Skip to content
2000
Volume 31, Issue 17
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Amyotrophic lateral sclerosis (ALS), is a progressive neurodegenerative disease characterized by motor symptoms, and cognitive impairment. The complexity in treating ALS arises from genetic and environmental factors, contributing to the gradual decline of lower and upper motor neurons. The anticipated pharmaceutical market valuation for ALS is projected to reach $1,038.94 million by 2032. This projection underscores the escalating impact of ALS on global healthcare systems. ALS prevalence is expected to surge to 376,674 cases by 2040. In 2022, India ranked among the top 3 Asian-Pacific nations, while North America dominated the global ALS market. Ongoing investigations explore the potential of neuroprotective drugs like riluzole and edaravone in ALS treatment. Recently approved drugs, Relyvrio (sodium phenylbutyrate and taurursodiol) and Tofersen (Qalsody) have completed the trials, and others are currently undergoing extensive clinical trials. Continuous research and exploration of therapeutic avenues, including gene therapy and neuroprotective treatments, are imperative to address the challenges posed by ALS and other neurodegenerative diseases. Traditional Chinese medicine (TCM) approaches and clinical trials are being explored for treating ALS symptoms, targeting neuroinflammation, oxidative damage, and muscle weakness, showcasing the potential benefits of integrating traditional and modern approaches in ALS management.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128329141241205063352
2025-01-17
2025-10-10
Loading full text...

Full text loading...

References

  1. MayneK. WhiteJ.A. McMurranC.E. RiveraF.J. de la FuenteA.G. Aging and neurodegenerative disease: Is the adaptive immune system a friend or foe?Front. Aging Neurosci.20201257209010.3389/fnagi.2020.572090 33173502
    [Google Scholar]
  2. ZamproniL.N. MundimM.T.V.V. PorcionattoM.A. Neurorepair and regeneration of the brain: A decade of bioscaffolds and engineered microtissue.Front. Cell Dev. Biol.2021964989110.3389/fcell.2021.649891 33898443
    [Google Scholar]
  3. BlockM.L. ZeccaL. HongJ.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms.Nat. Rev. Neurosci.200781576910.1038/nrn2038 17180163
    [Google Scholar]
  4. WongW. Managed care considerations to improve health care utilization for patients with ALS.Am. J. Manag. Care202329Suppl. 7S120S126 37433093
    [Google Scholar]
  5. Amyotrophic lateral sclerosis treatment market by drugs, by type, by distribution channel: Global opportunity analysis and industry forecast. 2023. Available from: https://www.alliedmarketresearch.com/amyotrophic-lateral-sclerosis-treatment-market-A10244
  6. MatosL.C. MachadoJ.P. MonteiroF.J. GretenH.J. Understanding traditional Chinese medicine therapeutics: An overview of the basics and clinical applications.Health Care20219325710.3390/healthcare9030257
    [Google Scholar]
  7. ZhaoX. TanX. ShiH. XiaD. Nutrition and traditional Chinese medicine (TCM): A system’s theoretical perspective.Eur. J. Clin. Nutr.202075226727310.1038/s41430‑020‑00737‑w 32884122
    [Google Scholar]
  8. YaoW. YangH. DingG. Mechanisms of Qi-blood circulation and Qi deficiency syndrome in view of blood and interstitial fluid circulation.J. Tradit. Chin. Med.201333453854410.1016/S0254‑6272(13)60162‑4 24187879
    [Google Scholar]
  9. QuJ. WangG. Research progress on the treatment of qi deficiency and blood stasis type hand-foot syndrome by Buyang Huanwu decoction.J Contemp Med Pract20246624825310.53469/jcmp.2024.06(06).45
    [Google Scholar]
  10. RyanG. Moreno-EscobarM.C. JosephJ. MunakomiS. PawarG. Amyotrophic lateral sclerosis. In: StatPearls.Treasure Island, FLStatPearls Publishing2024 32310611
    [Google Scholar]
  11. MasroriP. Van DammeP. Amyotrophic lateral sclerosis: A clinical review.Eur. J. Neurol.202027101918192910.1111/ene.14393 32526057
    [Google Scholar]
  12. BlascoH. MavelS. CorciaP. GordonP.H. The glutamate hypothesis in ALS: Pathophysiology and drug development.Curr. Med. Chem.201421313551357510.2174/0929867321666140916120118 25245510
    [Google Scholar]
  13. MehtaP. RaymondJ. PunjaniR. Incidence of amyotrophic lateral sclerosis in the United States, 2014–2016.Amyotroph. Lateral Scler. Frontotemporal Degener.2022235-637838210.1080/21678421.2021.2023190 35023792
    [Google Scholar]
