Skip to content
2000
Volume 32, Issue 4
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Skin cancer is broadly classified into two categories ., non-melanoma skin cancer (NMSC) and malignant melanoma (MM), with MM having a greater fatality rate than NMSC. A large number of treatment strategies currently exist for these skin cancer types, ranging from monotherapies to complex multifaceted synergistic interventions including dual therapies, trimodality therapy, and multicomponent combinations therapy. These combinatorial cancer treatments have delivered more favorable results when compared with monotherapies, and although combination treatments increase the cost of treatment, these regimens have lower side effect profiles, decreased resistance, high efficacy and an improved long-term response. Synergistic combination treatments for skin cancer are often complex, wide-ranging and encompass diverse platforms with various mechanisms of action. An understanding of the physiological potential, as well the efficacy of such treatments, is therefore vital to ensure patients receive the best possible treatment. This review therefore focuses on the current advancements and existing non-surgical combinative drug delivery methods utilized for treating skin cancer. It encompasses the diverse pharmaceutical delivery systems, clinical outcomes, and oncology strategies employed and aims to highlight the role of non-surgical combination therapies in enhancing patient compliance, reducing treatment durations, and improving overall survival rates while addressing relapses and metastasis. The promising outlook of the research being conducted in this field has also been provided, as well as the barriers to the effective treatment of this complex condition.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128298264240530061039
2024-06-20
2026-01-31
Loading full text...

Full text loading...

References

  1. HyeraciM. PapanikolauE.S. GrimaldiM. RicciF. PallottaS. MonettaR. MinafòY.A. Di LellaG. GaldoG. AbeniD. FaniaL. DellambraE. Systemic photoprotection in melanoma and non-melanoma skin cancer.Biomolecules2023137106710.3390/biom1307106737509103
    [Google Scholar]
  2. SabirF. BaraniM. RahdarA. BilalM. NadeemM. How to face skin cancer with nanomaterials: A review.Biointerface Res. Appl. Chem.202111119311195510.33263/BRIAC114.1193111955
    [Google Scholar]
  3. KrishnanV. MitragotriS. Nanoparticles for topical drug delivery: Potential for skin cancer treatment.Adv. Drug Deliv. Rev.20201538710810.1016/j.addr.2020.05.01132497707
    [Google Scholar]
  4. KimJ.Y. DaoH. Physiology, Integument.StatPearls.StatPearls Publishing2021
    [Google Scholar]
  5. CivesM. MannavolaF. LospallutiL. SergiM.C. CazzatoG. FiloniE. CavalloF. GiudiceG. StucciL.S. PortaC. TucciM. Non-melanoma skin cancers: Biological and clinical features.Int. J. Mol. Sci.20202115539410.3390/ijms2115539432751327
    [Google Scholar]
  6. CullenJ.K. SimmonsJ.L. ParsonsP.G. BoyleG.M. Topical treatments for skin cancer.Adv. Drug Deliv. Rev.2020153546410.1016/j.addr.2019.11.00231705912
    [Google Scholar]
  7. LosquadroW.D. Anatomy of the skin and the pathogenesis of nonmelanoma skin cancer.Facial Plast. Surg. Clin. North Am.201725328328910.1016/j.fsc.2017.03.00128676156
    [Google Scholar]
  8. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  9. Radiation: Ultraviolet (UV) radiation and skin cancer.2017Available from: https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)-radiation-and-skin-cancer
