Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Alzheimer's disease (AD), the most common form of dementia, is a multifactorial neurological condition characterized by progressive loss of memory and learning, uncontrollable movement, difficulty processing visual images, and impairment of reasoning and/or judgment skills. Although the exact cause of AD is still unknown, recent evidence suggests that environmental, lifestyle, and genetic factors are common contributors to the disease's progression. Pathophysiological features of AD include amyloid beta (Aβ) accumulation, abnormal deposition of neuritic plaques and neurofibrile tangles, cholinergic dysfunction, neuroinflammation, and oxidative stress burden along with mitochondrial dysfunction. There are currently no pharmaceutical methods or medications that can stop the progression of a disease. More attention is now being paid to natural products, herbal medicines, and different bioactive phytoconstituents, particularly flavonoids, as alternative therapies and useful resources for finding new drug candidates for the treatment of AD-like symptoms. A dietary isoflavone, biochanin-A, which is isolated from the leaves and stems of L. (family: Leguminosae), possesses remarkable anti-inflammatory and antioxidant properties along with cognitive-enhancing effects. Biochanin-A exhibits notable neuroprotective effects by reducing Aβ deposition, decreasing apoptosis, and preventing the production of pro-inflammatory mediators, including TNF-α, IL-1β, and NO. Various preclinical reports explore the pharmacological role of biochanin-A against experimentally-induced AD and highlight that it can alter numerous signaling pathways, including Nrf2, NF-κB, JNK, MAPK, and Bcl-2/Bax. The present review article summarizes the numerous research studies that have evaluated the role of biochanin-A for dementia associated with AD. As part of a comprehensive program, biochanin-A has very exceptional potential to prevent and treat AD-related cognitive impairment. It is envisaged that these potential chemical moieties can be employed in the drug discovery process to identify efficacious and safe therapy for the treatments for AD-like manifestation.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010362795250223160707
2025-02-26
2025-09-02
Loading full text...

Full text loading...

References

  1. BreijyehZ. KaramanR. Comprehensive review on Alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules25245789 33302541
    [Google Scholar]
  2. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.13016 36918389
    [Google Scholar]
  3. RajmohanR. ReddyP.H. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons.J. Alzheimers Dis.201757497599910.3233/JAD‑160612 27567878
    [Google Scholar]
  4. ZádoriD. VeresG. SzalárdyL. KlivényiP. VécseiL. Alzheimer’s disease: Recent concepts on the relation of mitochondrial disturbances, excitotoxicity, neuroinflammation, and kynurenines.J. Alzheimers Dis.201862252354710.3233/JAD‑170929 29480191
    [Google Scholar]
  5. GongC.X. DaiC.L. LiuF. IqbalK. Multi-targets: An unconventional drug development strategy for Alzheimer’s disease.Front. Aging Neurosci.20221483764910.3389/fnagi.2022.837649 35222001
    [Google Scholar]
  6. KhanS. BarveK.H. KumarM.S. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease.Curr. Neuropharmacol.202018111106112510.2174/1570159X18666200528142429 32484110
    [Google Scholar]