  14. LonginettiE. FangF. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature.Curr. Opin. Neurol.20193577177610.1097/WCO.0000000000000730 31361627
    [Google Scholar]
  15. ArthurK.C. CalvoA. PriceT.R. GeigerJ.T. ChiòA. TraynorB.J. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040.Nat. Commun.2016711240810.1038/ncomms12408 27510634
    [Google Scholar]
  16. OskarssonB. HortonD.K. MitsumotoH. Potential environmental factors in amyotrophic lateral sclerosis.Neurol. Clin.201533487788810.1016/j.ncl.2015.07.009 26515627
    [Google Scholar]
  17. GhasemiM. BrownR.H. Genetics of amyotrophic lateral sclerosis.Cold Spring Harb. Perspect. Med.201885a02412510.1101/cshperspect.a024125 28270533
    [Google Scholar]
  18. MejziniR. FlynnL.L. PitoutI.L. FletcherS. WiltonS.D. AkkariP.A. ALS genetics, mechanisms, and therapeutics: Where are we now?Front. Neurosci.201913131010.3389/fnins.2019.01310 31866818
    [Google Scholar]
  19. VucicS. RothsteinJ.D. KiernanM.C. Advances in treating amyotrophic lateral sclerosis: Insights from pathophysiological studies.Trends Neurosci.201437843344210.1016/j.tins.2014.05.006 24927875
    [Google Scholar]
  20. SaberiS. StaufferJ.E. SchulteD.J. RavitsJ. Neuropathology of amyotrophic lateral sclerosis and its variants.Neurol. Clin.201533485587610.1016/j.ncl.2015.07.012 26515626
    [Google Scholar]
  21. GeserF. Martinez-LageM. RobinsonJ. Clinical and pathological continuum of multisystem TDP-43 proteinopathies.Arch. Neurol.200966218018910.1001/archneurol.2008.558 19204154
    [Google Scholar]
  22. Van DeerlinV.M. LeverenzJ.B. BekrisL.M. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: A genetic and histopathological analysis.Lancet Neurol.20087540941610.1016/S1474‑4422(08)70071‑1 18396105
    [Google Scholar]
  23. MarinoM. PapaS. CrippaV. Differences in protein quality control correlate with phenotype variability in 2 mouse models of familial amyotrophic lateral sclerosis.Neurobiol. Aging201536149250410.1016/j.neurobiolaging.2014.06.026 25085783
    [Google Scholar]
  24. HardimanO. Al-ChalabiA. ChioA. Amyotrophic lateral sclerosis.Nat. Rev. Dis. Primers201731707110.1038/nrdp.2017.71 28980624
    [Google Scholar]
  25. PolymenidouM. ClevelandD.W. The seeds of neurodegeneration: Prion-like spreading in ALS.Cell2011147349850810.1016/j.cell.2011.10.011 22036560
    [Google Scholar]
  26. AguzziA. RajendranL. The transcellular spread of cytosolic amyloids, prions, and prionoids.Neuron200964678379010.1016/j.neuron.2009.12.016 20064386
    [Google Scholar]
  27. HardimanO. Al-ChalabiA. ChioA. Erratum: Amyotrophic lateral sclerosis.Nat. Rev. Dis. Primers201731708510.1038/nrdp.2017.85 29052611
    [Google Scholar]
  28. FerranteR.J. BrowneS.E. ShinobuL.A. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis.J. Neurochem.19976952064207410.1046/j.1471‑4159.1997.69052064.x 9349552
    [Google Scholar]
  29. MuydermanH. ChenT. MuydermanH. Mitochondrial dysfunction in amyotrophic lateral sclerosis - A valid pharmacological target?Br. J. Pharmacol.201317182191220510.1111/bph.12476 24148000
    [Google Scholar]
  30. GeninE.C. Abou-AliM. Paquis-FlucklingerV. Mitochondria, a key target in amyotrophic lateral sclerosis pathogenesis.Genes (Basel)20231411198110.3390/genes14111981 38002924
    [Google Scholar]
  31. NaumannM. PalA. GoswamiA. Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation.Nat. Commun.20189133510.1038/s41467‑017‑02299‑1 29362359
    [Google Scholar]
  32. WangS.J. WangK.Y. WangW.C. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes).Neuroscience2004125119120110.1016/j.neuroscience.2004.01.019 15051158
    [Google Scholar]
  33. ForanE. TrottiD. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis.Antioxid. Redox Signal.20091171587160210.1089/ars.2009.2444 19413484
    [Google Scholar]
  34. WangL. GutmannD.H. RoosR.P. Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice.Hum. Mol. Genet.201120228629310.1093/hmg/ddq463 20962037
    [Google Scholar]
  35. LiaoB. ZhaoW. BeersD.R. HenkelJ.S. AppelS.H. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS.Exp. Neurol.2012237114715210.1016/j.expneurol.2012.06.011 22735487
    [Google Scholar]
  36. SamaR.R.K. WardC.L. BoscoD.A. Functions of FUS/TLS from DNA repair to stress response: implications for ALS.ASN Neuro201464175909141454447210.1177/1759091414544472 25289647
    [Google Scholar]
  37. WangW.Y. PanL. SuS.C. Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons.Nat. Neurosci.201316101383139110.1038/nn.3514 24036913