  10. SuozziK. TurbanJ. GirardiM. Cutaneous photoprotection: A review of the current status and evolving strategies.Yale J. Biol. Med.2020931556732226337
    [Google Scholar]
  11. MohaniaD. ChandelS. KumarP. Ultraviolet Radiations: Skin Defense-Damage Mechanism.Ultraviolet Light in Human Health, Diseases and Environment. AhmadS.I. ChamSpringer International Publishing2017718710.1007/978‑3‑319‑56017‑5_7
    [Google Scholar]
  12. HristovA.C. TejasviT. A WilcoxR. Cutaneous T-cell lymphomas: 2021 update on diagnosis, risk-stratification, and management.Am. J. Hematol.202196101313132810.1002/ajh.2629934297414
    [Google Scholar]
  13. IqbalJ. AbbasiB.A. AhmadR. BatoolR. MahmoodT. AliB. KhalilA.T. KanwalS. Afzal ShahS. AlamM.M. BashirS. BadshahH. MunirA. Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives.Biomed. Pharmacother.20191091381139310.1016/j.biopha.2018.10.10730551389
    [Google Scholar]
  14. DidonaD. PaolinoG. BottoniU. CantisaniC. Non melanoma skin cancer pathogenesis overview.Biomedicines201861610.3390/biomedicines601000629301290
    [Google Scholar]
  15. CameronM.C. LeeE. HiblerB.P. BarkerC.A. MoriS. CordovaM. NehalK.S. RossiA.M. Basal cell carcinoma.J. Am. Acad. Dermatol.201980230331710.1016/j.jaad.2018.03.06029782900
    [Google Scholar]
  16. KabirS. SchmultsC.D. RuizE.S. A review of cutaneous squamous cell carcinoma epidemiology, diagnosis, and management.Int. J. Cancer Manag.20181111110.5812/ijcm.60846
    [Google Scholar]
  17. GreenA.C. OlsenC.M. Cutaneous squamous cell carcinoma: An epidemiological review.Br. J. Dermatol.2017177237338110.1111/bjd.1532428211039
    [Google Scholar]
  18. DominguesB. LopesJ. SoaresP. PópuloH. Melanoma treatment in review.ImmunoTargets Ther.20187354910.2147/ITT.S13484229922629
    [Google Scholar]
  19. GattiA. StincoG. TrevisiniS. di MeoN. SignorettoD. LeonardoE. BoninS. TrevisanG. Electrochemotherapy as a novel treatment for primary cutaneous marginal zone B-cell lymphomas.Dermatol. Ther.201427424424710.1111/dth.1212824754311
    [Google Scholar]
  20. AustinE. MamalisA. HoD. JagdeoJ. Laser and light-based therapy for cutaneous and soft-tissue metastases of malignant melanoma: A systematic review.Arch. Dermatol. Res.2017309422924210.1007/s00403‑017‑1720‑928314913
    [Google Scholar]
  21. GualdiG. MonariP. ApallaZ. LallasA. Surgical treatment of basal cell carcinoma and squamous cell carcinoma.G. Ital. Dermatol. Venereol.2015150443544726140396
    [Google Scholar]
  22. StephenZ.R. ZhangM. Recent progress in the synergistic combination of nanoparticle-mediated hyperthermia and immunotherapy for treatment of cancer.Adv. Healthc. Mater.2021102200141510.1002/adhm.20200141533236511
    [Google Scholar]
  23. BieniaA. Wiecheć-CudakO. MurzynA.A. Krzykawska-SerdaM. Photodynamic therapy and hyperthermia in combination treatment-neglected forces in the fight against cancer.Pharmaceutics2021138114710.3390/pharmaceutics1308114734452108
    [Google Scholar]
  24. MokhtariR.B. HomayouniT.S. BaluchN. MorgatskayaE. KumarS. DasB. YegerH. Combination therapy in combating cancer.Oncotarget2017823380223804310.18632/oncotarget.1672328410237
    [Google Scholar]
  25. VirzìA.R. GentileA. BenvenutiS. ComoglioP.M. Reviving oncogenic addiction to MET bypassed by BRAF (G469A) mutation.Proc. Natl. Acad. Sci.201811540100581006310.1073/pnas.172114711530224486
