Skip to content
2000
Volume 30, Issue 37
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

The discovery and development of new phytomedicines can be greatly aided by plants because of their tremendous therapeutic benefits, efficiency, cost-effectiveness, lack of side effects, and cheaper therapies. In this regard, , generally known as oak, is used in folkloric medicine for treating and preventing various human disorders, including diabetes.

Aim

For this purpose, the present study aimed to evaluate crude methanolic extract and various fractions of for antihyperlipidemic and antihyperglycemic potential followed by the analysis of active compounds.

Methods

The hypoglycemic and hypolipidemic activity was evaluated in Swiss male Albino mice by administering an oral dose of 150-300 mg/kg of extracts in alloxan induced diabetic mice for 14 days.

Results

The results revealed that crude methanolic extract at a dose of 300 mg/kg exhibited a significant reduction in the blood glucose level (198.50 ± 1.99 mg/dl) at day 14 and the same treatment significantly increased the body weight (31.26 ± 0.27 g) at day 14 in comparison to the control group. Moreover, the biochemical parameters were investigated which presented an increase in high-density lipids (HDL) (30.33 ± 0.33 mg/dl), whereas low-density lipids (LDL) showed a significant decrease (105.66 ± 0.26 mg/dl). Additionally, triglyceride levels 104.83 ± 0.70 mg/dl, and total cholesterol 185.50 ± 0.76 mg/dl are significantly decreased. In serum biochemical analysis creatinine and hepatic enzyme markers, like serum glutamate pyruvate transaminase (32.00 ± 0.36 U/mg), serum glutamate oxaloacetate transaminase (34.33 ± 0.61 U/mg), and alkaline phosphatase (157.00 ± 0.73 U/mg), were significantly reduced by the crude methanolic extract at a dose of 300 mg/kg as compared to the control group. The antioxidant enzymes like Superoxide dismutase (4.57 ± 0.011), peroxidases dismutase (6.53 ± 0.014, and catalase (8.38 ± 0.014) at a dosage of 300 mg/kg of methanolic extract exhibited a significant increase. The histopathological study of the diabetic heart, liver, and pancreas showed substantial restoration of damaged tissues in the methanolic extract 150 and 300 mg/kg treated group, which supports the effectiveness of seeds. The gas chromatography-mass spectrometry analysis of methanolic extract identified 10 antidiabetic active compounds in the seeds, validating the antihyperglycemic activity. Thus, methanolic crude extract at the doses 150 and 300 mg/kg of showed significant antihyperlipidemic and antihyperglycemic activities, which validate the folkloric utilization of as a remedy in diabetes.

Conclusion

In conclusion, the 300 mg/kg methanolic extract of has notable hypoglycemic and hypolipidemic potential, supporting the plant's traditional medicinal usage in the treatment of diabetes and its complications. Further studies are needed for the purification, characterization, and structural clarification of bioactive compounds.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128319184240827070016
2024-10-01
2025-09-05
Loading full text...

Full text loading...