    [Google Scholar]
  38. KennaK.P. van DoormaalP.T.C. DekkerA.M. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis.Nat. Genet.20164891037104210.1038/ng.3626 27455347
    [Google Scholar]
  39. FangX. LinH. WangX. ZuoQ. QinJ. ZhangP. The NEK1 interactor, C21ORF2, is required for efficient DNA damage repair.Acta Biochim. Biophys. Sin. (Shanghai)2015471083484110.1093/abbs/gmv076 26290490
    [Google Scholar]
  40. NgL. KhanF. YoungC.A. GaleaM. Symptomatic treatments for amyotrophic lateral sclerosis/motor neuron disease.Cochrane Database Syst. Rev.201711CD01177610.1002/14651858.CD011776.pub2 28072907
    [Google Scholar]
  41. DorstJ. LudolphA.C. HuebersA. Disease-modifying and symptomatic treatment of amyotrophic lateral sclerosis.Ther. Adv. Neurol. Disord.201811175628561773473410.1177/1756285617734734 29399045
    [Google Scholar]
  42. FangT. JeG. PacutP. KeyhanianK. GaoJ. GhasemiM. Gene therapy in amyotrophic lateral sclerosis.Cells20221113206610.3390/cells11132066
    [Google Scholar]
  43. Bunton-StasyshynR.K.A. SacconR.A. FrattaP. FisherE.M.C. SOD1 function and its implications for amyotrophic lateral sclerosis pathology: New and renascent themes.Neuroscientist201521551952910.1177/1073858414561795 25492944
    [Google Scholar]
  44. BowlingA.C. SchulzJ.B. BrownR.H. Flint BealM. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis.J. Neurochem.19936162322232510.1111/j.1471‑4159.1993.tb07478.x 8245985
    [Google Scholar]
  45. RentonA.E. MajounieE. WaiteA. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD.Neuron201172225726810.1016/j.neuron.2011.09.010 21944779
    [Google Scholar]
  46. GijselinckI. Van LangenhoveT. van der ZeeJ. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: A gene identification study.Lancet Neurol.2012111546510.1016/S1474‑4422(11)70261‑7 22154785
    [Google Scholar]
  47. GhasemiM. KeyhanianK. DouthwrightC. Glial cell dysfunction in C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia.Cells202110224910.3390/cells10020249 33525344
    [Google Scholar]
  48. CammackA.J. AtassiN. HymanT. Prospective natural history study of C9orf72 ALS clinical characteristics and biomarkers.Neurology20199317e1605e161710.1212/WNL.0000000000008359 31578300
    [Google Scholar]
  49. AraiT. HasegawaM. AkiyamaH. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.Biochem. Biophys. Res. Commun.2006351360261110.1016/j.bbrc.2006.10.093 17084815
    [Google Scholar]
  50. GiordanaM.T. PiccininiM. GrifoniS. TDP-43 redistribution is an early event in sporadic amyotrophic lateral sclerosis.Brain Pathol.201020235136010.1111/j.1750‑3639.2009.00284.x 19338576
    [Google Scholar]
  51. TakeuchiR. TadaM. ShigaA. Heterogeneity of cerebral TDP-43 pathology in sporadic amyotrophic lateral sclerosis: Evidence for clinico-pathologic subtypes.Acta Neuropathol. Commun.2016416110.1186/s40478‑016‑0335‑2 27338935
    [Google Scholar]
  52. BurattiE. BaralleF.E. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation.RNA Biol.20107442042910.4161/rna.7.4.12205 20639693
    [Google Scholar]
  53. BäumerD. HiltonD. PaineS.M.L. Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations.Neurology201075761161810.1212/WNL.0b013e3181ed9cde 20668261
    [Google Scholar]
  54. DengH. GaoK. JankovicJ. The role of FUS gene variants in neurodegenerative diseases.Nat. Rev. Neurol.201410633734810.1038/nrneurol.2014.78 24840975
    [Google Scholar]
  55. HennigS. KongG. MannenT. Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles.J. Cell Biol.2015210452953910.1083/jcb.201504117 26283796
    [Google Scholar]
  56. MillerR.G. MitchellJ.D. MooreD.H. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND).Cochrane Libr.201220123CD00144710.1002/14651858.CD001447.pub3 22419278
    [Google Scholar]
  57. KawashimaY. YamadaM. FuruieH. Effects of riluzole on psychiatric disorders with anxiety or fear as primary symptoms: A systematic review.Neuropsychopharmacol. Rep.202343332032710.1002/npr2.12364 37463744
    [Google Scholar]
  58. FehlingsM.G. MoghaddamjouA. HarropJ.S. Safety and efficacy of riluzole in acute spinal cord injury study (RISCIS): A multi-center, randomized, placebo-controlled, double-blinded trial.J. Neurotrauma20234017-181878188810.1089/neu.2023.0163 37279301
    [Google Scholar]
  59. NikbakhtA. Kargar-SoleimanabadS. Siahposht-KhachakiA. FarzinD. The effect of Riluzole on neurological outcomes, blood-brain barrier, brain water and neuroinflammation in traumatic brain injury.Brain Disord.2022810005210.1016/j.dscb.2022.100052
