Skip to content
2000
image of Hypoglycaemic, Hypolipidemic and Antioxidant Activities of Hibiscus cannabinus in Diabetes-induced Male Wistar Rat

Abstract

Introduction

Diabetes is a chronic metabolic disease that affects individuals of all ages. Therefore, there is an urgent need to develop novel therapeutic agents from natural sources. In this context, was selected for the present investigation. The study aimed to evaluate the hypoglycemic, hypolipidemic, and antioxidant activities of extract in a streptozotocin-induced diabetic model in Wistar rats.

Methods

An study was planned to evaluate the hypoglycaemic, hypolipidemic, and antioxidant effects activities of HCE. Thirty-six male Wistar rats were randomly divided into six groups, and diabetes was induced by a single acute intraperitoneal injection of STZ. Animals were treated orally with HCE at doses of 100, 200, and 400 mg/kg b.wt., or with Glibenclamide (5 mg/kg b.wt.), along with a normal control group. The rats were monitored for body weight, feed intake, blood glucose and insulin levels, lipid profile, and markers of lipid peroxidation and antioxidant activity.

Results

HCE showed a significant reduction in blood glucose levels, improved lipid profile, enhanced antioxidant enzyme activity, and decreased lipid peroxidation in diabetic rats in a dose-dependent manner compared with the control group. Notably, the 400 mg/kg b.wt. HCE group exhibited efficacy comparable to that of the Glibenclamide treatment group.

Discussion

HCE showed activity in streptozotocin-induced diabetic rats, indicating its potential as a natural therapeutic agent. Further investigation into its mechanisms and clinical applicability for managing diabetes-related complications is needed to support its pharmaceutical use.

Conclusion

HCE extract exhibited strong antidiabetic, lipid-lowering, and antioxidant activities in STZ-induced diabetic rats.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010378159251124093801
2026-01-28
2026-02-19
Loading full text...

Full text loading...