    [Google Scholar]
  26. GayvertK.M. AlyO. PlattJ. BosenbergM.W. SternD.F. ElementoO. A computational approach for identifying synergistic drug combinations.PLOS Comput. Biol.2017131e100530810.1371/journal.pcbi.100530828085880
    [Google Scholar]
  27. IbrahimR. MndlovuH. KumarP. AdeyemiS.A. ChoonaraY.E. Cell secretome strategies for controlled drug delivery and wound-healing applications.Polymers20221414292910.3390/polym1414292935890705
    [Google Scholar]
  28. GorzelannyC. MessC. SchneiderS.W. HuckV. BrandnerJ.M. Skin barriers in dermal drug delivery: Which barriers have to be overcome and how can we measure them?Pharmaceutics202012768410.3390/pharmaceutics1207068432698388
    [Google Scholar]
  29. LeeA.Y. Molecular mechanism of epidermal barrier dysfunction as primary abnormalities.Int. J. Mol. Sci.2020214119410.3390/ijms2104119432054030
    [Google Scholar]
  30. ImranM. IqubalM.K. ImtiyazK. SaleemS. MittalS. RizviM.M.A. AliJ. BabootaS. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer.Int. J. Pharm.202058711970510.1016/j.ijpharm.2020.11970532738456
    [Google Scholar]
  31. PandeyM. ChoudhuryH. GorainB. TiongS.Q. WongG.Y.S. ChanK.X. TheyX. ChieuW.S. Site-specific vesicular drug delivery system for skin cancer: A novel approach for targeting.Gels20217421810.3390/gels704021834842689
    [Google Scholar]
  32. LiuQ. DasM. LiuY. HuangL. Targeted drug delivery to melanoma.Adv. Drug Deliv. Rev.201812720822110.1016/j.addr.2017.09.01628939379
    [Google Scholar]
  33. EstevaA. KuprelB. NovoaR.A. KoJ. SwetterS.M. BlauH.M. ThrunS. Dermatologist-level classification of skin cancer with deep neural networks.Nature2017542763911511810.1038/nature2105628117445
    [Google Scholar]
  34. KhanN.H. MirM. QianL. BalochM. Ali KhanM.F. RehmanA. NgowiE.E. WuD.D. JiX.Y. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures.J. Adv. Res.20223622324710.1016/j.jare.2021.06.01435127174
    [Google Scholar]
  35. GunaydinG. GedikM.E. AyanS. Photodynamic therapy for the treatment and diagnosis of cancer-A review of the current clinical status.Front Chem.2021968630310.3389/fchem.2021.68630334409014
    [Google Scholar]
  36. BeikJ. KhateriM. KhosraviZ. KamravaS.K. KooranifarS. GhaznaviH. Shakeri-ZadehA. Gold nanoparticles in combinatorial cancer therapy strategies.Coord. Chem. Rev.201938729932410.1016/j.ccr.2019.02.025
    [Google Scholar]
  37. LaoC.D. KhushalaniN.I. AngelesC. PetrellaT.M. Current state of adjuvant therapy for melanoma: Less is more, or more is better?Am. Soc. Clin. Oncol. Educ. Book2022424273874410.1200/EDBK_35115335658502
    [Google Scholar]
  38. MaN. JiangY.W. ZhangX. WuH. MyersJ.N. LiuP. JinH. GuN. HeN. WuF.G. ChenZ. Enhanced radiosensitization of gold nanospikes via hyperthermia in combined cancer radiation and photothermal therapy.ACS Appl. Mater. Interfaces2016842284802849410.1021/acsami.6b1013227689441
    [Google Scholar]
  39. FahradyanA. HowellAC. WolfswinkelEM. TsuhaM. ShethP. WongAK. Updates on the management of non-melanoma skin cancer (NMSC).Healthcare2017548210.3390/healthcare5040082.5746716
    [Google Scholar]
  40. WeichselbaumR.R. LiangH. DengL. FuY.X. Radiotherapy and immunotherapy: A beneficial liaison?Nat. Rev. Clin. Oncol.201714636537910.1038/nrclinonc.2016.21128094262
    [Google Scholar]