    [Google Scholar]
  60. ChoH. ShuklaS. Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis.Pharmaceuticals20211412910.3390/ph14010029 33396271
    [Google Scholar]
  61. Relyvrio (sodium phenylbutyrate and taurursodiol), for oral suspension. 2022. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/216660s000lbledt.pdf
  62. MillerT. CudkowiczM. ShawP.J. Phase 1–2 trial of antisense oligonucleotide tofersen for SOD1 ALS.N. Engl. J. Med.2020383210911910.1056/NEJMoa2003715 32640130
    [Google Scholar]
  63. SainiA. ChawlaP.A. Breaking barriers with tofersen: Enhancing therapeutic opportunities in amyotrophic lateral sclerosis.Eur. J. Neurol.2024312e1614010.1111/ene.16140 37975798
    [Google Scholar]
  64. LiuX. QinT. LiT. “Huoling Shengji granule” for amyotrophic lateral sclerosis: Protocol for a multicenter, randomized, double-blind, riluzole parallel controlled clinical trial.Front. Aging Neurosci.202315115397310.3389/fnagi.2023.1153973 37228252
    [Google Scholar]
  65. ZhangR.X. LiM.X. JiaZ.P. Rehmannia glutinosa: Review of botany, chemistry and pharmacology.J. Ethnopharmacol.2008117219921410.1016/j.jep.2008.02.018
    [Google Scholar]
  66. ZhouQ. WangY. ZhangJ. Fingerprint analysis of Huolingshengji formula and its neuroprotective effects in SOD1G93A mouse model of amyotrophic lateral sclerosis.Sci. Rep.201881166810.1038/s41598‑018‑19923‑9 29374221
    [Google Scholar]
  67. QiuH. LiJ.H. YinS.B. KeJ.Q. QiuC.L. ZhengG.Q. Dihuang Yinzi, a classical Chinese herbal prescription, for amyotrophic lateral sclerosis: A 12-year follow-up case report.Medicine (Baltimore)20169514e332410.1097/MD.0000000000003324 27057909
    [Google Scholar]
  68. ZhuJ. ShenL. LinX. HongY. FengY. Clinical research on traditional Chinese medicine compounds and their preparations for amyotrophic lateral sclerosis.Biomed. Pharmacother.20179685486410.1016/j.biopha.2017.09.135
    [Google Scholar]
  69. ZhangJ. ZhangZ. ZhangW. Jia-Jian-Di-Huang-Yin-Zi decoction exerts neuroprotective effects on dopaminergic neurons and their microenvironment.Sci. Rep.201881988610.1038/s41598‑018‑27852‑w 29959371
    [Google Scholar]
  70. HuR. YinC. WuN. Traditional Chinese herb Dihuang Yinzi (DY) plays neuroprotective and anti-dementia role in rats of ischemic brain injury.J. Ethnopharmacol.2009121344445010.1016/j.jep.2008.09.035 19000752
    [Google Scholar]
  71. ZhenG. YingyingL. JingchengD. Traditional Chinese medicine tonifying kidney therapy (Bu Shen) for stable chronic obstructive pulmonary disease.Medicine (Baltimore)20189752e1370110.1097/MD.0000000000013701 30593141
    [Google Scholar]
  72. GuS. PeiJ. Innovating Chinese herbal medicine: From traditional health practice to scientific drug discovery.Front. Pharmacol.2017838110.3389/fphar.2017.00381 28670279
    [Google Scholar]
  73. LiuH. QiuF. BianB. Integrating qualitative and quantitative assessments of Yougui pill, an effective traditional Chinese medicine, by HPLC-LTQ-Orbitrap-MSn and UPLC-QqQ-MS/MS.Anal. Methods20179233485349610.1039/C7AY00259A
    [Google Scholar]
  74. ShiY.H. YangH. RanH.F. Analysis of blood components of Yougui Yin in normal rats and rats with kidney deficiency caused by adenine based on UPLC-MS technology.Zhongguo Zhongyao Zazhi202146922872297 34047132
    [Google Scholar]
  75. Mohi-ud-dinR. MirR.H. ShahA.J. Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: An update.Curr. Neuropharmacol.202220117919310.2174/1570159X19666210428120514 33913406
    [Google Scholar]
  76. HuZ. LiuX. YangM. Evidence and potential mechanisms of jin-gui shen-qi wan as a treatment for type 2 diabetes mellitus: A systematic review and meta-analysis.Front. Pharmacol.20211269993210.3389/fphar.2021.699932
    [Google Scholar]
  77. LiuB. ChangY. JiangH. ShenB. Extraction of paeonol from Jisheng Shenqi Wan using supercritical fluid extraction.Biomed. Chromatogr.2007211798310.1002/bmc.721 17080508
    [Google Scholar]
  78. JiB. LiY.Y. YangW.J. Jinkui Shenqi pills ameliorate asthma with “Kidney Yang Deficiency” by enhancing the function of the hypothalamic-pituitary-adrenal axis to regulate T helper 1/2 imbalance.Evid. Based Complement. Alternat. Med.20182018725324010.1155/2018/7253240 29576798
    [Google Scholar]
  79. HeB. ChenZ. NieY. Exploring and verifying the mechanism and targets of shenqi pill in the treatment of nonalcoholic steatohepatitis via network pharmacology and experiments.J. Immunol. Res.20222022658814410.1155/2022/6588144 35733920