References

  1. Chan J.C. Ng M.C. Critchley J.A. Lee S.C. Cockram C.S. Diabetes mellitus: A special medical challenge from a Chinese perspective. Diabetes Res. Clin. Pract. 2001 54 1S S19 S27 10.1016/S0168‑8227(01)00305‑9 11580965
    [Google Scholar]
  2. Shaw J.E. Sicree R.A. Zimmet P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010 87 1 4 14 10.1016/j.diabres.2009.10.007 19896746
    [Google Scholar]
  3. Global disease databases. 2021 Available from: https://vizhub.healthdata.org/gbd-compare/
  4. Chakraborty U. Das H. Antidiabetic and antioxidant activities of Cinnamomum tamala leaf extracts in stz-treated diabetic rats. Global J Biotechnol. Biochem. 2010 i 1 12 18
    [Google Scholar]
  5. Chelghoum M. Khitri W. Bouzid S. Lakermi A. New trends in the use of medicinal plants by Algerian diabetic patients, considerations of herb-drug interactions. J. Ethnopharmacol. 2021 274 113984 10.1016/j.jep.2021.113984 33711438
    [Google Scholar]
  6. Abdel-Mageid A.D. Abou-Salem M.E.S. Salaam N.M.H.A. El-Garhy H.A.S. The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats. Phytomedicine 2018 43 126 134 10.1016/j.phymed.2018.04.039 29747745
    [Google Scholar]
  7. Issuriya A. Wetchakul P. Limsuwan S. Jiwpraditkul S. Jaisamut P. Kaewmanee T. Goon J.A. Sanpinit S. Anti-hyperglycemic and toxicological effects of a traditional polyherbal formulation, Athamathurot, used at Bantakhun hospital, Thailand. J. Agric. Food Res. 2025 19 101741 10.1016/j.jafr.2025.101741
    [Google Scholar]
  8. Phung P.T.K. Binh D.N.L. Thu N.T.A. Van Ha N. Huyen T.T. Hien K.M. Nhu M.H. Duc N.K. Minh Quan L. Optimization of extraction parameters and anti-hyperglycemic assessment of standardized extract from Santalum album L. leaves. Pharmacol. Res. Mod Chin Med. 2025 14 100577 10.1016/j.prmcm.2025.100577
    [Google Scholar]
  9. Smaniotto F.A. Dluzniewski L.T. Bortolazzo P.C. Monteiro C.S.A. Baranzelli J. da Silva D.T. Somacal S. Conterato G.M.M. Emanuelli T. In vitro assessment of antidiabetic, anti-obesogenic, and antioxidant potential of pulp and seed extracts from Eugenia involucrata fruits. Food Res. Int. 2025 202 115693 10.1016/j.foodres.2025.115693 39967152
    [Google Scholar]
  10. Nethengwe M. Kerebba N. Okaiyeto K. Opuwari C.S. Oguntibeju O.O. Phenolic compounds profile and hypoglycaemic, anti-inflammatory and antioxidant properties of aqueous leaf extract of Androstachys johnsonii Prain: In vitro study. S. Afr. J. Bot. 2025 180 668 679 10.1016/j.sajb.2025.03.047
    [Google Scholar]
  11. Mohmad Saberi S.E. Chua L.S. Evaluation of potential anti-inflammatory activities in crude, clean, and fractionated extracts of rosmarinic acid and eupatorin from Orthosiphon aristatus (Blume). Miq. Biocatal Agric. Biotechnol. 2025 65 103537 10.1016/j.bcab.2025.103537
    [Google Scholar]
  12. Diabetes Mellitus: Report of a Study Group Technical Report Series. World Health Organization: Geneva 1985
    [Google Scholar]
  13. Gogebakan A. Talas Z.S. Ozdemir I. Sahna E. Role of propolis on tyrosine hydroxylase activity and blood pressure in nitric oxide synthase-inhibited hypertensive rats. Clin. Exp. Hypertens. 2012 34 6 424 428 10.3109/10641963.2012.665542 22471835
    [Google Scholar]
  14. Ozdemir B. Gulhan M.F. Sahna E. Selamoglu Z. The investigation of antioxidant and anti-inflammatory potentials of apitherapeutic agents on heart tissues in nitric oxide synthase inhibited rats via Nω-nitro-L-arginine methyl ester. Clin. Exp. Hypertens. 2021 43 1 69 76 10.1080/10641963.2020.1806294 32799699
    [Google Scholar]
  15. Talas Z.S. Ozdemir I. Yilmaz I. Gok Y. Antioxidative effects of novel synthetic organoselenium compound in rat lung and kidney. Ecotoxicol. Environ. Saf. 2009 72 3 916 921 10.1016/j.ecoenv.2007.11.012 18222543
