Skip to content
2000
Volume 30, Issue 39
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

The Transforming Growth Factor-Beta (TGF-β) signaling pathway plays a crucial role in the pathogenesis of diseases. This study aimed to identify differentially expressed TGF-β-related genes in liver cancer patients and to correlate these findings with clinical features and immune signatures.

Methods

The TCGA-STAD and LIRI-JP cohorts were utilized for a comprehensive analysis of TGF-β-related genes. Differential gene expression, functional enrichment, survival analysis, and machine learning techniques were employed to develop a prognostic model based on a TGF-β-related gene signature (TGFBRS).

Results

We developed a prognostic model for liver cancer based on the expression levels of nine TGF-β-related genes. The model indicates that higher TGFBRS values are associated with poorer prognosis, higher tumor grades, more advanced pathological stages, and resistance to chemotherapy. Additionally, the TGFBRS-High subtype was characterized by elevated levels of immune-suppressive cells and increased expression of immune checkpoint molecules. Using a Gradient Boosting Decision Tree (GBDT) machine learning approach, the FKBP1A gene was identified as playing a significant role in liver cancer. Notably, knocking down FKBP1A significantly inhibited the proliferation and metastatic capabilities of liver cancer cells both and .

Conclusion

Our study highlights the potential of TGFBRS in predicting chemotherapy responses and in shaping the tumor immune microenvironment in liver cancer. The results identify FKBP1A as a promising molecular target for developing preventive and therapeutic strategies against liver cancer. Our findings could potentially guide personalized treatment strategies to improve the prognosis of liver cancer patients.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128326151240820105525
2024-11-01
2025-10-12
Loading full text...

Full text loading...

/deliver/fulltext/cpd/30/39/CPD-30-39-05.html?itemId=/content/journals/cpd/10.2174/0113816128326151240820105525&mimeType=html&fmt=ahah