    [Google Scholar]
  80. WangY. FengY. LiM. Traditional Chinese medicine in the treatment of chronic kidney diseases: Theories, applications, and mechanisms.Front. Pharmacol.20221391797510.3389/fphar.2022.917975
    [Google Scholar]
  81. ZhuW. ZhangR. MaC. Study on the action mechanism of the Yifei Jianpi Tongfu formula in treatment of colorectal cancer lung metastasis based on network analysis, molecular docking, and experimental validation.Evid. Based Complement. Alternat. Med.2022622944410.1155/2022/6229444 35942366
    [Google Scholar]
  82. LinL. TangC.Y. TangS-L. HuangK-F. XuJ. YuH. Jian-Pi-Yi-Fei granule suppresses airway inflammation in mice induced by cigarette smoke condensate and lipopolysaccharide.Indian J. Pharmacol.201951426326810.4103/ijp.IJP_105_18 31571713
    [Google Scholar]
  83. LuY.Y. DuZ.Y. LiY. Effects of Baoyuan decoction, a traditional Chinese medicine formula, on the activities and mRNA expression of seven CYP isozymes in rats.J. Ethnopharmacol.201822532733510.1016/j.jep.2018.07.023 30048731
    [Google Scholar]
  84. ZhuangW. LiuS.L. XiS.Y. Traditional Chinese medicine decoctions and Chinese patent medicines for the treatment of depression: Efficacies and mechanisms.J. Ethnopharmacol202330711627210.1016/j.jep.2023.11627236791924
    [Google Scholar]
  85. PanW. SuX. BaoJ. Open randomized clinical trial on JWSJZ decoction for the treatment of ALS patients.Evid. Based Complement. Alternat. Med.2013201334752510.1155/2013/347525 24093046
    [Google Scholar]
  86. DudmanJ. QiX. Stress granule dysregulation in amyotrophic lateral sclerosis.Front. Cell. Neurosci.20201459851710.3389/fncel.2020.598517 33281563
    [Google Scholar]
  87. ZuoH. ZhangQ. SuS. ChenQ. YangF. HuY. A network pharmacology-based approach to analyse potential targets of traditional herbal formulas: An example of Yu Ping Feng decoction.Sci. Rep.2018811141810.1038/s41598‑018‑29764‑1 30061691
    [Google Scholar]
  88. XiongX. WangP. LiX. ZhangY. The effect of Chinese herbal medicine Jian Ling decoction for the treatment of essential hypertension: A systematic review.BMJ Open201552e00650210.1136/bmjopen‑2014‑006502
    [Google Scholar]
  89. XuJ. XiaZ. Traditional Chinese Medicine (TCM) – Does its contemporary business booming and globalization really reconfirm its medical efficacy & safety?Med. Drug Discov.2019110000310.1016/j.medidd.2019.100003
    [Google Scholar]
  90. WangX. ZhangA. SunH. YanG. WangP. HanY. Chapter 1: Traditional chinese medicine: Current state, challenges, and applications.In: Serum Pharmacochemistry of Traditional Chinese Medicine.Academic Press20171610.1016/B978‑0‑12‑811147‑5.00001‑7
    [Google Scholar]
  91. CarL.T. PapachristouN. BullA. Clinician-identified problems and solutions for delayed diagnosis in primary care: A prioritize study.BMC Fam. Pract.201617113110.1186/s12875‑016‑0530‑z 27613564
    [Google Scholar]
  92. JacksonC.E. GronsethG. RosenfeldJ. Randomized double‐blind study of botulinum toxin type B for sialorrhea in als patients.Muscle Nerve200939213714310.1002/mus.21213 19145653
    [Google Scholar]
  93. WeissM.D. MacklinE.A. SimmonsZ. A randomized trial of mexiletine in ALS safety and effects on muscle cramps and progression.Neurology201686161474148110.1212/WNL.0000000000002507 26911633
    [Google Scholar]
  94. ChiòA. MoraG. LauriaG. Pain in amyotrophic lateral sclerosis.Lancet Neurol.2017162144157
    [Google Scholar]
  95. MoroS. BissaroM. Rethinking to riluzole mechanism of action: The molecular link among protein kinase CK1δ activity, TDP-43 phosphorylation, and amyotrophic lateral sclerosis pharmacological treatment.Neural Regen. Res.201914122083208510.4103/1673‑5374.262578 31397342
    [Google Scholar]
  96. LiQ. FengY. XueY. Edaravone activates the GDNF/RET neurotrophic signaling pathway and protects mRNA-induced motor neurons from iPS cells.Mol. Neurodegener.2022171810.1186/s13024‑021‑00510‑y 35012575
    [Google Scholar]
  97. BlairH.A. Tofersen: First approval.Drugs202383111039104310.1007/s40265‑023‑01904‑6 37316681
    [Google Scholar]
  98. VermerschP. Brieva-RuizL. FoxR.J. Efficacy and safety of masitinib in progressive forms of multiple sclerosis.Neurol. Neuroimmunol. Neuroinflamm.202293e114810.1212/NXI.0000000000001148 35190477
    [Google Scholar]
  99. Martínez-GonzálezL. Gonzalo-ConsuegraC. Gómez-AlmeríaM. Tideglusib, a non-atp competitive inhibitor of GSK-3b as a drug candidate for the treatment of amyotrophic lateral sclerosis.Int. J. Mol. Sci.20212216897510.3390/ijms22168975 34445680
