Skip to content
2000
Volume 26, Issue 17
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Tryptophan, an essential amino acid, plays a vital role in the synthesis of critical compounds like serotonin, melatonin, and niacin, which impact mood, sleep, and metabolic processes. It holds promise for improving the well-being of individuals with mood issues or sleep disorders through dietary enrichment. However, incorporating tryptophan into food products presents challenges related to stability, bitterness, and susceptibility to oxidative degradation. These issues can reduce consumer acceptability and effectiveness and may lead to the formation of harmful byproducts. This review comprehensively examines innovative strategies for enriching food products with tryptophan. Crucial approaches include using nano-emulsion systems to encapsulate tryptophan, thereby protecting it from environmental factors and enhancing its bioavailability, adding antioxidants to prevent degradation, and utilizing functional derivatives as alternatives to pure tryptophan. These strategies aim to improve the stability of tryptophan, reduce bitterness, and enhance consumer acceptability. This review provides valuable insights into practical methods for incorporating tryptophan into food formulations, with the goal of optimizing its health benefits and ensuring a positive consumer experience.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010333886241015050836
2024-10-29
2026-01-31
Loading full text...

Full text loading...

References

  1. GwinJ.A. ChurchD.D. WolfeR.R. FerrandoA.A. PasiakosS.M. Muscle protein synthesis and whole-body protein turnover responses to ingesting essential amino acids, intact protein, and protein-containing mixed meals with considerations for energy deficit.Nutrients2020128245710.3390/nu1208245732824200
    [Google Scholar]
  2. WuG. Amino acids: Metabolism, functions, and nutrition.Amino Acids200937111710.1007/s00726‑009‑0269‑019301095
    [Google Scholar]
  3. KarauA. GraysonI. Amino acids in human and animal nutrition.Biotechnology of Food and Feed Additives. ZornH. CzermakP. Berlin, HeidelbergSpringer201418922810.1007/10_2014_269
    [Google Scholar]
  4. Kałużna-CzaplińskaJ. GątarekP. ChirumboloS. ChartrandM.S. BjørklundG. How important is tryptophan in human health?Crit. Rev. Food Sci. Nutr.2019591728810.1080/10408398.2017.135753428799778
    [Google Scholar]
  5. BaenasN. García-VigueraC. Domínguez-PerlesR. MedinaS. Winery by-products as sources of bioactive tryptophan, serotonin, and melatonin: Contributions to the antioxidant power.Foods2023128157110.3390/foods1208157137107366
    [Google Scholar]
  6. MiyamotoK. SujinoT. KanaiT. The tryptophan metabolic pathway of the microbiome and host cells in health and disease.Int. Immunol.2024dxae03510.1093/intimm/dxae03538869080
    [Google Scholar]
  7. YousefP. RosenJ. ShapiroC. Tryptophan and its role in sleep and mood.Stud. Nat. Prod. Chem.20248011410.1016/B978‑0‑443‑15589‑5.00001‑3
    [Google Scholar]
  8. DixitV. Joseph KamalS.W. Bajrang CholeP. DayalD. ChaubeyK.K. PalA.K. XavierJ. ManjunathB.T. BachhetiR.K. Functional foods: exploring the health benefits of bioactive compounds from plant and animal sources.J. Food Qual.20232023112210.1155/2023/5546753
    [Google Scholar]