    [Google Scholar]
  16. Talas Z.S. Ozdemir I. Ates B. Gok Y. Yilmaz I. Modulating effects of selenium in adrenal medulla of rats exposed to 7,12-dimethylbenz[a]anthracene. Toxicol. Ind. Health 2013 29 3 286 292 10.1177/0748233711432575 22287620
    [Google Scholar]
  17. Talas Z.S. Ozdemir I. Gok Y. Ates B. Yilmaz I. Role of selenium compounds on tyrosine hydroxylase activity, adrenomedullin and total RNA levels in hearts of rats. Regul. Pept. 2010 159 1-3 137 141 10.1016/j.regpep.2009.08.009 19706312
    [Google Scholar]
  18. Salmas R.E. Gulhan M.F. Durdagi S. Sahna E. Abdullah H.I. Selamoglu Z. Effects of propolis, caffeic acid phenethyl ester, and pollen on renal injury in hypertensive rat: An experimental and theoretical approach. Cell Biochem. Funct. 2017 35 6 304 314 10.1002/cbf.3277 28833317
    [Google Scholar]
  19. Talas Z.S. Ozdemir I. Ciftci O. Cakir O. Gulhan M.F. Pasaoglu O.M. Role of propolis on biochemical parameters in kidney and heart tissues against l -NAME induced oxidative injury in rats. Clin. Exp. Hypertens. 2014 36 7 492 496 10.3109/10641963.2013.863322 24490594
    [Google Scholar]
  20. Ape E.C. Selamoglu Z. General approaches to the stem cell therapy in diabetes mellitus as innovative researches. J. Genet. Mutat 2018 1 1 4 5
    [Google Scholar]
  21. Misra M.K. Need for conservation of indigenous medicinal knowledge and the herbs. J. Hum. Ecol. 1999 10 5-6 403 406 10.1080/09709274.1999.11907519
    [Google Scholar]
  22. Mehrnia M. Akaberi M. Amiri M.S. Nadaf M. Emami S.A. Ethnopharmacological studies of medicinal plants in central Zagros, Lorestan Province, Iran. J. Ethnopharmacol. 2021 280 114080 10.1016/j.jep.2021.114080 33798662
    [Google Scholar]
  23. Adnan M. Oh K.K. Azad M.O.K. Shin M.H. Wang M.H. Cho D.H. Kenaf (Hibiscus cannabinus L.) leaves and seed as a potential source of the bioactive compounds: Effects of various extraction solvents on biological properties. Life 2020 10 10 223 10.3390/life10100223 32998223
    [Google Scholar]
  24. Jeffery T.D. Richardson M.L. A review of the effectiveness of hibiscus for treatment of metabolic syndrome. J. Ethnopharmacol. 2021 270 113762 10.1016/j.jep.2020.113762 33383111
    [Google Scholar]
  25. Kalaiyan G. Suresh S. Thambidurai S. Prabu K.M. Kumar S.K. Pugazhenthiran N. Kandasamy M. Green synthesis of hierarchical copper oxide microleaf bundles using Hibiscus cannabinus leaf extract for antibacterial application. J. Mol. Struct. 2020 1217 128379 10.1016/j.molstruc.2020.128379
    [Google Scholar]
  26. Sim Y.Y. Nyam K.L. Application of Hibiscus cannabinus L. (kenaf) leaves extract as skin whitening and anti-aging agents in natural cosmetic prototype. Ind. Crops Prod. 2021 167 113491 b. 10.1016/j.indcrop.2021.113491
    [Google Scholar]
  27. Shukri S.Z.M. Daud N.M.A.N. Bakar A.R.A. Arsad S.S. Zainudin M.A.M. Profiling of bioactive compounds and bioactivity of the kenaf (Hibiscus Cannabinus L.) leaf extract. Emerging Technologies for Future Sustainability. Singapore Springer 2023 415 427 10.1007/978‑981‑99‑1695‑5_35
    [Google Scholar]
  28. Sim Y.Y. Nyam K.L. Hibiscus cannabinus L. (kenaf) studies: Nutritional composition, phytochemistry, pharmacology, and potential applications. Food Chem. 2021 344 128582 10.1016/j.foodchem.2020.128582 33199120
    [Google Scholar]
  29. Birhanie Z.M. Xiao A. Yang D. Huang S. Zhang C. Zhao L. Liu L. Li J. Chen A. Tang H. Chang L. Pan G. Zhang C. Biswas A. Dey S. Li D. Deng Y. Polysaccharides, total phenolic, and flavonoid content from different kenaf (Hibiscus cannabinus L.) genotypes and their antioxidants and antibacterial properties. Plants 2021 10 9 1900 10.3390/plants10091900 34579432
    [Google Scholar]