    [Google Scholar]
  100. KochJ.C. KuttlerJ. MaassF. Compassionate use of the ROCK inhibitor fasudil in three patients with amyotrophic lateral sclerosis.Front. Neurol.20201117310.3389/fneur.2020.00173 32231638
    [Google Scholar]
  101. MilliganC. AtassiN. BabuS. Tocilizumab is safe and tolerable and reduces C‐reactive protein concentrations in the plasma and cerebrospinal fluid of ALS patients.Muscle Nerve202164330932010.1002/mus.27339 34075589
    [Google Scholar]
  102. Helixmith announces topline results from phase 2A study of engensis for treatment of ALS (amyotrophic lateral sclerosis). 2022. Available from: https://www.prnewswire.com/news-releases/helixmith-announces-topline-results-from-phase-2a-study-of-engensis-for-treatment-of-als-amyotrophic-lateral-sclerosis-301617401.html#:~:text=The%20results%20of%20the%20study,Engensis%20and%20the%20placebo%20groups
  103. MandrioliJ. CrippaV. CeredaC. Proteostasis and ALS: Protocol for a phase II, randomised, double-blind, placebo-controlled, multicentre clinical trial for colchicine in ALS (Co-ALS).BMJ Open201995e02848610.1136/bmjopen‑2018‑028486 31152038
    [Google Scholar]
  104. MandrioliJ. D’AmicoR. ZucchiE. Rapamycin treatment for amyotrophic lateral sclerosis protocol for a phase II randomized, double-blind, placebo-controlled, multicenter, clinical trial (RAP-ALS trial).Medicine (Baltimore)20189724e1111910.1097/MD.0000000000011119 29901635
    [Google Scholar]
  105. VolontéC. MorelloG. SpampinatoA.G. Omics-based exploration and functional validation of neurotrophic factors and histamine as therapeutic targets in ALS.Ageing Res. Rev.20206210112110.1016/j.arr.2020.101121 32653439
    [Google Scholar]
  106. KorobeynikovV.A. LyashchenkoA.K. Blanco-RedondoB. Jafar-NejadP. ShneiderN.A. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis.Nat. Med.202228110411610.1038/s41591‑021‑01615‑z 35075293
    [Google Scholar]
  107. KajiR. ImaiT. IwasakiY. Ultra-high-dose methylcobalamin in amyotrophic lateral sclerosis: A long-term phase II/III randomised controlled study.J. Neurol. Neurosurg. Psychiatry201990445145710.1136/jnnp‑2018‑319294 30636701
    [Google Scholar]
  108. DharmadasaT. HendersonR.D. TalmanP.S. Motor neurone disease: Progress and challenges.Med. J. Aust.2017206835736210.5694/mja16.01063 28446118
    [Google Scholar]
  109. Multiple doses of AT-1501-A201 in adults with ALS. NCT04322149, 2023.
  110. Study of safety and of the mechanism of BLZ945 in ALS patients. NCT04066244, 2024.
  111. JiangJ.S. WangY. DengM. New developments and opportunities in drugs being trialed for amyotrophic lateral sclerosis from 2020 to 2022.Front. Pharmacol.202213105400610.3389/fphar.2022.1054006 36518658
    [Google Scholar]
  112. AdiaoK.J. EspirituA. BagnasM.A. Efficacy and safety of mexiletine in amyotrophic lateral sclerosis: A systematic review of randomized controlled trials.Neurodegener. Dis. Manag.202010639740710.2217/nmt‑2020‑0026 32867586
    [Google Scholar]
  113. A phase 2 pharmacodynamic trial of ezogabine on neuronal excitability in amyotrophic lateral sclerosis. NCT02450552, 2020
  114. WongC. DakinR.S. WilliamsonJ. Motor Neuron Disease Systematic Multi-arm Adaptive Randomised Trial (MND-SMART): A multi-arm, multi-stage, adaptive, platform, phase III randomised, double-blind, placebo-controlled trial of repurposed drugs in motor neuron disease.BMJ Open2022127e06417310.1136/bmjopen‑2022‑064173 35798516
    [Google Scholar]
  115. Dalla BellaE. BersanoE. AntoniniG. The unfolded protein response in amyotrophic later sclerosis: Results of a phase 2 trial.Brain202114492635264710.1093/brain/awab167 33905493
    [Google Scholar]
  116. Proceedings of the 22nd Annual Meeting of the Northeast ALS Consortium. Muscle Nerve 2023; 68(S1): S1-S82.10.1002/mus.27969
  117. HoxhajP. HastingsN. KachhadiaM.P. Exploring advancements in the treatment of amyotrophic lateral sclerosis: A comprehensive review of current modalities and future prospects.Cureus2023159e4548910.7759/cureus.45489 37868386
    [Google Scholar]
  118. HouP.W. LiuS.C. TsayG.J. TangC.H. ChangH.H. The traditional Chinese medicine “Hu-Qian-Wan” attenuates osteoarthritis-induced signs and symptoms in an experimental rat model of knee osteoarthritis.Evid. Based Complement. Alternat. Med.20222022536749410.1155/2022/5367494 35186100
    [Google Scholar]