References

  1. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic significance of the Royal Marsden Hospital (RMH) score in patients with cancer: A systematic review and meta-analysis.Cancers20241610183510.3390/cancers16101835 38791914
    [Google Scholar]
  2. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches.Biochim. Biophys. Acta Rev. Cancer20201873118831410.1016/j.bbcan.2019.188314 31682895
    [Google Scholar]
  3. LiX. RamadoriP. PfisterD. SeehawerM. ZenderL. HeikenwalderM. The immunological and metabolic landscape in primary and metastatic liver cancer.Nat. Rev. Cancer202121954155710.1038/s41568‑021‑00383‑9 34326518
    [Google Scholar]
  4. BlagotinsekK. RozmanD. Targeting signalling pathways in hepatocellular carcinoma.Curr. Pharm. Des.2017231170175 27719638
    [Google Scholar]
  5. GuptaM. ChandanK. SarwatM. Role of microRNA and long non-coding RNA in hepatocellular carcinoma.Curr. Pharm. Des.202026441542810.2174/1381612826666200115093835 31939724
    [Google Scholar]
  6. RizzoA. RicciA.D. BrandiG. Trans-arterial chemoembolization plus systemic treatments for hepatocellular carcinoma: An update.J. Pers. Med.20221211178810.3390/jpm12111788 36579504
    [Google Scholar]
  7. RizzoA. DadduzioV. RicciA.D. Lenvatinib plus pembrolizumab: The next frontier for the treatment of hepatocellular carcinoma?Expert Opin. Investig. Drugs202231437137810.1080/13543784.2021.1948532 34167433
    [Google Scholar]
  8. GuvenD.C. SahinT.K. ErulE. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.1039121 36533070
    [Google Scholar]
  9. RizzoA. MollicaV. TateoV. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x 36695827
    [Google Scholar]
  10. KollerF. GeevargheseS. GordenD. Liver transplantation for hepatocellular carcinoma: Current role and future opportunities.Curr. Pharm. Des.200713323265327310.2174/138161207782360591 18045177
    [Google Scholar]
  11. RongruiL. NaH. ZongfangL. FanpuJ. ShiwenJ. Epigenetic mechanism involved in the HBV/HCV-related hepatocellular carcinoma tumorigenesis.Curr. Pharm. Des.201420111715172510.2174/13816128113199990533 23888939
    [Google Scholar]
  12. TommasiS. PintoR. PilatoB. ParadisoA. Molecular pathways and related target therapies in liver carcinoma.Curr. Pharm. Des.200713323279328710.2174/138161207782360663 18045179
    [Google Scholar]
  13. ShenJ. WuW.K. RenS.X. miRNAs in gastrointestinal and liver cancers: Their perspectives and clinical applications.Curr. Pharm. Des.201319713011310 23092341
    [Google Scholar]
  14. JangM.K. KimH. ChungY.H. Clinical aspects of tumor necrosis factor-α signaling in hepatocellular carcinoma.Curr. Pharm. Des.201420172799280810.2174/13816128113199990587 23944370
    [Google Scholar]
  15. BreinigM. SchirmacherP. KernM. Cyclooxygenase-2 (COX-2) -a therapeutic target in liver cancer?Curr. Pharm. Des.200713323305331510.2174/138161207782360627 18045183
    [Google Scholar]
  16. PengD. FuM. WangM. WeiY. WeiX. Targeting TGF-β signal transduction for fibrosis and cancer therapy.Mol. Cancer202221110410.1186/s12943‑022‑01569‑x 35461253
    [Google Scholar]
  17. MorikawaM. DerynckR. MiyazonoK. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology.Cold Spring Harb. Perspect. Biol.201685a02187310.1101/cshperspect.a021873 27141051
    [Google Scholar]
  18. LarsonC. OronskyB. CarterC.A. TGF-beta: A master immune regulator.Expert Opin. Ther. Targets202024542743810.1080/14728222.2020.1744568 32228232
    [Google Scholar]
  19. YangL. PangY. MosesH.L. TGF-β and immune cells: An important regulatory axis in the tumor microenvironment and progression.Trends Immunol.201031622022710.1016/j.it.2010.04.002 20538542
    [Google Scholar]
  20. BierieB. MosesH. TGF-β and cancer.Cytokine Growth Factor Rev.2006171-2294010.1016/j.cytogfr.2005.09.006 16289860
    [Google Scholar]
  21. ReichlP. HaiderC. GrubingerM. MikulitsW. TGF-β in epithelial to mesenchymal transition and metastasis of liver carcinoma.Curr. Pharm. Des.201218274135414710.2174/138161212802430477 22630087
