD.P. ZureikatA.H. HoggM.E. BartlettD.L. LeeK.K. TsungA. MarshJ.W. MurthyP. TangD. SeiserN. AmaravadiR.K. EspinaV. LiottaL. LotzeM.T. A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/nab-paclitaxel in pancreatic cancer patients.Clin. Cancer Res.202026133126313410.1158/1078‑0432.CCR‑19‑404232156749
    [Google Scholar]
  186. KarasicT.B. O’HaraM.H. BonillaL.A. ReissK.A. TeitelbaumU.R. BorazanciE. AcostaD.J.A. RedlingerC. BurrellJ.A. LaheruD.A. HoffV.D.D. AmaravadiR.K. DrebinJ.A. O’DwyerP.J. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer.JAMA Oncol.20195799399810.1001/jamaoncol.2019.068431120501
    [Google Scholar]
  187. LeD.T. PicozziV.J. KoA.H. WainbergZ.A. KindlerH. GillamW.A. ObersteinP. MorseM.A. ZehH.J.III WeekesC. ReidT. BorazanciE. CrocenziT. LoConteN.K. MusherB. LaheruD. MurphyA. WhitingC. NairN. EnstromA. FerberS. BrockstedtD.G. JaffeeE.M. Results from a phase IIb, randomized, multicenter study of GVAX pancreas and CRS-207 compared with chemotherapy in adults with previously treated metastatic pancreatic adenocarcinoma (ECLIPSE Study).Clin. Cancer Res.201925185493550210.1158/1078‑0432.CCR‑18‑299231126960
    [Google Scholar]
  188. GjertsenM.K. BuanesT. RosselandA.R. BakkaA. GladhaugI. SøreideO. EriksenJ.A. MøllerM. BaksaasI. LotheR.A. SaeterdalI. GaudernackG. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: Clinical and immunological responses in patients with pancreatic adenocarcinoma.Int. J. Cancer200192344145010.1002/ijc.120511291084
    [Google Scholar]
  189. WedénS. KlempM. GladhaugI.P. MøllerM. EriksenJ.A. GaudernackG. BuanesT. Long-term follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras.Int. J. Cancer201112851120112810.1002/ijc.2544920473937
    [Google Scholar]
  190. MiddletonG. SilcocksP. CoxT. ValleJ. WadsleyJ. PropperD. CoxonF. RossP. MadhusudanS. RoquesT. CunninghamD. FalkS. WaddN. HarrisonM. CorrieP. IvesonT. RobinsonA. McAdamK. EatockM. EvansJ. ArcherC. HickishT. AlonsoG.A. NicolsonM. StewardW. AnthoneyA. GreenhalfW. ShawV. CostelloE. NaisbittD. RawcliffeC. NansonG. NeoptolemosJ. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): An open-label, randomised, phase 3 trial.Lancet Oncol.201415882984010.1016/S1470‑2045(14)70236‑024954781
    [Google Scholar]
  191. ShimaH. TsuritaG. WadaS. HirohashiY. YasuiH. HayashiH. MiyakoshiT. WatanabeK. MuraiA. AsanumaH. TokitaS. KuboT. NakatsugawaM. KanasekiT. TsukaharaT. NakaeY. SugitaO. ItoY.M. OtaY. KimuraY. KutomiG. HirataK. MizuguchiT. ImaiK. TakemasaI. SatoN. TorigoeT. Randomized phase II trial of survivin 2B peptide vaccination for patients with HLA-A24-positive pancreatic adenocarcinoma.Cancer Sci.201911082378238510.1111/cas.1410631218770
    [Google Scholar]
  192. KuboT. TsuritaG. HirohashiY. YasuiH. OtaY. WatanabeK. MuraiA. MatsuoK. AsanumaH. ShimaH. WadaS. NakatsugawaM. KanasekiT. TsukaharaT. MizuguchiT. HirataK. TakemasaI. ImaiK. SatoN. TorigoeT. Immunohistological analysis of pancreatic carcinoma after vaccination with survivin 2B peptide: Analysis of an autopsy series.Cancer Sci.201911082386239510.1111/cas.1409931206934
    [Google Scholar]
  193. KoidoS. HommaS. OkamotoM. TakakuraK. MoriM. YoshizakiS. TsukinagaS. OdaharaS. KoyamaS. ImazuH. UchiyamaK. KajiharaM. ArakawaH. MisawaT. ToyamaY. YanagisawaS. IkegamiM. KanS. HayashiK. KomitaH. KamataY. ItoM. IshidaoT. YusaS. ShimodairaS. GongJ. SugiyamaH. OhkusaT. TajiriH. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms’ tumor 1 (WT1)-specific MHC class I/II-restricted epitopes for pancreatic cancer.Clin. Cancer Res.201420164228423910.1158/1078‑0432.CCR‑14‑031425056373
    [Google Scholar]
  194. VonderheideR.H. CD40 agonist antibodies in cancer immunotherapy.Annu. Rev. Med.2020711475810.1146/annurev‑med‑062518‑04543531412220
    [Google Scholar]
  195. MorrisonA.H. DiamondM.S. HayC.A. ByrneK.T. VonderheideR.H. Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity.Proc. Natl. Acad. Sci.2020117148022803110.1073/pnas.191897111732213589
    [Google Scholar]
  196. BeattyG.L. ChioreanE.G. FishmanM.P. SabouryB. TeitelbaumU.R. SunW. HuhnR.D. SongW. LiD. SharpL.L. TorigianD.A. O’DwyerP.J. VonderheideR.H. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans.Science201133160241612161610.1126/science.119844321436454
    [Google Scholar]
  197. RosenbergS.A. YangJ.C. SherryR.M. KammulaU.S. HughesM.S. PhanG.Q. CitrinD.E. RestifoN.P. RobbinsP.F. WunderlichJ.R. MortonK.E. LaurencotC.M. SteinbergS.M. WhiteD.E. DudleyM.E. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy.Clin. Cancer Res.201117134550455710.1158/1078‑0432.CCR‑11‑011621498393
    [Google Scholar]
  198. GoffS.L. DudleyM.E. CitrinD.E. SomervilleR.P. WunderlichJ.R. DanforthD.N. ZlottD.A. YangJ.C. SherryR.M. KammulaU.S. KlebanoffC.A. HughesM.S. RestifoN.P. LanghanM.M. SheltonT.E. LuL. KwongM.L.M. IlyasS. KlemenN.D. PayabyabE.C. MortonK.E. ToomeyM.A. SteinbergS.M. WhiteD.E. RosenbergS.A. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma.J. Clin. Oncol.201634202389239710.1200/JCO.2016.66.722027217459
    [Google Scholar]
  199. TranE. RobbinsP.F. LuY.C. PrickettT.D. GartnerJ.J. JiaL. PasettoA. ZhengZ. RayS. GrohE.M. KrileyI.R. RosenbergS.A. T-cell transfer therapy targeting mutant KRAS in cancer.N. Engl. J. Med.2016375232255226210.1056/NEJMoa160927927959684
    [Google Scholar]
  200. LumL.G. ThakurA. ChoiM. DeolA. KondadasulaV. SchalkD. FieldsK. DufrenseM. PhilipP. DysonG. AonH.D. ShieldsA.F. Clinical and immune responses to anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR BATs) in pancreatic cancer patients.OncoImmunology202091177320110.1080/2162402X.2020.177320132939319
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128334659241223113743
Loading
/content/journals/cpd/10.2174/0113816128334659241223113743
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; fluorouracil; KRAS pathway; Pancreas; PDAC; targeted therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test