  119. PanW. ChenX. BaoJ. The use of integrative therapies in patients with amyotrophic lateral sclerosis in Shanghai, China.Evid. Based Complement. Alternat. Med.2013201361359610.1155/2013/613596 24363770
    [Google Scholar]
  120. JiX. LiuH. AnC. You-Gui pills promote nerve regeneration by regulating netrin1, DCC and Rho family GTPases RhoA, Racl, Cdc42 in C57BL/6 mice with experimental autoimmune encephalomyelitis.J. Ethnopharmacol.201618712313310.1016/j.jep.2016.04.025 27106785
    [Google Scholar]
  121. SunL. ZhaoW. YanM. YangB. XiongP. ZhaoS. The efficacy and safety of Chinese herbal compound combined with western medicine for amyotrophic lateral sclerosis.Medicine (Baltimore)20209943e2193310.1097/MD.0000000000021933 33120727
    [Google Scholar]
  122. LiaoY. HeS. LiuD. The efficacy and safety of Chinese herbal medicine as an add-on therapy for amyotrophic lateral sclerosis: An updated systematic review and meta-analysis of randomized controlled trials.Front. Neurol.20221398803410.3389/fneur.2022.988034
    [Google Scholar]
  123. GaoC. JiangJ. TanY. ChenS. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets.Signal Transduct. Target. Ther.20238135910.1038/s41392‑023‑01588‑0
    [Google Scholar]
  124. PanH. WangH. TaoY. Evidence-based research strategy of traditional Chinese medicine for amyotrophic lateral sclerosis.Evid. Based Complement. Alternat. Med.202120211710.1155/2021/3402753
    [Google Scholar]
  125. SuhW.J. SeoY. JinC. Traditional east asian herbal medicine for amyotrophic lateral sclerosis: A scoping review.Evid. Based Complement. Alternat. Med.2021202112210.1155/2021/5674142
    [Google Scholar]
  126. YangE.J. Combined treatment with Bojungikgi-Tang (Buzhong Yiqi decoction) and riluzole attenuates cell death in TDP-43-expressing cells.Chin. J. Integr. Med.2024307611622 37695446
    [Google Scholar]
  127. YangS.H. ZhuJ. WuW.T. Rhizoma atractylodis macrocephalae - Assessing the influence of herbal processing methods and improved effects on functional dyspepsia.Front. Pharmacol.202314123665610.3389/fphar.2023.1236656 37601055
    [Google Scholar]
  128. YuanH. YangM. HanX. NiX. The therapeutic effect of the Chinese herbal medicine, rehmanniae radix preparata, in attention deficit hyperactivity disorder via reversal of structural abnormalities in the cortex.Evid. Based Complement. Alternat. Med.201820181305205810.1155/2018/3052058
    [Google Scholar]
  129. WangL. DengH.X. GrisottiG. ZhaiH. SiddiqueT. RoosR.P. Wild-type SOD1 overexpression accelerates disease onset of a G85R SOD1 mouse.Hum. Mol. Genet.20091891642165110.1093/hmg/ddp085 19233858
    [Google Scholar]
  130. MaurerM. Amyotrophic lateral sclerosis.IntechOpen2012
    [Google Scholar]
  131. LiachkoN.F. GuthrieC.R. KraemerB.C. Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy.J. Neurosci.20103048162081621910.1523/JNEUROSCI.2911‑10.2010 21123567
    [Google Scholar]
  132. MockettR.J. RadyukS.N. BenesJ.J. OrrW.C. SohalR.S. StadtmanE.R. Phenotypic effects of familial amyotrophic lateral sclerosis mutant Sod alleles in transgenic Drosophila.Proc. Natl. Acad. Sci. USA2003100130130610.1073/pnas.0136976100 12502789
    [Google Scholar]
  133. EstesP.S. BoehringerA. ZwickR. TangJ.E. GrigsbyB. ZarnescuD.C. Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS.Hum. Mol. Genet.201120122308232110.1093/hmg/ddr124 21441568
    [Google Scholar]
  134. LansonN.A. MaltareA. KingH. A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43.Hum. Mol. Genet.201120132510252310.1093/hmg/ddr150 21487023
    [Google Scholar]
  135. JonssonP.A. GraffmoK.S. AndersenP.M. Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models.Brain2006129245146410.1093/brain/awh704 16330499
    [Google Scholar]
  136. JonssonP.A. ErnhillK. AndersenP.M. Minute quantities of misfolded mutant superoxide dismutase‐1 cause amyotrophic lateral sclerosis.Brain20041271738810.1093/brain/awh005 14534160
    [Google Scholar]
  137. StallingsN.R. PuttaparthiK. LutherC.M. BurnsD.K. ElliottJ.L. Progressive motor weakness in transgenic mice expressing human TDP-43.Neurobiol. Dis.201040240441410.1016/j.nbd.2010.06.017 20621187
    [Google Scholar]
  138. WegorzewskaI. BellS. CairnsN.J. MillerT.M. BalohR.H. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration.Proc. Natl. Acad. Sci. USA200910644188091881410.1073/pnas.0908767106 19833869
    [Google Scholar]