  41. PorcedduS.V. BresselM. PoulsenM.G. StoneleyA. VenessM.J. KennyL.M. WrattenC. CorryJ. CooperS. FogartyG.B. CollinsM. CollinsM.K. MacannA.M.J. MilrossC.G. PennimentM.G. LiuH.Y. KingM.T. PanizzaB.J. RischinD. Postoperative concurrent chemoradiotherapy versus postoperative radiotherapy in high- risk cutaneous squamous cell carcinoma of the head and neck: The randomized phase III TROG 05.01 trial.J. Clin. Oncol.201836131275128310.1200/JCO.2017.77.094129537906
    [Google Scholar]
  42. NottageM.K. LinC. HughesB.G.M. KennyL. SmithD.D. HoustonK. FrancesconiA. Prospective study of definitive chemoradiation in locally or regionally advanced squamous cell carcinoma of the skin.Head Neck201739467968310.1002/hed.2466228032670
    [Google Scholar]
  43. MaubecE. PetrowP. Scheer-SenyarichI. DuvillardP. LacroixL. GellyJ. CertainA. DuvalX. CrickxB. BuffardV. Basset-SeguinN. SaezP. Duval-ModesteA.B. AdamskiH. MansardS. GrangeF. DompmartinA. FaivreS. MentréF. AvrilM.F. Phase II study of cetuximab as first-line single-drug therapy in patients with unresectable squamous cell carcinoma of the skin.J. Clin. Oncol.201129253419342610.1200/JCO.2010.34.173521810686
    [Google Scholar]
  44. HerS. JaffrayD.A. AllenC. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements.Adv. Drug Deliv. Rev.20171098410110.1016/j.addr.2015.12.01226712711
    [Google Scholar]
  45. NagasakaM. ZakiM. KimH. RazaS.N. YooG. LinH. SukariA. PD1/PD-L1 inhibition as a potential radiosensitizer in head and neck squamous cell carcinoma: A case report.J. Immunother. Cancer2016418310.1186/s40425‑016‑0187‑027895920
    [Google Scholar]
  46. HaymakerC.L. KimD. UemuraM. VenceL.M. PhillipA. McQuailN. BrownP.D. FernandezI. HudgensC.W. CreasyC. HwuW.J. SharmaP. TetzlaffM.T. AllisonJ.P. HwuP. BernatchezC. DiabA. Metastatic melanoma patient had a complete response with clonal expansion after whole brain radiation and PD-1 blockade.Cancer Immunol. Res.20175210010510.1158/2326‑6066.CIR‑16‑022328062513
    [Google Scholar]
  47. WangY. DengW. LiN. NeriS. SharmaA. JiangW. LinS.H. Combining immunotherapy and radiotherapy for cancer treatment: Current challenges and future directions.Front. Pharmacol.2018918510.3389/fphar.2018.0018529556198
    [Google Scholar]
  48. SpyratouE. MakropoulouM. EfstathopoulosE. GeorgakilasA. SihverL. Recent advances in cancer therapy based on dual mode gold nanoparticles.Cancers201791217310.3390/cancers912017329257070
    [Google Scholar]
  49. TagliaferriL. LancellottaV. FiondaB. MangoniM. CasàC. Di StefaniA. PagliaraM.M. D’AvieroA. SchinzariG. ChiesaS. MazzarellaC. ManfridaS. CollocaG.F. MarazziF. MorgantiA.G. BlasiM.A. PerisK. TortoraG. ValentiniV. Immunotherapy and radiotherapy in melanoma: A multidisciplinary comprehensive review.Hum. Vaccin. Immunother.2022183190382710.1080/21645515.2021.190382733847208
    [Google Scholar]
  50. GonzalezR.J. KudchadkarR. RaoN.G. SondakV.K. Adjuvant immunotherapy and radiation in the management of high-risk resected melanoma.Ochsner J.201010210811621603365
    [Google Scholar]
  51. DaneshvarF. SalehiF. KarimiM. VaisR.D. Mosleh-ShiraziM.A. SattarahmadyN. Combined X-ray radiotherapy and laser photothermal therapy of melanoma cancer cells using dual-sensitization of platinum nanoparticles.J. Photochem. Photobiol. B202020311173710.1016/j.jphotobiol.2019.11173731862636
    [Google Scholar]
  52. DattaN.R. PuricE. KlingbielD. GomezS. BodisS. Hyperthermia and radiation therapy in locoregional recurrent breast cancers: A systematic review and meta-analysis.Int. J. Radiat. Oncol. Biol. Phys.20169451073108710.1016/j.ijrobp.2015.12.36126899950