  30. Vasudeva N. Sharma S.K. Biologically active compounds from the genus Hibiscus. Pharm. Biol. 2008 46 3 145 153 10.1080/13880200701575320
    [Google Scholar]
  31. Duan S. Kwon S.J. Jeong D.Y. Kim J.H. Park Y.R. Kim C.K. Kim J.H. Eom S.H. Antioxidant activities in Kenaf (Hibiscus cannabinus) shoots during growth stages and destination of chlorogenic acid and kaempferol glycosides. Antioxidants 2024 13 5 532 10.3390/antiox13050532 38790637
    [Google Scholar]
  32. Shinouchi R. Shibata K. Nagatsuka T. Hasumi K. Nobe K. Antioxidant and anti-inflammatory effects of SMTP-44D in a streptozotocin-induced diabetic neuropathy mouse model. J. Diabetes Complications 2025 39 7 109061 10.1016/j.jdiacomp.2025.109061 40318460
    [Google Scholar]
  33. Ghosh M.N. Fundamentals of Experimental Pharmacology. 2nd ed Kolkata, India Scientific Book Agency 1984
    [Google Scholar]
  34. Test, No. 407: Repeated dose 28-day oral toxicity study in rodents. 2008 Available from: https://www.oecd.org/en/publications/2008/10/test-no-407-repeated-dose-28-day-oral-toxicity-study-in-rodents_g1gh292f.html
  35. Sezik E. Aslan M. Yesilada E. Ito S. Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay- directed fractionation techniques. Life Sci. 2005 76 11 1223 1238 10.1016/j.lfs.2004.07.024 15642593
    [Google Scholar]
  36. Jang Y.N. Lee Y.J. Han Y.M. Kim H.M. Seo H.S. Jeong J.H. Park S.Y. Jung T.W. Fimasartan ameliorates deteriorations in glucose metabolism in a high glucose state by regulating skeletal muscle and liver cells. Yonsei Med. J. 2022 63 6 530 538 10.3349/ymj.2022.63.6.530 35619576
    [Google Scholar]
  37. Sales W.B. Silleno J.D. Junior Kroll C. Mastroeni S.S.B.S. Silva J.C. Mastroeni M.F. Influence of altered maternal lipid profile on the lipid profile of the newborn. Arch. Endocrinol. Metab. 2015 59 2 123 128 10.1590/2359‑3997000000024 25993674
    [Google Scholar]
  38. Dacie J.V. Lewis S.M. Practical Hematology. 5th ed Edinburgh, New York Churchill Livingstone 2005
    [Google Scholar]
  39. Omodanisi E. Aboua Y. Oguntibeju O. Assessment of the anti-hyperglycaemic, anti-inflammatory and antioxidant activities of the methanol extract of Moringa oleifera in diabetes-induced nephrotoxic male wistar rats. Molecules 2017 22 4 439 10.3390/molecules22040439 28333074
    [Google Scholar]
  40. Omaye S.T. David Turnbull J. Sauberlich H.E. Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol. 1979 62 3 11 10.1016/0076‑6879(79)62181‑X 440112
    [Google Scholar]
  41. Baker H. Frankel O. Angelis B. Feingold S. Plasma α-tocopherol in man at various time intervals after ingesting free or acetylated tocopherol. Nutr. Rep. Int. 1980 21 531 536
    [Google Scholar]
  42. Shahzad N. Alzahrani A.R. Aziz Ibrahim I.A. Shahid I. Alanazi I.M. Falemban A.H. Imam M.T. Mohsin N. Azlina M.F.N. Arulselvan P. Therapeutic strategy of biological macromolecules based natural bioactive compounds of diabetes mellitus and future perspectives: A systematic review. Heliyon 2024 10 2 e24207 10.1016/j.heliyon.2024.e24207 38298622
    [Google Scholar]
  43. Rai P.K. Rai N.K. Rai A.K. Watal G. Role of LIBS in nlmal analysis of Psidium guajaua responsible for glycemic potential. Instrum. Sci. Technol. 2007 35 5 507 522 10.1080/10739140701540230
    [Google Scholar]
  44. Gupta R. Bajpai K.G. Johri S. Saxena A.M. An overview of Indian novel traditional medicinal plants with anti-diabetic potentials. Afr. J. Tradit. Complement. Altern. Med. 2007 5 1 1 17 20162049
    [Google Scholar]
  45. Kesari A.N. Kesari S. Singh S.K. Gupta R.K. Watal G. Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals. J. Ethnopharmacol. 2007 112 2 305 311 10.1016/j.jep.2007.03.023 17467937
    [Google Scholar]
  46. Sunil C. Irudayaraj S.S. Duraipandiyan V. Alrashood S.T. Alharbi S.A. Ignacimuthu S. Friedelin exhibits antidiabetic effect in diabetic rats via modulation of glucose metabolism in liver and muscle. J. Ethnopharmacol. 2021 268 113659 10.1016/j.jep.2020.113659 33271243
    [Google Scholar]
  47. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008 51 2 216 226 10.1007/s00125‑007‑0886‑7 18087688
    [Google Scholar]
  48. Pwaniyibo S.F. Teru P.A. Samuel N.M. Jahng W.J. Anti-diabetic effects of Ficus Asperifolia in Streptozotocin-induced diabetic rats. J. Diabetes Metab. Disord. 2020 19 1 605 616 10.1007/s40200‑020‑00524‑1 32550213
    [Google Scholar]
  49. Kim M.J. Lee W.B. Park B.Y. Effect of morphologically transformed acellular dermal matrix on chronic diabetic wounds: An experimental study in a calvarial bone exposure diabetic rat model. J. Surg. Res. 2022 272 153 165 10.1016/j.jss.2021.11.009 34974331
    [Google Scholar]
  50. Argirion I. Weinstein S.J. Männistö S. Albanes D. Mondul A.M. Serum insulin, glucose, indices of insulin resistance, and risk of lung cancer. Cancer Epidemiol. Biomarkers Prev. 2017 26 10 1519 1524 10.1158/1055‑9965.EPI‑17‑0293 28698186
    [Google Scholar]
  51. Janero D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 1990 9 6 515 540 10.1016/0891‑5849(90)90131‑2 2079232
    [Google Scholar]
  52. Hosseini S. Nili-Ahmadabadi A. Nachvak S.M. Dastan D. Moradi S. Abdollahzad H. Mostafai R. Antihyperlipidemic and antioxidative properties of Pistacia atlantica subsp. Kurdica in streptozotocin-induced diabetic mice. Diabetes Metab. Syndr. Obes. 2020 13 1231 1236 10.2147/DMSO.S250417 32368115
    [Google Scholar]
  53. Patel D.K. Prasad S.K. Kumar R. Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012 2 4 320 330 10.1016/S2221‑1691(12)60032‑X 23569923
    [Google Scholar]
  54. Nkemzi A.Q. Okaiyeto K. Kerebba N. Rautenbach F. Oyenihi O. Ekpo O.E. Oguntibeju O.O. In vitro hypoglycemic, antioxidant, anti-inflammatory activities and phytochemical profiling of aqueous and ethanol extracts of Helichrysum cymosum. Phytomed Plus 2024 4 4 100639 10.1016/j.phyplu.2024.100639
    [Google Scholar]
  55. Mahboob M. Rahman M.F. Grover P. Serum lipid peroxidation and antioxidant enzyme levels in male and female diabetic patients. Singapore Med. J. 2005 46 7 322 324 15968442
    [Google Scholar]
  56. Kumar G.P.S. Arulselvan P. Kumar D.S. Subramanian S.P. Antidiabetic activity of fruits of Terminalia chebula on streptozotocin induced diabetic rats. J. Health Sci. 2006 52 3 283 291 10.1248/jhs.52.283
    [Google Scholar]
  57. Luo Y. Peng B. Wei W. Tian X. Wu Z. Antioxidant and anti-diabetic activities of polysaccharides from guava leaves. Molecules 2019 24 7 1343 10.3390/molecules24071343 30959759
    [Google Scholar]
  58. Rajendran V. Krishnegowda A. Nachiappan V. Antihyperlipidemic activity of Cassia auriculata flower extract in oleic acid induced hyperlipidemia in Saccharomyces cerevisiae. J. Food Sci. Technol. 2017 54 9 2965 2972 10.1007/s13197‑017‑2735‑0 28928537
    [Google Scholar]
  59. Patibandla C. Khan Z.I. MacGregor L. Campbell M.J. Patterson S. Costus pictus D. Don leaf extract stimulates GLP-1 secretion from GLUTag L-cells and has cytoprotective effects in BRIN-BD11 β-cells. J. Ethnopharmacol. 2020 260 112970 10.1016/j.jep.2020.112970 32422353
    [Google Scholar]
  60. Maritim A.C. Sanders R.A. Watkins J.B. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003 17 1 24 38 10.1002/jbt.10058 12616644
    [Google Scholar]
  61. Halilu E.M. Muhammad B. Phytochemical and antioxidant studies of Hibiscus Cannabinus seed oil. Phys. Sci. Rev. 2023 8 11 4201 4211 10.1515/psr‑2021‑0184
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010378159251124093801
Loading
/content/journals/cpb/10.2174/0113892010378159251124093801
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test