    [Google Scholar]
  22. ZiZ. Molecular engineering of the TGF-β signaling pathway.J. Mol. Biol.2019431152644265410.1016/j.jmb.2019.05.022 31121181
    [Google Scholar]
  23. DaiX. HuaD. LuX. Roles of TGF-β in cancer hallmarks and emerging onco-therapeutic design.Expert Rev. Mol. Med.202224e4210.1017/erm.2022.37 36345661
    [Google Scholar]
  24. KatsunoY. LamouilleS. DerynckR. TGF-β signaling and epithelial-mesenchymal transition in cancer progression.Curr. Opin. Oncol.2013251768410.1097/CCO.0b013e32835b6371 23197193
    [Google Scholar]
  25. MeulmeesterE. ten DijkeP. The dynamic roles of TGF-β in cancer.J. Pathol.2011223220621910.1002/path.2785 20957627
    [Google Scholar]
  26. WangQ. LiuJ. LiR. Assessing the role of programmed cell death signatures and related gene TOP2A in progression and prognostic prediction of clear cell renal cell carcinoma.Cancer Cell Int.202424116410.1186/s12935‑024‑03346‑w 38730293
    [Google Scholar]
  27. LiuC.J. HuF.F. XiaM.X. HanL. ZhangQ. GuoA.Y. GSCALite: A web server for gene set cancer analysis.Bioinformatics201834213771377210.1093/bioinformatics/bty411 29790900
    [Google Scholar]
  28. XuL. YeY. SunY. Low FNDC5/Irisin expression is associated with aggressive phenotypes in gastric cancer.Front. Pharmacol.20221398120110.3389/fphar.2022.981201 36386179
    [Google Scholar]
  29. WangQ. WengS. SunY. High DAPK1 expression promotes tumor metastasis of gastric cancer.Biology (Basel)202211101110.3390/genes14010011 36290392
    [Google Scholar]
  30. YuL. LinN. YeY. Prognostic and chemotherapeutic response prediction by proliferation essential gene signature: Investigating POLE2 in bladder cancer progression and cisplatin resistance.J. Cancer20241561734174910.7150/jca.93023 38370377
    [Google Scholar]
  31. ZhongW. LiuH. LiF. Elevated expression of LIF predicts a poor prognosis and promotes cell migration and invasion of clear cell renal cell carcinoma.Front. Oncol.20221293412810.3389/fonc.2022.934128 35992780
    [Google Scholar]
  32. DengZ. FanT. XiaoC. TGF-β signaling in health, disease, and therapeutics.Signal Transduct. Target. Ther.2024916110.1038/s41392‑024‑01764‑w 38514615
    [Google Scholar]
  33. ClarkD.A. CokerR. Molecules in focus transforming growth factor-beta (TGF-β).Int. J. Biochem. Cell Biol.199830329329810.1016/S1357‑2725(97)00128‑3 9611771
    [Google Scholar]
  34. MosesH.L. RobertsA.B. DerynckR. The discovery and early days of TGF-β: A historical perspective.Cold Spring Harb. Perspect. Biol.201687a02186510.1101/cshperspect.a021865 27328871
    [Google Scholar]
  35. AkhurstR.J. DerynckR. TGF-β signaling in cancer - A double-edged sword.Trends Cell Biol.20011111S44S5110.1016/S0962‑8924(01)02130‑4 11684442
    [Google Scholar]
  36. DrabschY. ten DijkeP. TGF-β signalling and its role in cancer progression and metastasis.Cancer Metastasis Rev.2012313-455356810.1007/s10555‑012‑9375‑7 22714591
    [Google Scholar]
  37. GuoW. LiuH. YanY. Targeting the TGF-β signaling pathway: An updated patent review (2021-present).Expert Opin. Ther. Pat.20213499126
    [Google Scholar]
  38. SanterreK. Cortez GhioS. ProulxS. TGF-β-mediated modulation of cell-cell interactions in postconfluent maturing corneal endothelial cells.Invest. Ophthalmol. Vis. Sci.20226311310.1167/iovs.63.11.3 36194422
    [Google Scholar]
  39. ItoN. KawataS. TamuraS. Elevated levels of transforming growth factor beta messenger RNA and its polypeptide in human hepatocellular carcinoma.Cancer Res.1991511540804083 1649698
    [Google Scholar]
  40. JiangY. SunA. ZhaoY. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma.Nature2019567774725726110.1038/s41586‑019‑0987‑8 30814741
    [Google Scholar]
  41. LiL. GuoL. WangQ. DAPK1 as an independent prognostic marker in liver cancer.PeerJ20175e356810.7717/peerj.3568 28740751
    [Google Scholar]