  9. LindsethG. HellandB. CaspersJ. The effects of dietary tryptophan on affective disorders.Arch. Psychiatr. Nurs.201529210210710.1016/j.apnu.2014.11.00825858202
    [Google Scholar]
  10. GulS. SaleemD. HaleemM.A. HaleemD.J. Inhibition of hormonal and behavioral effects of stress by tryptophan in rats.Nutr. Neurosci.201922640941710.1080/1028415X.2017.139555129098950
    [Google Scholar]
  11. XiaoS. WangZ. WangB. HouB. ChengJ. BaiT. ZhangY. WangW. YanL. ZhangJ. Expanding the application of tryptophan: Industrial biomanufacturing of tryptophan derivatives.Front. Microbiol.202314109909810.3389/fmicb.2023.109909837032885
    [Google Scholar]
  12. KonievO. WagnerA. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation.Chem. Soc. Rev.201544155495555110.1039/C5CS00048C26000775
    [Google Scholar]
  13. SchnellbaecherA. LindigA. Le MignonM. HofmannT. PardonB. BellmaineS. ZimmerA. Degradation products of tryptophan in cell culture media: contribution to color and toxicity.Int. J. Mol. Sci.20212212622110.3390/ijms2212622134207579
    [Google Scholar]
  14. PoeggelerB. SinghS.K. PappollaM.A. Tryptophan in nutrition and health.Int. J. Mol. Sci.20225455.231010.3390/ijms23105455
    [Google Scholar]
  15. BellmaineS. SchnellbaecherA. ZimmerA. Reactivity and degradation products of tryptophan in solution and proteins.Free Radic. Biol. Med.202016069671810.1016/j.freeradbiomed.2020.09.00232911085
    [Google Scholar]
  16. Di PizioA. NicoliA. In silico molecular study of tryptophan bitterness.Molecules20202520462310.3390/molecules2520462333050648
    [Google Scholar]
  17. Fernandez RuoccoM.J. MacarenaS. DanielaI. JimenaP.M. ValleA.S.D. SilviaC.N. Lipid-polymer membranes as carriers for l-tryptophan: Molecular and metabolic properties.Open J. Med. Chem.20133110.4236/ojmc.2013.31005
    [Google Scholar]
  18. SalminenH. JaakkolaH. HeinonenM. Modifications of tryptophan oxidation by phenolic-rich plant materials.J. Agric. Food Chem.20085623111781118610.1021/jf802267319007128
    [Google Scholar]
  19. RoseW.C.II The sequence of events leading to the establishment of the amino acid needs of man.Am. J. Public Health Nations Health196858112020202710.2105/AJPH.58.11.20205748871
    [Google Scholar]
  20. FriedmanM. Analysis, nutrition, and health benefits of tryptophan.Int. J. Tryptophan Res.20181110.1177/117864691880228230275700
    [Google Scholar]
  21. ReyesV. MartínezO. HernándezG. National center for biotechnology information; Plant Breeding.Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro1923
    [Google Scholar]
  22. FrazerA. HenslerJ.G. Serotonin involvement in physiological function and behavior. Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed SiegelG.J. AgranoffB.W. AlbersR.W. Lippincott-Raven: Philadelphia1999263292
    [Google Scholar]
  23. ZawilskaJ.B. SkeneD.J. ArendtJ. Physiology and pharmacology of melatonin in relation to biological rhythms.Pharmacol. Rep.200961338341010.1016/S1734‑1140(09)70081‑719605939
    [Google Scholar]
  24. FukuwatariT. ShibataK. Nutritional aspect of tryptophan metabolism.Int. J. Tryptophan Res.20136S110.4137/IJTR.S11588
    [Google Scholar]
  25. RichardD.M. L-tryptophan: Basic metabolic functions, behavioral research and therapeutic indications.Int. J. Tryptophan Res.20092456010.4137/IJTR.S212920651948
    [Google Scholar]