  139. BeaulieuJM Lè Ne JacomyH JulienJP Formation of intermediate filament protein aggregates with disparate effects in two transgenic mouse models lacking the neurofilament light subunit. J Neurosci 2000; 20(14): 5321-8-8.10.1523/JNEUROSCI.20‑14‑05321.200010884316
  140. MillecampsS. RobertsonJ. LariviereR. MalletJ. JulienJ.P. Defective axonal transport of neurofilament proteins in neurons overexpressing peripherin.J. Neurochem.200698392693810.1111/j.1471‑4159.2006.03932.x 16787413
    [Google Scholar]
  141. YamanakaK. MillerT.M. McAlonis-DownesM. ChunS.J. ClevelandD.W. Progressive spinal axonal degeneration and slowness in ALS2‐deficient mice.Ann. Neurol.20066019510410.1002/ana.20888 16802286
    [Google Scholar]
  142. Gros-LouisF. GasparC. RouleauG.A. Genetics of familial and sporadic amyotrophic lateral sclerosis.Biochim. Biophys. Acta Mol. Basis Dis.2006176211-1295697210.1016/j.bbadis.2006.01.004
    [Google Scholar]
  143. NagaiM. AokiM. MiyoshiI. Rats expressing human cytosolic copper–zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: Associated mutations develop motor neuron disease.J. Neurosci.200121239246925410.1523/JNEUROSCI.21‑23‑09246.2001 11717358
    [Google Scholar]
  144. LemmensR. Van HoeckeA. HersmusN. Overexpression of mutant superoxide dismutase 1 causes a motor axonopathy in the zebrafish.Hum. Mol. Genet.200716192359236510.1093/hmg/ddm193 17636250
    [Google Scholar]
  145. KabashiE. LinL. TradewellM.L. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo.Hum. Mol. Genet.201019467168310.1093/hmg/ddp534 19959528
    [Google Scholar]
  146. BoscoD.A. MorfiniG. KarabacakN.M. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS.Nat. Neurosci.201013111396140310.1038/nn.2660 20953194
    [Google Scholar]
  147. Gros-LouisF. KrizJ. KabashiE. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in ALS2 knock-down zebrafish.Hum. Mol. Genet.200817172691270210.1093/hmg/ddn171 18558633
    [Google Scholar]
  148. AwanoT. JohnsonG.S. WadeC.M. Genome-wide association analysis reveals a SOD1 mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis.Proc. Natl. Acad. Sci. USA200810682794279910.1073/pnas.0812297106 19188595
    [Google Scholar]
  149. HartE.A. CaccamoM. HarrowJ.L. Lessons learned from the initial sequencing of the pig genome: Comparative analysis of an 8 Mb region of pig chromosome 17.Genome Biol.200788R16810.1186/gb‑2007‑8‑8‑r168 17705864
    [Google Scholar]
  150. MazzoneG.L. NistriA. Electrochemical detection of endogenous glutamate release from rat spinal cord organotypic slices as a real-time method to monitor excitotoxicity.J. Neurosci. Methods2011197112813210.1016/j.jneumeth.2011.01.033 21310181
    [Google Scholar]
  151. CalderóJ. BrunetN. TarabalO. Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord.Neuroscience201016541353136910.1016/j.neuroscience.2009.11.034 19932742
    [Google Scholar]
  152. GingrasM. GagnonV. MinottiS. DurhamH.D. BerthodF. Optimized protocols for isolation of primary motor neurons, astrocytes and microglia from embryonic mouse spinal cord.J. Neurosci. Methods2007163111111810.1016/j.jneumeth.2007.02.024 17445905
    [Google Scholar]
  153. KulshreshthaD. VijayalakshmiK. AlladiP.A. SathyaprabhaT.N. NaliniA. RajuT.R. Vascular endothelial growth factor attenuates neurodegenerative changes in the NSC-34 motor neuron cell line induced by cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients.Neurodegener. Dis.20118532233010.1159/000323718 21389676
    [Google Scholar]
  154. BoehmerC. PalmadaM. RajamanickamJ. SchnieppR. AmaraS. LangF. Post‐translational regulation of EAAT2 function by co‐expressed ubiquitin ligase Nedd4‐2 is impacted by SGK kinases.J. Neurochem.200697491192110.1111/j.1471‑4159.2006.03629.x 16573659
    [Google Scholar]
  155. LiuJ. WangF. Role of neuroinflammation in amyotrophic lateral sclerosis: Cellular mechanisms and therapeutic implications.Front. Immunol.20178100510.3389/fimmu.2017.01005 28871262
    [Google Scholar]
  156. Di GiorgioF.P. CarrascoM.A. SiaoM.C. ManiatisT. EgganK. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model.Nat. Neurosci.200710560861410.1038/nn1885 17435754
    [Google Scholar]
  157. TakahashiK. OkitaK. NakagawaM. YamanakaS. Induction of pluripotent stem cells from fibroblast cultures.Nat. Protoc.20072123081308910.1038/nprot.2007.418 18079707
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128329141241205063352
Loading
/content/journals/cpd/10.2174/0113816128329141241205063352
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test