  42. LinY. ZhongW. LinQ. SFPQ promotes the proliferation, migration and invasion of hepatocellular carcinoma cells and is associated with poor prognosis.Am. J. Cancer Res.202313622692284 37424798
    [Google Scholar]
  43. TaoH. WengS. XuL. Target-triggered assembly of plasmon resonance nanostructures for quantitative detection of lncRNA in liver cancer cells via surface enhanced Raman spectroscopy.Biosens. Bioelectron.202426111648810.1016/j.bios.2024.116488 38905860
    [Google Scholar]
  44. HuangY. WangC. LiK. Death-associated protein kinase 1 suppresses hepatocellular carcinoma cell migration and invasion by upregulation of DEAD-box helicase 20.Cancer Sci.202011182803281310.1111/cas.14499 32449268
    [Google Scholar]
  45. ShiraiY. KawataS. TamuraS. Plasma transforming growth factor-β1 in patients with hepatocellular carcinoma. Comparison with chronic liver diseases.Cancer19947392275227910.1002/1097‑0142(19940501)73:9<2275::AID‑CNCR2820730907>3.0.CO;2‑T 7513247
    [Google Scholar]
  46. SongB.C. ChungY.H. KimJ.A. Transforming growth factor-β1 as a useful serologic marker of small hepatocellular carcinoma.Cancer200294117518010.1002/cncr.10170 11815974
    [Google Scholar]
  47. LinT.H. ShaoY.Y. ChanS.Y. HuangC.Y. HsuC.H. ChengA.L. High serum transforming growth factor-β1 levels predict outcome in hepatocellular carcinoma patients treated with sorafenib.Clin. Cancer Res.201521163678368410.1158/1078‑0432.CCR‑14‑1954 25977342
    [Google Scholar]
  48. TuS. HuangW. HuangC. LuoZ. YanX. Contextual regulation of TGF-β signaling in liver cancer.Cells2019810123510.3390/cells8101235 31614569
    [Google Scholar]
  49. ZhenJ. PanJ. ZhouX. FARSB serves as a novel hypomethylated and immune cell infiltration related prognostic biomarker in hepatocellular carcinoma.Aging (Albany NY)20231582937296910.18632/aging.204619 37074800
    [Google Scholar]
  50. ZadjaliF. Al-YahyaeeA. Al-NabhaniM. Homozygosity for FARSB mutation leads to Phe-tRNA synthetase-related disease of growth restriction, brain calcification, and interstitial lung disease.Hum. Mutat.201839101355135910.1002/humu.23595 30014610
    [Google Scholar]
  51. KrenkeK. SzczałubaK. BieleckaT. FARSA mutations mimic phenylalanyl-tRNA synthetase deficiency caused by FARSB defects.Clin. Genet.201996546847210.1111/cge.13614 31355908
    [Google Scholar]
  52. AntonellisA. OprescuS.N. GriffinL.B. HeiderA. AmalfitanoA. InnisJ.W. Compound heterozygosity for loss-of-function FARSB variants in a patient with classic features of recessive aminoacyl-tRNA synthetase-related disease.Hum. Mutat.201839683484010.1002/humu.23424 29573043
    [Google Scholar]
  53. WangY. WangG. HuS. FARSB facilitates hepatocellular carcinoma progression by activating the mTORC1 signaling pathway.Int. J. Mol. Sci.202324231670910.3390/ijms242316709 38069034
    [Google Scholar]
  54. ZhangY. XuH. PiS. TanH. HuangB. ChenY. The prognostic and immunological role of FKBP1A in an integrated muti-omics cancers analysis, especially lung cancer.J. Cancer Res. Clin. Oncol.202314918165891660810.1007/s00432‑023‑05362‑1 37715833
    [Google Scholar]
  55. SabbahD.A. HajjoR. SweidanK. Review on Epidermal Growth Factor Receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors.Curr. Top. Med. Chem.2020201081583410.2174/1568026620666200303123102 32124699
    [Google Scholar]
  56. Rude VoldborgB. DamstrupL. Spang-ThomsenM. Skovgaard PoulsenH. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials.Ann. Oncol.19978121197120610.1023/A:1008209720526 9496384
    [Google Scholar]
  57. TalukdarS. EmdadL. DasS.K. FisherP.B. EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells.Adv. Cancer Res.202014716118810.1016/bs.acr.2020.04.003 32593400
    [Google Scholar]
  58. ZhouJ. TuD. PengR. RNF173 suppresses RAF/MEK/ERK signaling to regulate invasion and metastasis via GRB2 ubiquitination in hepatocellular carcinoma.Cell Commun. Signal.202321122410.1186/s12964‑023‑01241‑x 37626338
    [Google Scholar]