References

  1. PoznyakA. GrechkoA.V. PoggioP. MyasoedovaV.A. AlfieriV. OrekhovA.N. The diabetes mellitus-atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation.Int. J. Mol. Sci.2020215183510.3390/ijms2105183532155866
    [Google Scholar]
  2. ParhoferK.G. Interaction between glucose and lipid metabolism: More than diabetic dyslipidemia.Diabetes Metab. J.201539535336210.4093/dmj.2015.39.5.35326566492
    [Google Scholar]
  3. SarmaB. Survey of medicinal plants with potential antidiabetic activity used by villagers in lower Assam districts of North East, India.Int. J. Herb. Med.2020816
    [Google Scholar]
  4. VijayanM. JoseR. JoseS. AbrahamS. JoyJ. Study on quality of life assessment in diabetic retinopathy among patients with type 2 diabetic patients.Asian J. Pharm. Clin. Res.201710711611910.22159/ajpcr.2017.v10i7.18095
    [Google Scholar]
  5. HuC. SunL. XiaoL. HanY. FuX. XiongX. XuX. LiuY. YangS. LiuF. KanwarY.S. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy.Curr. Med. Chem.201522242858287010.2174/092986732266615062509540726119175
    [Google Scholar]
  6. AlamF. IslamM.A. KamalM.A. GanS.H. Updates on managing type 2 diabetes mellitus with natural products: Towards antidiabetic drug development.Curr. Med. Chem.201925395395543110.2174/092986732366616081322243627528060
    [Google Scholar]
  7. HuangY. HaoJ. TianD. WenY. ZhaoP. ChenH. LvY. YangX. Antidiabetic activity of a flavonoid-rich extract from Sophora davidii (Franch.) Skeels in KK-Ay mice via activation of AMP-activated protein kinase.Front. Pharmacol.2018976010.3389/fphar.2018.0076030061831
    [Google Scholar]
  8. BalaramanA.K. SinghJ. DashS. MaityT.K. Antihyperglycemic and hypolipidemic effects of Melothria maderaspatana and Coccinia indica in Streptozotocin induced diabetes in rats.Saudi Pharm. J.201018317317810.1016/j.jsps.2010.05.00923964177
    [Google Scholar]
  9. PuttaS. YarlaN.S. KumarKE LakkappaD.B. KamalM.A. ScottiL. ScottiM.T. AshrafG.M. RaoB.S.B. DS.K. ReddyG.V. TarasovV.V. ImandiS.B. AlievG. Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications.Curr. Med. Chem.201925395347537110.2174/092986732566617120610194529210634
    [Google Scholar]
  10. ArumugamG. ManjulaP. PaariN. A review: Anti diabetic medicinal plants used for diabetes mellitus.J. Acute Dis.20132319620010.1016/S2221‑6189(13)60126‑2
    [Google Scholar]
  11. KhurramM. HameedA. AminM.U. ManzoorW. UllahN. ChishtiK.A. KhayyamS.U. HassanM. QayumA. Evaluation of anticandidal potential of Quercus baloot Griff. using contact bioautography technique.Afr. J. Pharm. Pharmacol.20115121538154210.5897/AJPP11.386
    [Google Scholar]
  12. MalviyaN. JainS. MalviyaS. Antidiabetic potential of medicinal plants.Acta Pol. Pharm.201067211311820369787
    [Google Scholar]
  13. KhanMT KhanI KhanMI HussainZ AyubS KhanN Ethnobotanical study of wild flora in the remote areas of Nothern Pakistan.Wulfenia J.2016231031601844
    [Google Scholar]
  14. AzizM.A. KhanA.H. AdnanM. IzatullahI. Traditional uses of medicinal plants reported by the indigenous communities and local herbal practitioners of Bajaur Agency, Federally Administrated Tribal Areas, Pakistan.J. Ethnopharmacol.201719826828110.1016/j.jep.2017.01.02428108383
    [Google Scholar]
  15. Kumar M, Prakash S, Radha, et al. Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health.Antioxidants2021107106110.3390/antiox1007106134209152
    [Google Scholar]
  16. LeeY.M. GweonO.C. SeoY.J. ImJ. KangM.J. KimM.J. KimJ.I. Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus.Nutr. Res. Pract.20093215616110.4162/nrp.2009.3.2.15620016716
    [Google Scholar]
  17. RahmanS. JanG. JanF.G. RahimH.U. Phytochemical screening and antidiabetic, antihyperlipidemic, and antioxidant effects of Leptopus cordifolius Decne. in diabetic mice.Front. Pharmacol.20211264324210.3389/fphar.2021.64324233897432
    [Google Scholar]
  18. VadivelE. GopalakrishnanS. GC-MS analysis of some bioactive constituents of Mussaenda frondosa Linn.Int. J. Pharma Bio Sci.201121313320
    [Google Scholar]