    [Google Scholar]
  53. GavilánH. AvugaddaS.K. Fernández-CabadaT. SoniN. CassaniM. MaiB.T. ChantrellR. PellegrinoT. Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer.Chem. Soc. Rev.20215020116141166710.1039/D1CS00427A34661212
    [Google Scholar]
  54. BaronzioG. ParmarG. BalleriniM. SzaszA. BaronzioM. CassuttiV. A brief overview of hyperthermia in cancer treatment.J. Interv. Oncol.201431210.4172/2329‑6771.1000115
    [Google Scholar]
  55. KimJ.H. HahnE.W. AhmedS.A. Combination hyperthermia and radiation therapy for malignant melanoma.Cancer198250347848210.1002/1097‑0142(19820801)50:3<478::AID‑CNCR2820500316>3.0.CO;2‑67093890
    [Google Scholar]
  56. DattaN.R. OrdóñezS.G. GaiplU.S. PaulidesM.M. CrezeeH. GellermannJ. MarderD. PuricE. BodisS. Local hyperthermia combined with radiotherapy and/or chemotherapy: Recent advances and promises for the future.Cancer Treat. Rev.201541974275310.1016/j.ctrv.2015.05.00926051911
    [Google Scholar]
  57. VujaskovicZ. PoulsonJ.M. GaskinA.A. ThrallD.E. PageR.L. CharlesH.C. MacFallJ.R. BrizelD.M. MeyerR.E. PrescottD.M. SamulskiT.V. DewhirstM.W. Temperature-dependent changes in physiologic parameters of spontaneous canine soft tissue sarcomas after combined radiotherapy and hyperthermia treatment.Int. J. Radiat. Oncol. Biol. Phys.200046117918510.1016/S0360‑3016(99)00362‑410656391
    [Google Scholar]
  58. ChengY. WengS. YuL. ZhuN. YangM. YuanY. The role of hyperthermia in the multidisciplinary treatment of malignant tumors.Integr. Cancer Ther.201918153473541987634510.1177/153473541987634531522574
    [Google Scholar]
  59. WilsonM.A. SchuchterL.M. Chemotherapy for melanoma.Cancer Treat Res.201616720922910.1007/978‑3‑319‑22539‑5_8
    [Google Scholar]
  60. YuN. LiJ. WangZ. YangS. LiuZ. WangY. ZhuM. WangD. ChenZ. Blue Te nanoneedles with strong NIR photothermal and laser-enhanced anticancer effects as “all-in-one” nanoagents for synergistic thermo-chemotherapy of tumors.Adv. Healthc. Mater.2018721180064310.1002/adhm.20180064330160820
    [Google Scholar]
  61. Krzykawska-SerdaM. DąbrowskiJ.M. ArnautL.G. SzczygiełM. UrbańskaK. StochelG. ElasM. The role of strong hypoxia in tumors after treatment in the outcome of bacteriochlorin-based photodynamic therapy.Free Radic. Biol. Med.20147323925110.1016/j.freeradbiomed.2014.05.00324835769
    [Google Scholar]
  62. SongJ. YangX. YangZ. LinL. LiuY. ZhouZ. ShenZ. YuG. DaiY. JacobsonO. MunasingheJ. YungB. TengG.J. ChenX. Rational design of branched nanoporous gold nanoshells with enhanced physico-optical properties for optical imaging and cancer therapy.ACS Nano20171166102611310.1021/acsnano.7b0204828605594
    [Google Scholar]
  63. YuQ. HanY. WangX. QinC. ZhaiD. YiZ. ChangJ. XiaoY. WuC. Copper silicate hollow microspheres-incorporated scaffolds for chemo-photothermal therapy of melanoma and tissue healing.ACS Nano20181232695270710.1021/acsnano.7b0892829518321
    [Google Scholar]
  64. MengZ. WeiF. WangR. XiaM. ChenZ. WangH. ZhuM. NIR-laser-switched in vivo smart nanocapsules for synergic photothermal and chemotherapy of tumors.Adv. Mater.201628224525310.1002/adma.20150266926551334
    [Google Scholar]
  65. WuJ. TangC. YinC. Co-delivery of doxorubicin and interleukin-2 via chitosan based nanoparticles for enhanced antitumor efficacy.Acta Biomater.201747819010.1016/j.actbio.2016.10.01227729232
    [Google Scholar]
  66. ZouM.Z. LiuW.L. LiC.X. ZhengD.W. ZengJ.Y. GaoF. YeJ.J. ZhangX.Z. A multifunctional biomimetic nanoplatform for relieving hypoxia to enhance chemotherapy and inhibit the PD-1/PD-L1 axis.Small20181428180112010.1002/smll.20180112029882235
    [Google Scholar]
  67. van der MostR.G. RobinsonB.W. LakeR.A. Combining immunotherapy with chemotherapy to treat cancer.Discov. Med.20095272657020704886
    [Google Scholar]
  68. RosenbergS.A. RestifoN.P. Adoptive cell transfer as personalized immunotherapy for human cancer.Science20153486230626810.1126/science.aaa496725838374
    [Google Scholar]
  69. GoffS.L. DudleyM.E. CitrinD.E. SomervilleR.P. WunderlichJ.R. DanforthD.N. ZlottD.A. YangJ.C. SherryR.M. KammulaU.S. KlebanoffC.A. HughesM.S. RestifoN.P. LanghanM.M. SheltonT.E. LuL. KwongM.L.M. IlyasS. KlemenN.D. PayabyabE.C. MortonK.E. ToomeyM.A. SteinbergS.M. WhiteD.E. RosenbergS.A. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma.J. Clin. Oncol.201634202389239710.1200/JCO.2016.66.722027217459
    [Google Scholar]
  70. LuoQ. ZhangL. LuoC. JiangM. Emerging strategies in cancer therapy combining chemotherapy with immunotherapy.Cancer Lett.201945419120310.1016/j.canlet.2019.04.01730998963
    [Google Scholar]
  71. LukeJ.J. SchwartzG.K. Chemotherapy in the management of advanced cutaneous malignant melanoma.Clin. Dermatol.201331329029710.1016/j.clindermatol.2012.08.01623608448
    [Google Scholar]
  72. NikolaouM. NikolaouG. DigkliaA. PontasC. TsoukalasN. KyrgiasG. ToliaM. Immunotherapy of cancer: Developments and reference points, an unorthodox approach.Integr. Cancer Ther.201918153473541982709010.1177/153473541982709030791740
    [Google Scholar]
  73. ChangD. LimM. GoosJ.A.C.M. QiaoR. NgY.Y. MansfeldF.M. JacksonM. DavisT.P. KavallarisM. Biologically targeted magnetic hyperthermia: Potential and limitations.Front. Pharmacol.2018983110.3389/fphar.2018.0083130116191
    [Google Scholar]
  74. RajanA. SahuN.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy.J. Nanopart. Res.2020221131910.1007/s11051‑020‑05045‑9
    [Google Scholar]
  75. IsselsR.D. LindnerL.H. VerweijJ. WustP. ReichardtP. SchemB.C. Abdel-RahmanS. DaugaardS. SalatC. WendtnerC.M. VujaskovicZ. WessalowskiR. JauchK.W. DürrH.R. PlonerF. Baur-MelnykA. MansmannU. HiddemannW. BlayJ.Y. HohenbergerP. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft- tissue sarcoma: A randomised phase 3 multicentre study.Lancet Oncol.201011656157010.1016/S1470‑2045(10)70071‑120434400
    [Google Scholar]
  76. NinosuN. MelchersS. KappensteinM. BookenN. HansenI. BlanchardM. GuenovaE. AssafC. GoerdtS. NicolayJ.P. Mogamulizumab combined with extracorporeal photopheresis as a novel therapy in erythrodermic cutaneous t-cell lymphoma.Cancers202316114110.3390/cancers1601014138201568
    [Google Scholar]
  77. AlfredA. TaylorP.C. DignanF. El-GharianiK. GriffinJ. GenneryA.R. BonneyD. Das-GuptaE. LawsonS. MalladiR.K. DouglasK.W. MaherT. GuestJ. HartlettL. FisherA.J. ChildF. ScarisbrickJ.J. The role of extracorporeal photopheresis in the management of cutaneous T-cell lymphoma, graft-versus-host disease and organ transplant rejection: A consensus statement update from the UK Photopheresis Society.Br. J. Haematol.2017177228731010.1111/bjh.1453728220931
    [Google Scholar]
  78. DuvicM. HymesK. HealdP. BrenemanD. MartinA.G. MyskowskiP. CrowleyC. YocumR.C. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: Multinational phase II-III trial results.J. Clin. Oncol.20011992456247110.1200/JCO.2001.19.9.245611331325
    [Google Scholar]
  79. XiY. GeJ. WangM. ChenM. NiuW. ChengW. XueY. LinC. LeiB. Bioactive anti-inflammatory, antibacterial, antioxidative silicon-based nanofibrous dressing enables cutaneous tumor photothermo-chemo therapy and infection-induced wound healing.ACS Nano20201432904291610.1021/acsnano.9b0717332031782
    [Google Scholar]
  80. WangY. DuW. ZhangT. ZhuY. NiY. WangC. Sierra RayaF.M. ZouL. WangL. LiangG. A self-evaluating photothermal therapeutic nanoparticle.ACS Nano20201489585959310.1021/acsnano.9b1014432806081
    [Google Scholar]
  81. YanovskyR.L. BartensteinD.W. RogersG.S. IsakoffS.J. ChenS.T. Photodynamic therapy for solid tumors: A review of the literature.Photodermatol. Photoimmunol. Photomed.201935529530310.1111/phpp.1248931155747
    [Google Scholar]
  82. ZhangP. HanT. XiaH. DongL. ChenL. LeiL. Advances in photodynamic therapy based on nanotechnology and its application in skin cancer.Front. Oncol.20221283639710.3389/fonc.2022.83639735372087
    [Google Scholar]
  83. NaidooC. KrugerC.A. AbrahamseH. Photodynamic therapy for metastatic melanoma treatment: A review.Technol. Cancer Res. Treat.201817153303381879179510.1177/153303381879179530099929
    [Google Scholar]
  84. CaiJ. ZhengQ. HuangH. LiB. 5-aminolevulinic acid mediated photodynamic therapy inhibits survival activity and promotes apoptosis of A375 and A431 cells.Photodiagn. Photodyn. Ther.20182125726210.1016/j.pdpdt.2018.01.00429309850
    [Google Scholar]
  85. WangM. RaoJ. WangM. LiX. LiuK. NaylorM.F. NordquistR.E. ChenW.R. ZhouF. Cancer photo-immunotherapy: From bench to bedside.Theranostics20211152218223110.7150/thno.5305633500721
    [Google Scholar]
  86. ZhouF. YangJ. ZhangY. LiuM. LangM.L. LiM. ChenW.R. Local phototherapy synergizes with immunoadjuvant for treatment of pancreatic cancer through induced immunogenic tumor vaccine.Clin. Cancer Res.201824215335534610.1158/1078‑0432.CCR‑18‑112630068705
    [Google Scholar]
  87. QiS. LuL. ZhouF. ChenY. XuM. ChenL. YuX. ChenW.R. ZhangZ. Neutrophil infiltration and whole-cell vaccine elicited by N-dihydrogalactochitosan combined with NIR phototherapy to enhance antitumor immune response and T cell immune memory.Theranostics20201041814183210.7150/thno.3851532042338
    [Google Scholar]
  88. RelvasC.M. SantosS.G. OliveiraM.J. MagalhãesF.D. PintoA.M. Nanomaterials for skin cancer photoimmunotherapy.Biomedicines2023115129210.3390/biomedicines1105129237238966
    [Google Scholar]
  89. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.10395938228257
    [Google Scholar]
  90. PatilM. HussainA. AltamimiMA. An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer.Adv. Cancer Biol. Metastasis.2023710010310.1016/j.adcanc.2023.100103
    [Google Scholar]
  91. LeQ.V. KimD. LeeJ. ShimG. OhY.K. Photosensitizer-free phototherapy with peptide micelle nanoadjuvants for cancer vaccine against metastasis of melanoma.Adv. Ther.202148200028810.1002/adtp.202000288
    [Google Scholar]
  92. KatoT. WakiyamaH. FurusawaA. ChoykeP.L. KobayashiH. Near infrared photoimmunotherapy; A review of targets for cancer therapy.Cancers20211311253510.3390/cancers1311253534064074
    [Google Scholar]
  93. GaoD. GuoX. ZhangX. ChenS. WangY. ChenT. HuangG. GaoY. TianZ. YangZ. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment.Mater. Today Bio2020510003510.1016/j.mtbio.2019.10003532211603
    [Google Scholar]