  59. IjazM. WangF. ShahbazM. JiangW. FathyA.H. NesaE.U. The role of Grb2 in cancer and peptides as Grb2 antagonists.Protein Pept. Lett.2018241210841095 29173143
    [Google Scholar]
  60. TariA. Lopez-BeresteinG. GRB2: A pivotal protein in signal transduction.Semin. Oncol.2001285Suppl. 1614214710.1016/S0093‑7754(01)90291‑X 11706405
    [Google Scholar]
  61. WangD. LiuG. MengY. ChenH. YeZ. JingJ. The configuration of GRB2 in protein interaction and signal transduction.Biomolecules202414325910.3390/biom14030259 38540680
    [Google Scholar]
  62. LinC.C. WieteskaL. SuenK.M. KalverdaA.P. AhmedZ. LadburyJ.E. Grb2 binding induces phosphorylation-independent activation of Shp2.Commun. Biol.20214143710.1038/s42003‑021‑01969‑7 33795832
    [Google Scholar]
  63. WuX. WangH. LianY. GTSE1 promotes cell migration and invasion by regulating EMT in hepatocellular carcinoma and is associated with poor prognosis.Sci. Rep.201771512910.1038/s41598‑017‑05311‑2 28698581
    [Google Scholar]
  64. XieH.J. NohJ.H. KimJ.K. HDAC1 inactivation induces mitotic defect and caspase-independent autophagic cell death in liver cancer.PLoS One201274e3426510.1371/journal.pone.0034265 22496786
    [Google Scholar]
  65. SunB. ZhongF.J. XuC. Programmed cell death 10 promotes metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma via PP2Ac-mediated YAP activation.Cell Death Dis.202112984910.1038/s41419‑021‑04139‑z 34521817
    [Google Scholar]
  66. SauzeauV. BeignetJ. VergotenG. BaillyC. Overexpressed or hyperactivated Rac1 as a target to treat hepatocellular carcinoma.Pharmacol. Res.202217910622010.1016/j.phrs.2022.106220 35405309
    [Google Scholar]
  67. LiuJ. ZhaoK. WuS. The dual role of PDCD10 in cancers: A promising therapeutic target.Cancers20221423598610.3390/cancers14235986 36497468
    [Google Scholar]
  68. XuK. FeiW. HuoZ. PDCD10 promotes proliferation, migration, and invasion of osteosarcoma by inhibiting apoptosis and activating EMT pathway.Cancer Med.20231221673168410.1002/cam4.5025 35848121
    [Google Scholar]
  69. PengX. ZhuJ. LiuS. Signature construction and molecular subtype identification based on cuproptosis-related genes to predict the prognosis and immune activity of patients with hepatocellular carcinoma.Front. Immunol.20221399079010.3389/fimmu.2022.990790 36248822
    [Google Scholar]
  70. TangB. ZhuJ. ZhaoZ. Diagnosis and prognosis models for hepatocellular carcinoma patient’s management based on tumor mutation burden.J. Adv. Res.20213315316510.1016/j.jare.2021.01.018 34603786
    [Google Scholar]
  71. ZhouH. SongT. Conversion therapy and maintenance therapy for primary hepatocellular carcinoma.Biosci. Trends202115315516010.5582/bst.2021.01091 34039818
    [Google Scholar]
  72. DemirT. LeeS.S. KasebA.O. Systemic therapy of liver cancer.Adv. Cancer Res.202114925729410.1016/bs.acr.2020.12.001 33579425
    [Google Scholar]
  73. WangJ. GongR. ZhaoC. LeiK. SunX. RenH. Human FOXP3 and tumour microenvironment.Immunology2023168224825510.1111/imm.13520 35689826
    [Google Scholar]
  74. KimC.H. FOXP3 and its role in the immune system.Adv. Exp. Med. Biol.2009665172910.1007/978‑1‑4419‑1599‑3_2 20429413
    [Google Scholar]
  75. SaitoT. NishikawaH. WadaH. Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers.Nat. Med.201622667968410.1038/nm.4086 27111280
    [Google Scholar]
  76. Ziółkowska-SuchanekI. ŻurawekM. FOXP3: A player of immunogenetic architecture in lung cancer.Genes202415449310.3390/genes15040493 38674427
    [Google Scholar]
  77. MailerR.K.W. Alternative splicing of FOXP3-virtue and vice.Front. Immunol.2018953010.3389/fimmu.2018.00530 29593749
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128326151240820105525
Loading
/content/journals/cpd/10.2174/0113816128326151240820105525
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): chemotherapy; FKBP1A; immune microenvironment; liver cancer; signaling pathway; TGF-β
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test