  7. SeltzerB. Donepezil: A review.Expert Opin. Drug Metab. Toxicol.20051352753610.1517/17425255.1.3.527 16863459
    [Google Scholar]
  8. BarageS.H. SonawaneK.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease.Neuropeptides20155211810.1016/j.npep.2015.06.008 26149638
    [Google Scholar]
  9. EvinG. WeidemannA. Biogenesis and metabolism of Alzheimer’s disease Aβ amyloid peptides.Peptides20022371285129710.1016/S0196‑9781(02)00063‑3 12128085
    [Google Scholar]
  10. TrojanowskiJ.Q. MattsonM.P. Overview of protein aggregation in single, double, and triple neurodegenerative brain amyloidoses.Neuromolecular Med.200341-21610.1385/NMM:4:1‑2:1 14528048
    [Google Scholar]
  11. BuéeL. BussièreT. Buée-ScherrerV. DelacourteA. HofP.R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders11These authors contributed equally to this work.Brain Res. Brain Res. Rev.20003319513010.1016/S0165‑0173(00)00019‑9 10967355
    [Google Scholar]
  12. CorsiA. BombieriC. ValentiM.T. RomanelliM.G. Tau isoforms: Gaining insight into MAPT alternative splicing.Int. J. Mol. Sci.202223231538310.3390/ijms232315383 36499709
    [Google Scholar]
  13. AndreadisA. BrownW.M. KosikK.S. Structure and novel exons of the human tau gene.Biochemistry19923143106261063310.1021/bi00158a027
    [Google Scholar]
  14. MangalmurtiA. LukensJ.R. How neurons die in Alzheimer’s disease: Implications for neuroinflammation.Curr. Opin. Neurobiol.20227510257510.1016/j.conb.2022.102575 35691251
    [Google Scholar]
  15. SunE. MotolaniA. CamposL. LuT. The pivotal role of NF-kB in the pathogenesis and therapeutics of Alzheimer’s disease.Int. J. Mol. Sci.20222316897210.3390/ijms23168972 36012242
    [Google Scholar]
  16. SarfrazA. JaveedM. ShahM.A. HussainG. ShafiqN. SarfrazI. RiazA. SadiqaA. ZaraR. ZafarS. KanwalL. SarkerS.D. RasulA. BiochaninA. BiochaninA. A novel bioactive multifunctional compound from nature.Sci. Total Environ.202072213790710.1016/j.scitotenv.2020.137907 32208265
    [Google Scholar]
  17. RamachandranV. v, I.K.; hr, K.K.; Tiwari, R.; Tiwari, G. Biochanin-A: A bioactive natural product with versatile therapeutic perspectives.Curr. Drug Res. Rev.202214322523810.2174/2589977514666220509201804 35579127
    [Google Scholar]
  18. VlaisavljevicS. KaurinovicB. PopovicM. Djurendic-BreneselM. VasiljevicB. CvetkovicD. VasiljevicS. Trifolium pratense L. as a potential natural antioxidant.Molecules201419171372510.3390/molecules19010713 24402202
    [Google Scholar]
  19. HariniR. EzhumalaiM. PugalendiK.V. Antihyperglycemic effect of biochanin A, a soy isoflavone, on streptozotocin-diabetic rats.Eur. J. Pharmacol.20126761-3899410.1016/j.ejphar.2011.11.051 22178203
    [Google Scholar]
  20. ChukwumahY.C. WalkerL.T. VergheseM. OgutuS. Effect of frequency and duration of ultrasonication on the extraction efficiency of selected isoflavones and trans-resveratrol from peanuts (Arachis hypogaea).Ultrason. Sonochem.200916229329910.1016/j.ultsonch.2008.07.007 18849184
    [Google Scholar]
  21. MingX. DingM. ZhaiB. XiaoL. PiaoT. LiuM. Biochanin A inhibits lipopolysaccharide-induced inflammation in human umbilical vein endothelial cells.Life Sci.2015136364110.1016/j.lfs.2015.06.015 26141992
    [Google Scholar]
  22. MoonY.J. SagawaK. FrederickK. ZhangS. MorrisM.E. Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats.AAPS J.200683E433E44210.1208/aapsj080351 17025260
    [Google Scholar]
  23. RobertsD.W. DoergeD.R. ChurchwellM.I. Gamboa da CostaG. MarquesM.M. TollesonW.H. Inhibition of extrahepatic human cytochromes P450 1A1 and 1B1 by metabolism of isoflavones found in Trifolium pratense (red clover).J. Agric. Food Chem.200452216623663210.1021/jf049418x 15479032
    [Google Scholar]
  24. CastellanoG. TorrensF. Quantitative structure-antioxidant activity models of Isoflavonoids: A theoretical study.Int. J. Mol. Sci.2015166128911290610.3390/ijms160612891 26062128
    [Google Scholar]
  25. TollesonW.H. DoergeD.R. ChurchwellM.I. MarquesM.M. RobertsD.W. Metabolism of biochanin A and formononetin by human liver microsomes in vitro.J. Agric. Food Chem.200250174783479010.1021/jf025549r 12166960
    [Google Scholar]
  26. SetchellK.D.R. BrownN.M. DesaiP. Zimmer-NechemiasL. WolfeB.E. BrashearW.T. KirschnerA.S. CassidyA. HeubiJ.E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements.J. Nutr.20011314Suppl.1362S1375S10.1093/jn/131.4.1362S 11285356
    [Google Scholar]
  27. ZhangS. YangX. MorrisM.E. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport.Mol. Pharmacol.20046551208121610.1124/mol.65.5.1208 15102949
    [Google Scholar]
  28. HuM. KrauszK. ChenJ. GeX. LiJ. GelboinH.L. GonzalezF.J. Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones.Drug Metab. Dispos.200331792493110.1124/dmd.31.7.924 12814970
    [Google Scholar]
  29. MarínL. MiguélezE.M. VillarC.J. LombóF. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties.BioMed Res. Int.2015201511810.1155/2015/905215 25802870
    [Google Scholar]
  30. FengZ.J. LaiW.F. Chemical and biological properties of biochanin A and its pharmaceutical applications.Pharmaceutics2023154110510.3390/pharmaceutics15041105 37111591
    [Google Scholar]
  31. MahmoudM. AbdollahM.R.A. ElsesyM.E. Abou El EllaD.A. ZadaS.K. TolbaM.F. The natural isoflavone BIOCHANIN‐A synergizes 5‐fluorouracil anticancer activity in vitro and in vivo in Ehrlich solid‐phase carcinoma model.Phytother. Res.20223631310132510.1002/ptr.7388 35112408
    [Google Scholar]
  32. NikolicI.L. SavicI.M. PopsavinM.M. RakicS.J. Mihajilov-KrstevT.M. RisticI.S. EricS.P. Savić-GajicI.M. Preparation, characterization and antimicrobial activity of inclusion complex of biochanin A with (2-hydroxypropyl)-β-cyclodextrin.J. Pharm. Pharmacol.201870111485149310.1111/jphp.13003 30168133
    [Google Scholar]
  33. IbrahimM.Y. AlamriZ.Z. JumaA.S.M. HamoodS.A. ShareefS.H. AbdullaM.A. JayashS.N. Hepatoprotective effects of biochanin A on thioacetamide-induced liver cirrhosis in experimental rats.Molecules20232822760810.3390/molecules28227608 38005330
    [Google Scholar]
  34. KřížováL. DadákováK. KašparovskáJ. KašparovskýT. Isoflavones.Molecules2019246107610.3390/molecules24061076 30893792
    [Google Scholar]
  35. LiangF. CaoW. HuangY. FangY. ChengY. PanS. XuX. Isoflavone biochanin A, a novel nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element activator, protects against oxidative damage in HepG2 cells.Biofactors2019454563574
    [Google Scholar]
  36. LuoQ. ShiX. DingJ. MaZ. ChenX. LengY. ZhangX. LiuY. Network pharmacology integrated molecular docking reveals the antiosteosarcoma mechanism of Biochanin A.Evid. Based Complement. Alternat. Med.201920191410495
    [Google Scholar]
  37. XiaoP. ZhengB. SunJ. YangJ. [Retracted] Biochanin A induces anticancer effects in SK Mel 28 human malignant melanoma cells via induction of apoptosis, inhibition of cell invasion and modulation of NF κB and MAPK signaling pathways.Oncol. Lett.202121646310.3892/ol.2021.12724 33907573
    [Google Scholar]
  38. FelixF.B. VagoJ.P. BeltramiV.A. AraújoJ.M.D. GrespanR. TeixeiraM.M. PinhoV. Biochanin A as a modulator of the inflammatory response: An updated overview and therapeutic potential.Pharmacol. Res.202218010624610.1016/j.phrs.2022.106246 35562014
    [Google Scholar]
  39. MedjakovicS. JungbauerA. Red clover isoflavones biochanin A and formononetin are potent ligands of the human aryl hydrocarbon receptor.J. Steroid Biochem. Mol. Biol.20081081-217117710.1016/j.jsbmb.2007.10.001 18060767
    [Google Scholar]
  40. WuQ. ShangY. ShenT. LiuF. ZhangW. Biochanin A protects SH-SY5Y cells against isoflurane-induced neurotoxicity by suppressing oxidative stress and apoptosis.Neurotoxicology202186101810.1016/j.neuro.2021.06.007 34216683
    [Google Scholar]
  41. HuX. QinH. LiY. LiJ. FuL. LiM. JiangC. YunJ. LiuZ. FengY. YaoY. YinB. Biochanin A protect against lipopolysaccharide-induced acute lung injury in mice by regulating TLR4/NF-κB and PPAR-γ pathway.Microb. Pathog.202013810384610.1016/j.micpath.2019.103846 31698051
    [Google Scholar]
  42. ChenH.Q. JinZ.Y. LiG.H. Biochanin A protects dopaminergic neurons against lipopolysaccharide-induced damage through inhibition of microglia activation and proinflammatory factors generation.Neurosci. Lett.2007417211211710.1016/j.neulet.2006.11.045 17399896
    [Google Scholar]
  43. HouY. ZhaoW. YuH. ZhangF. ZhangH.T. ZhouY. Biochanin A alleviates cognitive impairment and hippocampal mitochondrial damage in ovariectomized APP/PS1 mice.Phytomedicine202210015405610.1016/j.phymed.2022.154056 35338989
    [Google Scholar]
  44. VassarR. KovacsD.M. YanR. WongP.C. The β-secretase enzyme BACE in health and Alzheimer’s disease: Regulation, cell biology, function, and therapeutic potential.J. Neurosci.20092941127871279410.1523/JNEUROSCI.3657‑09.2009 19828790
    [Google Scholar]
  45. CaiH. WangY. McCarthyD. WenH. BorcheltD.R. PriceD.L. WongP.C. BACE1 is the major β-secretase for generation of Aβ peptides by neurons.Nat. Neurosci.20014323323410.1038/85064 11224536
    [Google Scholar]
  46. GhoshA.K. OsswaldH.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease.Chem. Soc. Rev.201443196765681310.1039/C3CS60460H 24691405
    [Google Scholar]
  47. Moussa-PachaN.M. AbdinS.M. OmarH.A. AlnissH. Al-TelT.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease.Med. Res. Rev.202040133938410.1002/med.21622 31347728
    [Google Scholar]
  48. YounK. ParkJ.H. LeeJ. JeongW.S. HoC.T. JunM. The identification of Biochanin A as a potent and selective β-site app-cleaving enzyme 1 (Bace1) inhibitor.Nutrients201681063710.3390/nu8100637 27754406
    [Google Scholar]
  49. TanJ. KimM. Neuroprotective effects of Biochanin A against β-Amyloid-induced neurotoxicity in PC12 cells via a mitochondrial-dependent apoptosis pathway.Molecules201621554810.3390/molecules21050548 27120593
    [Google Scholar]
  50. LushchakV.I. Free radicals, reactive oxygen species, oxidative stress and its classification.Chem. Biol. Interact.201422416417510.1016/j.cbi.2014.10.016 25452175
    [Google Scholar]
  51. PákáskiM. KálmánJ. Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease.Neurochem. Int.200853510311110.1016/j.neuint.2008.06.005 18602955
    [Google Scholar]
  52. ChenZ. ZhongC. Oxidative stress in Alzheimer’s disease.Neurosci. Bull.201430227128110.1007/s12264‑013‑1423‑y 24664866
    [Google Scholar]
  53. El-SherbeenyN.A. SolimanN. YoussefA.M. Abd El-FadealN.M. El-AbaseriT.B. HashishA.A. AbdelbassetW.K. El-Saber BatihaG. ZaitoneS.A. The protective effect of biochanin A against rotenone-induced neurotoxicity in mice involves enhancing of PI3K/Akt/mTOR signaling and beclin-1 production.Ecotoxicol. Environ. Saf.202020511134410.1016/j.ecoenv.2020.111344 32977283
    [Google Scholar]
  54. GuoM. LuH. QinJ. QuS. WangW. GuoY. LiaoW. SongM. ChenJ. WangY. Biochanin A provides neuroprotection against Cerebral Ischemia/Reperfusion injury by Nrf2-mediated inhibition of oxidative stress and inflammation signaling pathway in rats.Med. Sci. Monit.2019258975898310.12659/MSM.918665 31767824
    [Google Scholar]
  55. HaridevamuthuB. GuruA. MuruganR. SudhakaranG. PachaiappanR. AlmutairiM.H. AlmutairiB.O. JulietA. ArockiarajJ. Neuroprotective effect of Biochanin a against Bisphenol A-induced prenatal neurotoxicity in zebrafish by modulating oxidative stress and locomotory defects.Neurosci. Lett.202279013688910.1016/j.neulet.2022.136889 36179902
    [Google Scholar]
  56. ZhouY. XuB. YuH. ZhaoW. SongX. LiuY. WangK. PeacherN. ZhaoX. ZhangH.T. Biochanin A attenuates ovariectomy-induced cognition deficit via antioxidant effects in female rats.Front. Pharmacol.20211260331610.3389/fphar.2021.603316 33815102
    [Google Scholar]
  57. IshiiT. ItohK. TakahashiS. SatoH. YanagawaT. KatohY. BannaiS. YamamotoM. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages.J. Biol. Chem.200027521160231602910.1074/jbc.275.21.16023 10821856
    [Google Scholar]
  58. ZhouJ. WangH. ShenR. FangJ. YangY. DaiW. ZhuY. ZhouM. Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway.Am. J. Transl. Res.201810618871899 30018728
    [Google Scholar]
  59. LuJ. HuangQ. ZhangD. LanT. ZhangY. TangX. XuP. ZhaoD. CongD. ZhaoD. SunL. LiX. The protective effect of DiDang Tang against AlCl3-induced oxidative stress and apoptosis in PC12 cells through the activation of SIRT1-mediated Akt/Nrf2/HO-1 pathway.Front. Pharmacol.20201511
    [Google Scholar]
  60. LiY. LiuY. XuY. ChenH. YanZ. WangX. Aggravated behavioral and neurochemical deficits and redox imbalance in mice with enhanced neonatal iron intake: improvement by biochanin A and role of microglial p38 activation.Nutr. Neurosci.202124316117210.1080/1028415X.2019.1611021 31050314
    [Google Scholar]
  61. AmorS. PuentesF. BakerD. Van Der ValkP. Inflammation in neurodegenerative diseases.Immunology2010129215416910.1111/j.1365‑2567.2009.03225.x 20561356
    [Google Scholar]
  62. CaiY. LiuJ. WangB. SunM. YangH. Microglia in the neuroinflammatory pathogenesis of alzheimer’s disease and related therapeutic targets.Front. Immunol.20221385637610.3389/fimmu.2022.856376 35558075
    [Google Scholar]
  63. YuC. ZhangP. LouL. WangY. Perspectives regarding the role of biochanin A in humans.Front. Pharmacol.20191079310.3389/fphar.2019.00793 31354500
    [Google Scholar]
  64. BerközM. KrośniakM. Özkan-YılmazF. Özlüer-HuntA. Prophylactic effect of Biochanin A in lipopolysaccharide-stimulated BV2 microglial cells.Immunopharmacol. Immunotoxicol.202042433033910.1080/08923973.2020.1769128 32482108
    [Google Scholar]
  65. GuoM. QuS. LuH. WangW. HeM.L. SuJ.L. ChenJ. WangY. Biochanin A alleviates cerebral Ischemia/Reperfusion injury by suppressing endoplasmic reticulum stress-induced apoptosis and p38MAPK signaling pathway in vivo and in vitro.Front. Endocrinol.20211264672010.3389/fendo.2021.646720 34322090
    [Google Scholar]
  66. HanD. ScottE.L. DongY. RazL. WangR. ZhangQ. Attenuation of mitochondrial and nuclear p38α signaling: A novel mechanism of estrogen neuroprotection in cerebral ischemia.Mol. Cell. Endocrinol.2015400213110.1016/j.mce.2014.11.010 25462588
    [Google Scholar]
  67. AshrafM.I. EbnerM. WallnerC. HallerM. KhalidS. SchwelbergerH. KozielK. EnthammerM. HermannM. SickingerS. SoleimanA. StegerC. VallantS. SucherR. BrandacherG. SanterP. DragunD. TroppmairJ.A. p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury.Cell Commun. Signal.2014121610.1186/1478‑811X‑12‑6 24423080
    [Google Scholar]
  68. WuW.Y. WuY.Y. HuangH. HeC. LiW.Z. WangH.L. ChenH.Q. YinY.Y. Biochanin A attenuates LPS-induced pro-inflammatory responses and inhibits the activation of the MAPK pathway in BV2 microglial cells.Int. J. Mol. Med.201535239139810.3892/ijmm.2014.2020 25483920
    [Google Scholar]
  69. RiesM. SastreM. Mechanisms of Aβ clearance and degradation by glial cells.Front. Aging Neurosci.2016816010.3389/fnagi.2016.00160 27458370
    [Google Scholar]
  70. CalsolaroV. EdisonP. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions.Alzheimers Dement.201612671973210.1016/j.jalz.2016.02.010 27179961
    [Google Scholar]
  71. KimE.A. HanA.R. ChoiJ. AhnJ.Y. ChoiS.Y. ChoS.W. Anti-inflammatory mechanisms of N-adamantyl-4-methylthiazol-2-amine in lipopolysaccharide-stimulated BV-2 microglial cells.Int. Immunopharmacol.2014221738310.1016/j.intimp.2014.06.022 24975832
    [Google Scholar]
  72. Wyss-CorayT. RogersJ. Inflammation in Alzheimer disease-A brief review of the basic science and clinical literature.Cold Spring Harb. Perspect. Med.201221a006346a00634610.1101/cshperspect.a006346 22315714
    [Google Scholar]
  73. WhitehouseP.J. The end of Alzheimer’s disease—From biochemical pharmacology to ecopsychosociology: A personal perspective.Biochem. Pharmacol.201488467768110.1016/j.bcp.2013.11.017 24304687
    [Google Scholar]
  74. ZhangY. ChenW. Biochanin A inhibits lipopolysaccharide-induced inflammatory cytokines and mediators production in BV2 microglia.Neurochem. Res.201540116517110.1007/s11064‑014‑1480‑2 25432463
    [Google Scholar]
  75. FukuiM. SongJ.H. ChoiJ. ChoiH.J. ZhuB.T. Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells.Eur. J. Pharmacol.20096171-311110.1016/j.ejphar.2009.06.059 19580806
    [Google Scholar]
  76. PrasansuklabA. SukjamnongS. TheerasriA. HuV.W. SarachanaT. TencomnaoT. Transcriptomic analysis of glutamate-induced HT22 neurotoxicity as a model for screening anti-Alzheimer’s drugs.Sci. Rep.2023131722510.1038/s41598‑023‑34183‑y 37142620
    [Google Scholar]
  77. TanJ.W. ThamC.L. IsrafD.A. LeeS.H. KimM.K. Neuroprotective effects of biochanin A against glutamate-induced cytotoxicity in PC12 cells via apoptosis inhibition.Neurochem. Res.201338351251810.1007/s11064‑012‑0943‑6 23224778
    [Google Scholar]
  78. WonJ.P. YoonH.J. LeeH.G. SeoH.G. Biochanin A inhibits excitotoxicity-triggered ferroptosis in hippocampal neurons.Eur. J. Pharmacol.202498517710410.1016/j.ejphar.2024.177104 39532228
    [Google Scholar]
  79. WangJ. WuW.Y. HuangH. LiW.Z. ChenH.Q. YinY.Y. Biochanin A protects against lipopolysaccharide-induced damage of dopaminergic neurons both in vivo and in vitro via inhibition of microglial activation.Neurotox. Res.201630348649810.1007/s12640‑016‑9648‑y 27417698
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010362795250223160707
Loading
/content/journals/cpb/10.2174/0113892010362795250223160707
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer's disease; biochanin-A; isoflavone; neuroinflammation; NF-κB; Nrf2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test