  94. ChangM. HouZ. WangM. LiC. LinJ. Recent advances in hyperthermia therapy-based synergistic immunotherapy.Adv. Mater.2021334200478810.1002/adma.20200478833289219
    [Google Scholar]
  95. RileyR.S. DayE.S. Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201794e144910.1002/wnan.144928160445
    [Google Scholar]
  96. MoyA.J. TunnellJ.W. Combinatorial immunotherapy and nanoparticle mediated hyperthermia.Adv. Drug Deliv. Rev.201711417518310.1016/j.addr.2017.06.00828625829
    [Google Scholar]
  97. EspinosaA. Kolosnjaj-TabiJ. Abou-HassanA. Plan SangnierA. CurcioA. SilvaA.K.A. Di CoratoR. NeveuS. PellegrinoT. Liz-MarzánL.M. WilhelmC. Magnetic (hyper) thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo.Adv. Funct. Mater.20182837180366010.1002/adfm.201803660
    [Google Scholar]
  98. SuneetK. DeT. RangarajanA. JainS. Magnetic nanofibers based bandage for skin cancer treatment: A non-invasive hyperthermia therapy.Cancer Rep.202036e128110.1002/cnr2.128132881425
    [Google Scholar]
  99. DingB. ShaoS. YuC. TengB. WangM. ChengZ. WongK.L. MaP. LinJ. Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy.Adv. Mater.20183052180247910.1002/adma.20180247930387197
    [Google Scholar]
  100. KleefR. NagyR. BaierlA. BacherV. BojarH. McKeeD.L. MossR. ThoennissenN.H. SzászM. BakacsT. Low-dose ipilimumab plus nivolumab combined with IL-2 and hyperthermia in cancer patients with advanced disease: Exploratory findings of a case series of 131 stage IV cancers - a retrospective study of a single institution.Cancer Immunol. Immunother.20217051393140310.1007/s00262‑020‑02751‑033151369
    [Google Scholar]
  101. QiaoG. WangX. ZhouX. MorseMA. WuJ. WangS. Immune correlates of clinical benefit in a phase I study of hyperthermia with adoptive T cell immunotherapy in patients with solid tumors.Int. J. Hyperthermia.2019367482
    [Google Scholar]
  102. DavarD. DingF. SaulM. SanderC. TarhiniA.A. KirkwoodJ.M. TawbiH.A. High-dose interleukin-2 (HD IL-2) for advanced melanoma: A single center experience from the University of Pittsburgh Cancer Institute.J. Immunother. Cancer2017517410.1186/s40425‑017‑0279‑528923120
    [Google Scholar]
  103. KnightA. KarapetyanL. KirkwoodJ.M. Immunotherapy in melanoma: Recent advances and future directions.Cancers2023154110610.3390/cancers1504110636831449
    [Google Scholar]
  104. AiresD. AbhyankarS. Early intervention of extracorporeal photopheresis for advancing/progressing cutaneous T-cell lymphoma.Hematol. Oncol.202341580981610.1002/hon.322937974524
    [Google Scholar]
  105. TrautingerF. KnoblerR. WillemzeR. PerisK. StadlerR. LarocheL. D’IncanM. RankiA. PimpinelliN. Ortiz-RomeroP. DummerR. EstrachT. WhittakerS. EORTC consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome.Eur. J. Cancer20064281014103010.1016/j.ejca.2006.01.02516574401
    [Google Scholar]
  106. HristovA.C. TejasviT. WilcoxR.A. Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management.Am. J. Hematol.202398119320910.1002/ajh.2676036226409
    [Google Scholar]
  107. NanaA.B.A. MarimuthuT. KondiahP.P.D. ChoonaraY.E. Du ToitL.C. PillayV. Multifunctional magnetic nanowires: Design, fabrication, and future prospects as cancer therapeutics.Cancers20191112195610.3390/cancers1112195631817598
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128298264240530061039
Loading
/content/journals/cpd/10.2174/0113816128298264240530061039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test