  26. RitotaM. ManziP. Rapid determination of total tryptophan in yoghurt by ultra high performance liquid chromatography with fluorescence detection.Molecules20202521502510.3390/molecules2521502533138259
    [Google Scholar]
  27. ReillyJ.G. McTavishS.F.B. YoungA.H. Rapid depletion of plasma tryptophan: A review of studies and experimental methodology.J. Psychopharmacol.199711438139210.1177/0269881197011004169443529
    [Google Scholar]
  28. GottschlichM. Early and perioperative nutrition support.Contemporary Nutrition Support Practice: A Clinical Guide.PhiladelphiaW.B. Saunders Company1998279292
    [Google Scholar]
  29. SainioE.L. PulkkiK. YoungS.N. L-Tryptophan: Biochemical, nutritional and pharmacological aspects.Amino Acids1996101214710.1007/BF0080609124178430
    [Google Scholar]
  30. The contribution of cocoa additive to cigarette smoking addiction.Available From: https://rivm.openrepository.com/bitstream/handle/10029/9279/650270002.pdf?sequence=1
  31. ChojnackiC. PopławskiT. ChojnackiJ. FilaM. KonradP. BlasiakJ. Tryptophan intake and metabolism in older adults with mood disorders.Nutrients20201210318310.3390/nu1210318333081001
    [Google Scholar]
  32. CynoberL. BierD.M. KadowakiM. MorrisS.M. ElangoR. SmrigaM. Proposals for upper limits of safe intake for arginine and tryptophan in young adults and an upper limit of safe intake for leucine in the elderly.J. Nutr.2016146122652S2654S10.3945/jn.115.22847827934658
    [Google Scholar]
  33. HiratsukaC. FukuwatariT. SanoM. SaitoK. SasakiS. ShibataK. Supplementing healthy women with up to 5.0 g/d of L-tryptophan has no adverse effects.J. Nutr.2013143685986610.3945/jn.112.17382323616514
    [Google Scholar]
  34. RonseinG.E. Bof de OliveiraM.C. Gennari de MedeirosM.H. Di MascioP. Mechanism of dioxindolylalanine formation by singlet molecular oxygen-mediated oxidation of tryptophan residues.Photochem. Photobiol. Sci.201110111727173010.1039/c1pp05181d21912792
    [Google Scholar]
  35. Fuentes-LemusE. DortaE. EscobarE. AspéeA. PinoE. AbasqM.L. SpeiskyH. SilvaE. LissiE. DaviesM.J. López-AlarcónC. Oxidation of free, peptide and protein tryptophan residues mediated by AAPH-derived free radicals: Role of alkoxyl and peroxyl radicals.RSC Advances2016663579485795510.1039/C6RA12859A
    [Google Scholar]
  36. BentD.V. HayonE. Excited state chemistry of aromatic amino acids and related peptides. III.Tryptophan. J. Am. Chem. Soc.197597102612261910.1021/ja00843a004237041
    [Google Scholar]
  37. SimatT.J. SteinhartH. Oxidation of free tryptophan and tryptophan residues in peptides and proteins.J. Agric. Food Chem.199846249049810.1021/jf970818c10554268
    [Google Scholar]
  38. KellG. SteinhartH. Oxidation of tryptophan by H2O2 in model systems.J. Food Sci.19905541120112310.1111/j.1365‑2621.1990.tb01613.x
    [Google Scholar]
  39. GérardV. GalopinC. AyE. LaunayV. Morlet-SavaryF. GraffB. LalevéeJ. Photostability of l-tryptophan in aqueous solution: Effect of atmosphere and antioxidants addition.Food Chem.202135912994910.1016/j.foodchem.2021.12994933957330
    [Google Scholar]
  40. ChameidesW.L. FehsenfeldF. RodgersM.O. CardelinoC. MartinezJ. ParrishD. LonnemanW. LawsonD.R. RasmussenR.A. ZimmermanP. GreenbergJ. MlddletonP. WangT. Ozone precursor relationships in the ambient atmosphere.J. Geophys. Res.199297D56037605510.1029/91JD03014
    [Google Scholar]
  41. WennbergP.O. DabdubD. Atmospheric chemistry. Rethinking ozone production.Science200831958701624162510.1126/science.115574718356510
    [Google Scholar]
  42. OrganizationW.H. Air quality guidelines: Global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide.GermanyWorld Health Organization2006
    [Google Scholar]
  43. KerkaertB. MestdaghF. CucuT. AedoP.R. LingS.Y. De MeulenaerB. Hypochlorous and peracetic acid induced oxidation of dairy proteins.J. Agric. Food Chem.201159390791410.1021/jf103780721214246
    [Google Scholar]
  44. ZelentsovaE.A. SherinP.S. SnytnikovaO.A. KapteinR. VautheyE. TsentalovichY.P. Photochemistry of aqueous solutions of kynurenic acid and kynurenine yellow.Photochem. Photobiol. Sci.201312354655810.1039/c2pp25357g23258594
    [Google Scholar]
  45. BorkmanR.F. HibbardL.B. DillonJ. The photolysis of tryptophan with 337.1 nm laser radiation.Photochem. Photobiol.1986431131910.1111/j.1751‑1097.1986.tb05585.x3952159
    [Google Scholar]
  46. SilvaE. BarriasP. Fuentes-LemusE. TirapeguiC. AspeeA. CarrollL. DaviesM.J. López-AlarcónC. Riboflavin-induced type 1 photo-oxidation of tryptophan using a high intensity 365 nm light emitting diode.Free Radic. Biol. Med.201913113314310.1016/j.freeradbiomed.2018.11.02630502456
    [Google Scholar]
  47. HuvaereK. SkibstedL.H. Light-induced oxidation of tryptophan and histidine. Reactivity of aromatic N-heterocycles toward triplet-excited flavins.J. Am. Chem. Soc.2009131238049806010.1021/ja809039u19459626
    [Google Scholar]
  48. KannerJ.D. FennemaO. Photooxidation of tryptophan in the presence of riboflavin.J. Agric. Food Chem.1987351717610.1021/jf00073a017
    [Google Scholar]
  49. SilvaE. RückertV. LissiE. AbuinE. Effects of pH and ionic micelles on the riboflavin-sensitized photoprocesses of tryptophan in aqueous solution.J. Photochem. Photobiol. B1991111576810.1016/1011‑1344(91)80268‑M1791494
    [Google Scholar]
  50. CvetkovaS. EdingerS. ZimmermannD. WollB. StahlM. Scharfenberger-SchmeerM. RichlingE. DurnerD. 2-Aminoacetophenone formation through UV-C induced degradation of tryptophan in the presence of riboflavin in model wine: Role of oxygen and transition metals.Food Chem.202445914025910.1016/j.foodchem.2024.14025939089197
    [Google Scholar]
  51. FriedmanM. CuqJ.L. Chemistry, analysis, nutritional value, and toxicology of tryptophan in food. A review.J. Agric. Food Chem.19883651079109310.1021/jf00083a042
    [Google Scholar]
  52. SimatT.J. KleebergK.K. MüllerB. SiertsA. Contamination of commercially available L-tryptophan by related substances.Eur. Food Res. Technol.2003216324125210.1007/s00217‑002‑0646‑3
    [Google Scholar]
  53. ZhuravlevaY.S. SherinP.S. Influence of pH on radical reactions between kynurenic acid and amino acids tryptophan and tyrosine. Part I. Amino acids in free state.Free Radic. Biol. Med.202117233133910.1016/j.freeradbiomed.2021.06.01534146664
    [Google Scholar]
  54. StadtmanE.R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions.Annu. Rev. Biochem.199362179782110.1146/annurev.bi.62.070193.0040538352601
    [Google Scholar]
  55. YangS.F. Destruction of tryptophan during the aerobic oxidation of sulfite ions.Environ. Res.19736439540210.1016/0013‑9351(73)90055‑84772330
    [Google Scholar]
  56. Kowalska-BaronA. Theoretical study of the complexes of tyrosine and tryptophan with biologically important metal cations in aqueous solutions.Comput. Theor. Chem.2015105771410.1016/j.comptc.2015.01.010
    [Google Scholar]
  57. StöckigtJ. AntonchickA.P. WuF. WaldmannH. The Pictet-Spengler reaction in nature and in organic chemistry.Angew. Chem. Int. Ed.201150378538856410.1002/anie.20100807121830283
    [Google Scholar]
  58. PictetA. SpenglerT. On the formation of isoquinoline derivatives through the action of methylal on phenyl-ethylamine, phenyl-alanine and tyrosine.Ber. Dtsch. Chem. Ges.19114432030203610.1002/cber.19110440309
    [Google Scholar]
  59. NemetI. Varga-DefterdarovićL. Methylglyoxal-derived β-carbolines formed from tryptophan and its derivates in the Maillard reaction.Amino Acids200732229129310.1007/s00726‑006‑0337‑716729192
    [Google Scholar]
  60. HerraizT. 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid and 1,2, 3,4-tetrahydro-β-carboline-3-carboxylic acid in fruits.J. Agric. Food Chem.199947124883488710.1021/jf990233d10606547
    [Google Scholar]
  61. HerraizT. PapavergouE. Identification and occurrence of tryptamine- and tryptophan-derived tetrahydro-β-carbolines in commercial sausages.J. Agric. Food Chem.20045292652265810.1021/jf035460115113173
    [Google Scholar]
  62. HerraizT. Tetrahydro-beta-carboline-3-carboxylic acid compounds in fish and meat: Possible precursors of co-mutagenic beta-carbolines norharman and harman in cooked foods.Food Addit. Contam.2000171085986610.1080/02652030042043911103270
    [Google Scholar]
  63. UpadhyayaJ. SinghN. BhullarR.P. ChelikaniP. The structure–function role of C-terminus in human bitter taste receptor T2R4 signaling.Biochim. Biophys. Acta Biomembr.2015184871502150810.1016/j.bbamem.2015.03.03525858111
    [Google Scholar]
  64. LathamC.J. BlundellJ.E. Evidence for the effect of tryptophan on the pattern of food consumption in free feeding and food deprived rats.Life Sci.197924211971197810.1016/0024‑3205(79)90307‑2459694
    [Google Scholar]
  65. DouroumisD. Practical approaches of taste masking technologies in oral solid forms.Expert Opin. Drug Deliv.20074441742610.1517/17425247.4.4.41717683254
    [Google Scholar]
  66. GharsallaouiA. RoudautG. ChambinO. VoilleyA. SaurelR. Applications of spray-drying in microencapsulation of food ingredients: An overview.Food Res. Int.20074091107112110.1016/j.foodres.2007.07.004
    [Google Scholar]
  67. JackisonD. A breakthrough in natural masking technology: Pharmaceutical focus| R & D.South African Pharm. Cosmetic Rev.20154282829
    [Google Scholar]
  68. CrockettR. IeP. VodovotzY. How do xanthan and hydroxypropyl methylcellulose individually affect the physicochemical properties in a model gluten-free dough?J. Food Sci.2011763E274E28210.1111/j.1750‑3841.2011.02088.x21535827
    [Google Scholar]
  69. KeX. MaH. YangJ. QiuM. WangJ. HanL. ZhangD. New strategies for identifying and masking the bitter taste in traditional herbal medicines: The example of Huanglian Jiedu Decoction.Front. Pharmacol.20221384382110.3389/fphar.2022.84382136060004
    [Google Scholar]
  70. LeyJ.P. KrammerG. ReindersG. GatfieldI.L. BertramH.J. Evaluation of bitter masking flavanones from Herba Santa (Eriodictyon californicum (H. and A.) Torr., Hydrophyllaceae).J. Agric. Food Chem.200553156061606610.1021/jf050517016028996
    [Google Scholar]
  71. LoftssonT. BrewsterM.E. Pharmaceutical applications of cyclodextrins: Basic science and product development.J. Pharm. Pharmacol.201062111607162110.1111/j.2042‑7158.2010.01030.x21039545
    [Google Scholar]
  72. BuyaA.B. WitikaB.A. BapolisiA.M. MwilaC. MukubwaG.K. MemvangaP.B. MakoniP.A. NkangaC.I. Application of lipid-based nanocarriers for antitubercular drug delivery: A review.Pharmaceutics20211312204110.3390/pharmaceutics1312204134959323
    [Google Scholar]
  73. BalasubramaniamV.M.B. Martínez-MonteagudoS.I. GuptaR. Principles and application of high pressure-based technologies in the food industry.Annu. Rev. Food Sci. Technol.20156143546210.1146/annurev‑food‑022814‑01553925747234
    [Google Scholar]
  74. JakubczykA. KaraśM. ZłotekU. SzymanowskaU. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds.Food Res. Int.2017100Pt 148949610.1016/j.foodres.2017.07.04628873712
    [Google Scholar]
  75. KumarS. SinghP. Various techniques for solubility enhancement: An overview.Pharma Innov.201651, Part A23
    [Google Scholar]
  76. RobertsonG.L. Food packaging and shelf life: A practical guide.Boca RatonCRC Press200914315610.1201/9781420078459
    [Google Scholar]
  77. HuvaereK. SkibstedL.H. Flavonoids protecting food and beverages against light.J. Sci. Food Agric.2015951203510.1002/jsfa.679624961228
    [Google Scholar]
  78. YouW. AhnJ.C. BoopathiV. ArunkumarL. RupaE.J. AkterR. KongB.M. LeeG.S. YangD.C. KangS.C. LiuJ. Enhanced antiobesity efficacy of tryptophan using the nanoformulation of Dendropanax morbifera extract mediated with ZnO nanoparticle.Materials (Basel)202114482410.3390/ma1404082433572189
    [Google Scholar]
  79. GhanbariN. SalehiZ. KhodadadiA.A. ShokrgozarM.A. SabouryA.A. FarzanehF. Tryptophan-functionalized graphene quantum dots with enhanced curcumin loading capacity and pH-sensitive release.J. Drug Deliv. Sci. Technol.20216110213710.1016/j.jddst.2020.102137
    [Google Scholar]
  80. DongH. YangL. DadmohammadiY. LiP. LinT. HeY. ZhouY. LiJ. MeletharayilG. KapoorR. AbbaspourradA. Investigating the synergistic effects of high-pressure homogenization and pH shifting on the formation of tryptophan-rich nanoparticles.Food Chem.202443413737110.1016/j.foodchem.2023.13737137708572
    [Google Scholar]
  81. AdemY.T. MolinaP. LiuH. PatapoffT.W. SreedharaA. EsueO. Hexyl glucoside and hexyl maltoside inhibit light-induced oxidation of tryptophan.J. Pharm. Sci.2014103240941610.1002/jps.2380924338937
    [Google Scholar]
  82. KramarenkoG.G. HummelS.G. MartinS.M. BuettnerG.R. Ascorbate reacts with singlet oxygen to produce hydrogen peroxide.Photochem. Photobiol.20068261634163710.1111/j.1751‑1097.2006.tb09823.x16898858
    [Google Scholar]
  83. CasadeyR. ChallierC. SenzA. CriadoS. Antioxidant ability of tyrosol and derivative-compounds in the presence of O2(1Δg)-species. Studies of synergistic antioxidant effect with commercial antioxidants.Food Chem.201928527528110.1016/j.foodchem.2019.01.16130797345
    [Google Scholar]
  84. DadS. BisbyR.H. ClarkI.P. ParkerA.W. Identification and reactivity of the triplet excited state of 5-hydroxytryptophan.J. Photochem. Photobiol. B200578324525110.1016/j.jphotobiol.2004.11.01315708522
    [Google Scholar]
  85. SteinhartH. VollmarM. SailerC. Pro- and antioxidative effect of ascorbic acid on L-tryptophan in the system iron(3+)/ascorbic acid/oxygen.J. