Skip to content
2000
Volume 26, Issue 17
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

The increasing prevalence of antibiotic-resistant bacteria necessitates exploring nanotechnology as a potential solution for microbial elimination.

Objectives

This study aimed to investigate the antimicrobial and antioxidant effects of silver nanoparticles synthesized using aqueous extract from the () plant (EG@AgNPs).

Methods

Optimal synthesis conditions, including silver nitrate concentration, time, and temperature, were determined. Characterization of EG@AgNPs was conducted, which was followed by antimicrobial assessment against eight bacterial strains and one fungal strain. Additionally, the antioxidant properties of EG@AgNPs were evaluated using the DPPH method.

Results

XRD analysis confirmed EG@AgNPs synthesis. DLS analysis revealed a hydrodynamic diameter of 22 nm. FT-IR analysis confirmed the presence of functional groups from the plant extract in EG@AgNPs. FESEM and TEM images depicted spherical nanoparticles ranging in size from 10 to 20 nm. Antimicrobial investigations using the broth microdilution method demonstrated that plant extract at 7.5 mg/ml inhibited only and growth, with no antimicrobial effects observed at lower concentrations. However, EG@AgNPs significantly enhanced the antimicrobial properties of the plant extract. Notably, these nanoparticles exhibited the most significant effect on and the least on , with MIC value of 125 and 2000 µg/ml, respectively. Furthermore, they inhibited growth at a concentration of 62.5 μg/ml. An assessment of the antioxidant properties of EG@AgNPs indicated a significant increase in antioxidant activity.

Conclusion

The plant extract has emerged as a promising option for silver nanoparticle synthesis. These nanoparticles have been found to exhibit potent antimicrobial properties against Gram-positive and Gram-negative bacterial species, as well as . Additionally, they have demonstrated antioxidant properties.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010349133241120075750
2025-01-06
2026-02-02
Loading full text...

Full text loading...

References

  1. SuhagD. ThakurP. ThakurA. Introduction to nanotechnology.Integrated Nanomaterials and their Applications. SuhagD. ThakurA. ThakurP. SingaporeSpringer202311710.1007/978‑981‑99‑6105‑4_1
    [Google Scholar]
  2. KadaikunnanS. RejiniemonT.S. KhaledJ.M. AlharbiN.S. MothanaR. In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens.Ann. Clin. Microbiol. Antimicrob.2015141910.1186/s12941‑015‑0069‑1
    [Google Scholar]
  3. SindhwaniS. ChanW.C.W. Nanotechnology for modern medicine: Next step towards clinical translation.J. Intern. Med.2021290348649810.1111/joim.13254
    [Google Scholar]
  4. RizwanaH. AljowaieR.M. Al OtibiF. AlwahibiM.S. AlharbiS.A. Al asmariS.A. AldosariN.S. AldehaishH.A. Antimicrobial and antioxidant potential of the silver nanoparticles synthesized using aqueous extracts of coconut meat (Cocos nucifera L).Sci. Rep.20231311627010.1038/s41598‑023‑43384‑4
    [Google Scholar]
  5. KhatunM. KhatunZ. KarimM.R. HabibM.R. RahmanM.H. AzizM.A. Green synthesis of silver nanoparticles using extracts of Mikania cordata leaves and evaluation of their antioxidant, antimicrobial and cytotoxic properties.Food Chem. Adv.2023310038610.1016/j.focha.2023.100386
    [Google Scholar]
  6. NasarM.Q. KhalilA.T. AliM. ShahM. AyazM. ShinwariZ.K. Phytochemical analysis, Ephedra Procera CA Mey. Mediated green synthesis of silver nanoparticles, their cytotoxic and antimicrobial potentials.Medicina (Kaunas)201955736910.3390/medicina55070369
    [Google Scholar]
  7. RuanY. YuanP.P. LiP.Y. ChenY. FuY. GaoL.Y. WeiY.X. ZhengY.J. LiS.F. FengW.S. ZhengX-K. Tingli Dazao Xiefei Decoction ameliorates asthma in vivo and in vitro from lung to intestine by modifying NO–CO metabolic disorder mediated inflammation, immune imbalance, cellular barrier damage, oxidative stress and intestinal bacterial disorders.J. Ethnopharmacol.202331311650310.1016/j.jep.2023.116503
    [Google Scholar]
  8. Al-RadadiN.S. Ephedra mediated green synthesis of gold nanoparticles (AuNPs) and evaluation of its antioxidant, antipyretic, anti-asthmatic, and antimicrobial properties.Arab. J. Chem.202316110435310.1016/j.arabjc.2022.104353
    [Google Scholar]
  9. WangK. MaJ. LiY. HanQ. YinZ. ZhouM. LuoM. ChenJ. XiaS. Corrigendum: Effects of essential oil extracted from Artemisia argyi leaf on lipid metabolism and gut microbiota in high-fat diet-fed mice.Front. Nutr.202411141621010.3389/fnut.2024.1416210
    [Google Scholar]
  10. BreijyehZ. JubehB. KaramanR. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it.Molecules2020256134010.3390/molecules25061340
    [Google Scholar]
  11. LeiZ. karimA. The challenges and applications of nanotechnology against bacterial resistance.J. Vet. Pharmacol. Ther.202144328129710.1111/jvp.12936
    [Google Scholar]
  12. CaiX. XieZ. LiD. KassymovaM. ZangS.Q. JiangH.L. Nano-sized metal-organic frameworks: Synthesis and applications.Coord. Chem. Rev.202041721336610.1016/j.ccr.2020.213366
    [Google Scholar]
  13. YaqoobA.A. UmarK. IbrahimM.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications - A review.Appl. Nanosci.20201051369137810.1007/s13204‑020‑01318‑w
    [Google Scholar]
  14. WahabS. KhanT. AdilM. KhanA. Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria.Heliyon202177e0744810.1016/j.heliyon.2021.e07448
    [Google Scholar]
  15. Zare-BidakiM. GhasempourA. Mohammadparast-TabasP. GhoreishiS.M. AlamzadehE. JavanshirR. LeB.N. BarakchiM. FattahiM. Mortazavi-DerazkolaS. Enhanced in vivo wound healing efficacy and excellent antibacterial, antifungal, antioxidant and anticancer activities via AgNPs@PCS.Arab. J. Chem.2023161010519410.1016/j.arabjc.2023.105194
    [Google Scholar]
  16. NqakalaZ.B. SibuyiN.R.S. FadakaA.O. MeyerM. OnaniM.O. MadieheA.M. Advances in nanotechnology towards development of silver nanoparticle-based wound-healing agents.Int. J. Mol. Sci.202122201127210.3390/ijms222011272
    [Google Scholar]
  17. AlzubaidiA.K. Al-KaabiW.J. AliA.A. AlbukhatyS. Al-KaragolyH. SulaimanG.M. AsiriM. KhaneY. Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities.Appl. Sci. (Basel)2023134218210.3390/app13042182
    [Google Scholar]
  18. KhaneY. BenouisK. AlbukhatyS. SulaimanG.M. AbomughaidM.M. Al AliA. AoufD. FennicheF. KhaneS. ChaibiW. HenniA. BourasH.D. DizgeN. Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: Characterization and evaluation of their antioxidant and antimicrobial properties.Nanomaterials (Basel)20221212201310.3390/nano12122013
    [Google Scholar]
  19. ShahM.Z. GuanZ.H. DinA.U. AliA. RehmanA.U. JanK. FaisalS. SaudS. AdnanM. WahidF. AlamriS. SiddiquiM.H. AliS. NasimW. HammadH.M. FahadS. Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities.Sci. Rep.20211112075410.1038/s41598‑021‑00296‑5
    [Google Scholar]
  20. NarayananM. DivyaS. NatarajanD. Senthil-NathanS. KandasamyS. ChinnathambiA. AlahmadiT.A. PugazhendhiA. Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications.Process Biochem.2021107919910.1016/j.procbio.2021.05.008
    [Google Scholar]
  21. KanniahP. RadhamaniJ. ChelliahP. MuthusamyN. Joshua Jebasingh Sathiya BalasinghE. Reeta ThangapandiJ. BalakrishnanS. ShanmugamR. Green synthesis of multifaceted silver nanoparticles using the flower extract of Aerva lanata and evaluation of its biological and environmental applications.ChemistrySelect2020572322233110.1002/slct.201903228
    [Google Scholar]
  22. LeyuA.M. DebebeS.E. BachhetiA. RawatY.S. BachhetiR.K. Green synthesis of gold and silver nanoparticles using invasive alien plant Parthenium hysterophorus and their antimicrobial and antioxidant activities.Sustainability (Basel)20231512945610.3390/su15129456
    [Google Scholar]
  23. MinamiM. MoriT. HondaY. UenoK. MurakamiT. AjiokaY. AtsumiT. JoshiK.J. YadavP.M. KandelD.R. NakanoM. ShinozakiJ. ItohS. NakaneT. TakanoA. Physical and chemical characteristics of soils in Ephedra gerardiana and E. pachyclada habitats of Kali Gandaki Valley in Central Nepal.J. Nat. Med.202074482583310.1007/s11418‑020‑01413‑w
    [Google Scholar]
  24. NazarH. AmarA. YounusM. ShaheenG. Muhammad AsifH. ZafarF. AyazS. Review of pharmacological activity of Ephedra gerardiana.Sci. Inquiry Rev.2023728110010.32350/sir.72.05
    [Google Scholar]
  25. RungsungW. DuttaS. RathaK.K. Pharmacognostical and phytochemical study on the stem of Ephedra gerardiana.J. Int. Res. Med. Pharm. Sci.2002238085
    [Google Scholar]
  26. KhanA. JanG. KhanA. Gul JanF. BahadurA. DanishM. in vitro antioxidant and antimicrobial activities of Ephedra gerardiana (root and stem) crude extract and fractions.Evid. Based Complement. Alternat. Med.20172017404025410.1155/2017/4040254
    [Google Scholar]
  27. UttraA.M. Alamgeer Assessment of anti-arthritic potential of Ephedra gerardiana by in vitro and in vivo methods.Bangladesh J. Pharmacol.201712440340910.3329/bjp.v12i4.32798
    [Google Scholar]
  28. OsmaniF. AzarkarG. Fitting logistic regression models to assess vitamin D deficiency with clinical parameters in chronic hepatitis B patients.Infect. Dis. Model.2021661261710.1016/j.idm.2021.03.008
    [Google Scholar]
  29. SharmaR. JanmedaP. ChaudharyP. RawatS. Antipyretic medicinal plants, phytocompounds, and green nanoparticles: An updated review.Curr. Pharm. Biotechnol.2023241234910.2174/1389201023666220330005020
    [Google Scholar]
  30. NagimeP.V. ShaikhN.M. ShaikhS.B. LokhandeC.D. PatilV.V. ShafiS. SyukriD.M. ChidrawarV.R. KumarA. SinghS. Facile synthesis of silver nanoparticles using Calotropis procera leaves: Unraveling biological and electrochemical potentials.Discov. Nano202419113910.1186/s11671‑024‑04090‑w
    [Google Scholar]
  31. AkshayA.V. VermaA. SarohaA. GargR. Green synthesis and applications of silver nanoparticles using plant extracts: A review article.Int. J. Life Sci. Pharma Res.202212220P23310.22376/ijpbs/lpr.2022.12.6.P220‑233
    [Google Scholar]
  32. AbbasiZ. UzairB. KhanB.A. MenaaF. SaeedM. AhmadI. AqibA.I. Tracking success of interaction of green-synthesized Carbopol nanoemulgel (neomycin-decorated Ag/ZnO nanocomposite) with wound-based MDR bacteria.Nanotechnol. Rev.20241312024002710.1515/ntrev‑2024‑0027
    [Google Scholar]
  33. MajithiaM. BarrettoD.A. Chapter 12 - Biocompatible greensynthesized nanomaterials for therapeutic applications.Advances in Nano and Biochemistry: Environmental and Biomedical Applications. MorajkarP. NaikM. Academic Press202328536710.1016/B978‑0‑323‑95253‑8.00012‑7
    [Google Scholar]
  34. MariselvamR. MariappanA. SivakavinesanM. EnochI.V.M.V. IgnacimuthuS. Production of silver nanoparticles from Atalantia monophylla (L) plant resin and their enhanced antibacterial efficacy.Int. Nano Lett.2021111859110.1007/s40089‑021‑00326‑0
    [Google Scholar]
  35. SinghA. GaudB. JaybhayeS. Optimization of synthesis parameters of silver nanoparticles and its antimicrobial activity.Mater. Sci. Energy Technol.2020323223610.1016/j.mset.2019.08.004
    [Google Scholar]
  36. BindhuM.R. UmadeviM. EsmailG.A. Al-DhabiN.A. ArasuM.V. Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties.J. Photochem. Photobiol. B202020511183610.1016/j.jphotobiol.2020.111836
    [Google Scholar]
  37. KattaV.K.M. DubeyR.S. Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties.Mater. Today Proc.20214579479810.1016/j.matpr.2020.02.809
    [Google Scholar]
  38. AwwadA.M. SalemN.M. AqarbehM.M. AbdulazizF.M. Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation.Chem. Int.202064248
    [Google Scholar]
  39. KumarP. DixitJ. SinghA.K. RajputV.D. VermaP. TiwariK.N. MishraS.K. MinkinaT. MandzhievaS. Efficient catalytic degradation of selected toxic dyes by green biosynthesized silver nanoparticles using aqueous leaf extract of Cestrum nocturnum L.Nanomaterials (Basel)20221221385110.3390/nano12213851
    [Google Scholar]
  40. HuqM.A. Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens.Int. J. Mol. Sci.2020214151010.3390/ijms21041510
    [Google Scholar]
  41. Al-ZahraniS.A. BhatR.S. Al RashedS.A. MahmoodA. Al FahadA. AlamroG. AlmusallamJ. Al SubkiR. OrfaliR. Al DaihanS. Green-synthesized silver nanoparticles with aqueous extract of green algae Chaetomorpha ligustica and its anticancer potential.Green Process. Synth.202110171172110.1515/gps‑2021‑0067
    [Google Scholar]
  42. BarabadiH. MojabF. VahidiH. MarashiB. TalankN. HosseiniO. SaravananM. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles.Inorg. Chem. Commun.202112910864710.1016/j.inoche.2021.108647
    [Google Scholar]
  43. SalayováA. BedlovičováZ. DaneuN. BalážM. Lukáčová BujňákováZ. BalážováĽ. TkáčikováĽ. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy.Nanomaterials (Basel)2021114100510.3390/nano11041005
    [Google Scholar]
  44. LakkimV. ReddyM.C. PallavaliR.R. ReddyK.R. ReddyC.V. Inamuddin, BilgramiA.L. LomadaD. Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model.Antibiotics (Basel)202091290210.3390/antibiotics9120902
    [Google Scholar]
  45. AzarbaniF. ShiravandS. Green synthesis of silver nanoparticles by Ferulago macrocarpa flowers extract and their antibacterial, antifungal and toxic effects.Green Chem. Lett. Rev.2020131414910.1080/17518253.2020.1726504
    [Google Scholar]
  46. GomathiM. PrakasamA. RajkumarP.V. RajeshkumarS. ChandrasekaranR. AnbarasanP.M. Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity.S. Afr. J. Chem. Eng.2020321410.1016/j.sajce.2019.11.005
    [Google Scholar]
  47. OsmaniF. HajizadehE. RasekhiA. AkbariM.E. Analyzing relationship between local and metastasis relapses with survival of patients with breast cancer: A study using joint frailty model.Int. J. Cancer Manag.201811In Press(In Press)10.5812/ijcm.81783
    [Google Scholar]
  48. OsmaniF. HajizadehE. RasekhiA.A. Association between multiple recurrent events with multivariate modeling: A retrospective cohort study.J. Res. Health Sci.201818e00433
    [Google Scholar]
  49. HamadouW.S. BoualiN. BadraouiR. Hadj LajimiR. HamdiA. AlreshidiM. PatelM. AdnanM. SiddiquiA.J. NoumiE. Rao PasupuletiV. SnoussiM. Chemical composition and the anticancer, antimicrobial, and antioxidant properties of acacia honey from the Hail region: The in vitro and in silico investigation.Evid. Based Complement. Alternat. Med.2022202211610.1155/2022/1518511
    [Google Scholar]
  50. KanniahP. ChelliahP. ThangapandiJ.R. GnanadhasG. MahendranV. RobertM. Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite.Int. J. Biol. Macromol.2021189183310.1016/j.ijbiomac.2021.08.056
    [Google Scholar]
  51. GuoP. ZengM. LiuM. ZhangY. JiaJ. ZhangZ. LiangS. ZhengX. FengW. Isolation of Calenduloside E from Achyranthes bidentata Blume and its effects on LPS/D-GalN-induced acute liver injury in mice by regulating the AMPK-SIRT3 signaling pathway.Phytomedicine202412515535310.1016/j.phymed.2024.155353
    [Google Scholar]
  52. MelkamuW.W. BitewL.T. Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) JF Gmel plant leaf extract and their antibacterial and anti-oxidant activities.Heliyon202120217
    [Google Scholar]
  53. JalilianF. ChahardoliA. SadrjavadiK. FattahiA. ShokoohiniaY. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects.Adv. Powder Technol.20203131323133210.1016/j.apt.2020.01.011
    [Google Scholar]
  54. ChuaiY. DaiB. LiuX. HuM. WangY. ZhangH. Association of vitamin K, fibre intake and progression of periodontal attachment loss in American adults.BMC Oral Health202323130310.1186/s12903‑023‑02929‑9
    [Google Scholar]
  55. ShakibS. KhoshdelN. MohammadimoghadamM. OsmaniF. The effectiveness of scaling therapy on periodontal indexes in adolescents with fixed orthodontic appliances: A prospective cohort study.Clin. Investig. Orthod.20248339710510.1080/27705781.2024.2361222
    [Google Scholar]
  56. HuiM. JiaX. LiX. Lazcano-SilveiraR. ShiM. Anti-inflammatory and antioxidant effects of liposoluble c60 at the cellular, molecular, and whole-animal levels.J. Inflamm. Res.202316839310.2147/JIR.S386381
    [Google Scholar]
  57. RadulovićN. Stankov-JovanovićV. StojanovićG. ŠmelcerovićA. SpitellerM. AsakawaY. Screening of in vitro antimicrobial and antioxidant activity of nine Hypericum species from the Balkans.Food Chem.20071031152110.1016/j.foodchem.2006.05.062
    [Google Scholar]
  58. FengG. XieW. JiangF. YangQ. JinW. ShaoC. YuJ. WuQ. ZhangQ. WangD. LiuJ. Effects of cores types on non-solvent displacement nonaqueous precipitation synthesis of core-shell structured materials: A case study on effects of carbon sources on C@ZrSiO4 preparation.Ceram. Int.20245011183701837910.1016/j.ceramint.2024.02.321
    [Google Scholar]
  59. KumarV. PandeyN. MohanN. SinghR.P. Antibacterial & antioxidant activity of different extract of Moringa oleifera leaves - An in vitro study.Int. J. Pharm. Sci. Rev. Res.2012128994
    [Google Scholar]
  60. FrazziniS. ScagliaE. Dell’AnnoM. ReggiS. PanseriS. GirominiC. LanzoniD. Sgoifo RossiC.A. RossiL. Antioxidant and antimicrobial activity of algal and cyanobacterial extracts: An in vitro study.Antioxidants202211599210.3390/antiox11050992
    [Google Scholar]
  61. MartemucciG. CostagliolaC. MarianoM. D’andreaL. NapolitanoP. D’AlessandroA.G. Free radical properties, source and targets, antioxidant consumption and health.Oxygen (Basel)202222487810.3390/oxygen2020006
    [Google Scholar]
  62. Di MeoS. VendittiP. Evolution of the knowledge of free radicals and other oxidants.Oxid. Med. Cell. Longev.20202020982917610.1155/2020/9829176
    [Google Scholar]
  63. BalciunaitieneA. ViskelisP. ViskelisJ. StreimikyteP. LiaudanskasM. BartkieneE. ZavistanaviciuteP. ZokaityteE. StarkuteV. RuzauskasM. LeleV. Green synthesis of silver nanoparticles using extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., physico-chemical characterization, antimicrobial and antioxidant activity.Processes (Basel)202198130410.3390/pr9081304
    [Google Scholar]
  64. GecerE.N. Green synthesis of silver nanoparticles from Salvia aethiopis L. and their antioxidant activity.J. Inorg. Organomet. Polym. Mater.202131114402440910.1007/s10904‑021‑02057‑3
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010349133241120075750
Loading
/content/journals/cpb/10.2174/0113892010349133241120075750
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antibacterial; antifungal; antioxidant; Ephedra gerardiana; nanoparticles; Silver
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test