  19. ZhangF. YuanJ. YangX. CuiY. ChenL. RanW. ShenQ. Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization.Plant Soil20133681-243344410.1007/s11104‑012‑1519‑6
    [Google Scholar]
  20. GermoushM.O. ElgebalyH.A. HassanS. KamelE.M. Bin-JumahM. MahmoudA.M. Consumption of terpenoids-rich Padina pavonia extract attenuates hyperglycemia, insulin resistance and oxidative stress, and upregulates PPARγ in a rat model of type 2 diabetes.Antioxidants2019912210.3390/antiox901002231887984
    [Google Scholar]
  21. SahreenS. KhanM.R. KhanR.A. AlkreathyH.M. Cardioprotective role of leaves extracts of Carissa opaca against CCl4 induced toxicity in rats.BMC Res. Notes20147122410.1186/1756‑0500‑7‑22424716654
    [Google Scholar]
  22. DavidG. GuihéryN. FerréN. What are the physical contents of hubbard and heisenberg hamiltonian interactions extracted from broken symmetry DFT calculations in magnetic compounds?J. Chem. Theory Comput.201713126253626510.1021/acs.jctc.7b0097629039936
    [Google Scholar]
  23. SharmaB. SalunkeR. BalomajumderC. DanielS. RoyP. Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice.J. Ethnopharmacol.2010127245746210.1016/j.jep.2009.10.01319837152
    [Google Scholar]
  24. GroverJ.K. YadavS. VatsV. Medicinal plants of India with anti-diabetic potential.J. Ethnopharmacol.20028118110010.1016/S0378‑8741(02)00059‑412020931
    [Google Scholar]
  25. HemaR. KumaravelS. AlagusundaramK. GC/MS determination of bioactive components of Murraya koenigii.J. Am. Sci.2011718083
    [Google Scholar]
  26. KumarP.P. KumaravelS. LalithaC. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo.Afr. J. Biochem. Res.201047191195
    [Google Scholar]
  27. MaruthupandianA. MohanV. Antidiabetic, antihyperlipidaemic and antioxidant activity of Pterocarpus marsupium Roxb. in alloxan induced diabetic rats.Int. J. Pharm. Tech. Res.20113316811687
    [Google Scholar]
  28. ZebA. UllahF. AyazM. AhmadS. SadiqA. Demonstration of biological activities of extracts from Isodon rugosus Wall. Ex Benth: Separation and identification of bioactive phytoconstituents by GC-MS analysis in the ethyl acetate extract.BMC Complement. Altern. Med.201717128410.1186/s12906‑017‑1798‑928558679
    [Google Scholar]
  29. MusaM. JanG. JanF.G. HamayunM. IrfanM. RaufA. AlsahammariA. AlharbiM. SuleriaH.A.R. AliN. Pharmacological activities and gas chromatography-mass spectrometry analysis for the identification of bioactive compounds from Justicia adhatoda L.Front. Pharmacol.20221392238810.3389/fphar.2022.92238836172192
    [Google Scholar]
  30. OECDOECD Guidelines for the Testing of Chemicals.1994Available from: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788
  31. GuidelineO.O. 425: Acute oral toxicity-up-and-down procedure.OECD Guidelines for the Testing of Chemicals200121216
    [Google Scholar]
  32. AsifM. SaleemM. YousafS. SaadullahM. ZafarM. KhanR.U. YuchiA. Antidiabetic activity of aqueous extract of Sigesbeckia orientalis (St. Paul’s Wort) in alloxan-induced diabetes model.Braz. J. Pharm. Sci.201955e1840810.1590/s2175‑97902019000218408
    [Google Scholar]
  33. SzkudelskiT. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas.Physiol. Res.200150653754611829314
    [Google Scholar]
  34. TzengT-F LiouS-S ChangCJ LiuI-M The ethanol extract of Lonicera japonica (Japanese honeysuckle) attenuates diabetic nephropathy by inhibiting p-38 MAPK activity in streptozotocin-induced diabetic rats.Planta Medica.20148002/03121129
    [Google Scholar]
  35. SornalakshmiV Tresina SorisP PaulpriyaK Packia LincyM MohanV Oral glucose tolerance test (OGTT) in normal control and glucose induced hyperglycemic rats with Hedyotis leschenaultiana DC.Group201619
    [Google Scholar]
  36. TafesseT.B. HymeteA. MekonnenY. TadesseM. Antidiabetic activity and phytochemical screening of extracts of the leaves of Ajuga remota Benth on alloxan-induced diabetic mice.BMC Complement. Altern. Med.201717124310.1186/s12906‑017‑1757‑528464813
    [Google Scholar]
  37. ParasuramanS. BalamuruganS. ChristapherP. PetchiR. YengW. SujithraJ. VijayaC. Evaluation of antidiabetic and antihyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaceae) and prediction of biological activity of its phytoconstituents.Pharmacognosy Res.20157215616510.4103/0974‑8490.15145725829789
    [Google Scholar]
  38. LiJ. WangY. GuoR. BaoB. WuW. Progress in bioactivities of phlorotannins from Sargassumi.Med. Res.201821201800012018000510.21127/yaoyimr20180001
    [Google Scholar]
  39. YonezawaT. KurataR. YoshidaK. MurayamaM. CuiX. HasegawaA. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics.Curr. Med. Chem.201320313855387110.2174/0929867311320999016823862620
    [Google Scholar]
  40. ShahM. Al-HousniS.K. KhanF. UllahS. Al-SabahiJ.N. KhanA. Al-YahyaeiB.E.M. Al-RuqaishiH. RehmanN.U. Al-HarrasiA. First report on comparative essential oil profile of stem and leaves of Blepharispermum hirtum Oliver and their antidiabetic and anticancer effects.Metabolites2022121090710.3390/metabo1210090736295808
    [Google Scholar]
  41. MozaffarianD. CaoH. KingI.B. LemaitreR.N. SongX. SiscovickD.S. HotamisligilG.S. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: A cohort study.Ann. Intern. Med.20101531279079910.7326/0003‑4819‑153‑12‑201012210‑0000521173413
    [Google Scholar]
  42. Colorado YoharSM ZhengJS SharpSJ ImamuraF KoulmanA SchulzeMB YeZ GriffinJ GuevaraM HuertaJM Association between plasma phospholipid saturated fatty acids and metabolic markers of lipid, hepatic, inflammation and glycaemic pathways in eight European countries: A cross-sectional analysis in the EPIC-InterAct study.BMC Med.2017171203
    [Google Scholar]
  43. MensinkR.P. Effects of saturated fatty acids on serum lipids and lipoproteins: A systematic review and regression analysis.2016Available from: https://iris.who.int/bitstream/handle/10665/246104/9789241565349-eng.pdf
  44. ZhuL. XueF. CuiY. LiuS. LiG. LiJ. GuanB. ZengH. BianW. YangC. ZhaoC. miR-155-5p and miR-760 mediate radiation therapy suppressed malignancy of non-small cell lung cancer cells.Biofactors201945339340010.1002/biof.150030901121
    [Google Scholar]
  45. RichterC Skulas-RayA Kris-EthertonP The role of diet in the prevention and treatment of cardiovascular disease. Nutrition in the Prevention and Treatment of Disease (Fourth Edition)Massachusetts, United StatesAcademic Press201710.1016/B978‑0‑12‑802928‑2.00027‑8
    [Google Scholar]
  46. MichaR. MozaffarianD. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: A fresh look at the evidence.Lipids2010451089390510.1007/s11745‑010‑3393‑420354806
    [Google Scholar]
  47. StanelyP. PrinceM. MenonV.P. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats.J. Ethnopharmacol.200070191510.1016/S0378‑8741(99)00136‑110720784
    [Google Scholar]
  48. BajajS. KhanA. Antioxidants and diabetes.Indian J. Endocrinol. Metab.2012168Suppl. 226710.4103/2230‑8210.10405723565396
    [Google Scholar]
  49. RamkumarK.M. VanithaP. UmaC. SuganyaN. BhakkiyalakshmiE. SujathaJ. Antidiabetic activity of alcoholic stem extract of Gymnema montanum in streptozotocin-induced diabetic rats.Food Chem. Toxicol.201149123390339410.1016/j.fct.2011.09.02721978819
    [Google Scholar]
  50. UmerS. TekeweA. KebedeN. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract.BMC Complement. Altern. Med.20131312110.1186/1472‑6882‑13‑2123351272
    [Google Scholar]
  51. HammesoW.W. EmiruY.K. Ayalew GetahunK. KahaliwW. Antidiabetic and antihyperlipidemic activities of the leaf latex extract of Aloe megalacantha Baker (Aloaceae) in streptozotocin-induced diabetic model.Evid. Based Complement. Alternat. Med.201920191826378631178917
    [Google Scholar]
  52. PatelD.K. PrasadS.K. KumarR. HemalathaS. An overview on antidiabetic medicinal plants having insulin mimetic property.Asian Pac. J. Trop. Biomed.20122432033010.1016/S2221‑1691(12)60032‑X23569923
    [Google Scholar]
  53. AlemaN.M. PeriasamyG. SibhatG.G. TekuluG.H. HibenM.G. Antidiabetic activity of extracts of Terminalia brownii Fresen. Stem bark in mice.J. Exp. Pharmacol.202012617110.2147/JEP.S24026632110120
    [Google Scholar]
  54. WuKK HuanY Streptozotocin-induced diabetic models in mice and rats.Curr Protoc Pharmacol.200847ph0547s4010.1002/0471141755.ph0547s40
    [Google Scholar]
  55. MestryS.N. DhodiJ.B. KumbharS.B. JuvekarA.R. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract.J. Tradit. Complement. Med.20177327328010.1016/j.jtcme.2016.06.00828725620
    [Google Scholar]
  56. PushparajP.N. LowH.K. ManikandanJ. TanB.K.H. TanC.H. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats.J. Ethnopharmacol.2007111243043410.1016/j.jep.2006.11.02817197141
    [Google Scholar]
  57. GaoD. LiQ. LiY. LiuZ. FanY. LiuZ. ZhaoH. LiJ. HanZ. Antidiabetic and antioxidant effects of oleanolic acid from Ligustrum lucidum Ait in alloxan-induced diabetic rats.Phytother. Res.20092391257126210.1002/ptr.260319274687
    [Google Scholar]
  58. PreethiK.C. KuttanR. Hepato and reno protective action of Calendula officinalis L. flower extract.Indian J. Exp. Biol.200947316316819405380
    [Google Scholar]
  59. PariL. LathaM. Effect of Cassia auriculata flowers on blood sugar levels, serum and tissue lipids in streptozotocin diabetic rats.Singapore Med. J.2002431261762112693765
    [Google Scholar]
  60. SharmaU.K. KumarR. GuptaA. GangulyR. SinghA.K. OjhaA.K. PandeyA.K. Ameliorating efficacy of eugenol against metanil yellow induced toxicity in Albino Wistar rats.Food Chem. Toxicol.2019126344010.1016/j.fct.2019.01.03230738991
    [Google Scholar]
  61. HalliwellB. Antioxidant defence mechanisms: From the beginning to the end (of the beginning).Free Radic. Res.199931426127210.1080/1071576990030084110517532
    [Google Scholar]
  62. OyedapoO AkinpeluB OrefuwaS Anti-inflammatory effect of Theobroma cacao root extract.J. Trop. Med. Plants200452161166
    [Google Scholar]
  63. SezikE. AslanM. YesiladaE. ItoS. Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques.Life Sci.200576111223123810.1016/j.lfs.2004.07.02415642593
    [Google Scholar]
  64. ChaitanyaR SandhyaS BanjiD VinodK MuraliS HRBC membrane stabilizing property of root, stem and leaf of Glochidion velutinum.Int. J. Res. Pharmaceut. Biomed.Sci.2011286334165
    [Google Scholar]
  65. GuptaA. SalehN.M. DasR. LandisR.F. BigdeliA. MotamedchabokiK. Rosa CamposA. PomeroyK. MahmoudiM. RotelloV.M. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection.Nano Futures20171101500410.1088/2399‑1984/aa69fb
    [Google Scholar]
  66. JaghthmiO. ZeidI. Hypoglycemic and hepatoprotective effect of Rhizophora mucronata and Avicennia marina against streptozotocin-induced diabetes in male rats.J. Adv. Vet. Anim. Res.20207117718510.5455/javar.2020.g40832219125
    [Google Scholar]
  67. KalitaH. BoruahD.C. DeoriM. HazarikaA. SarmaR. KumariS. KandimallaR. KotokyJ. DeviR. Antidiabetic and antilipidemic effect of Musa balbisiana root extract: A potent agent for glucose homeostasis in streptozotocin-induced diabetic rat.Front. Pharmacol.2016710210.3389/fphar.2016.0010227199747
    [Google Scholar]
  68. NahidS. MazumderK. RahmanZ. IslamS. RashidM.H. KerrP.G. Cardio- and hepato-protective potential of methanolic extract of Syzygium cumini (L.) Skeels seeds: A diabetic rat model study.Asian Pac. J. Trop. Biomed.20177212613310.1016/j.apjtb.2016.11.025
    [Google Scholar]
  69. GoyalR.K. BhadadaS.V. Effect of aqueous extract of Tephrosia purpurea on cardiovascular complications and cataract associated with streptozotocin-induced diabetes in rats.Indian J. Pharm. Sci.201577552252910.4103/0250‑474X.16903726798165
    [Google Scholar]
  70. RahmanA. RehmanG. ShahN. HamayunM. AliS. AliA. ShahS. KhanW. ShahM.I.A. AlrefaeiA.F. Biosynthesis and characterization of silver nanoparticles using Tribulus terrestris seeds: Revealed promising antidiabetic potentials.Molecules20232810420310.3390/molecules2810420337241943
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128319184240827070016
Loading
/content/journals/cpd/10.2174/0113816128319184240827070016
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test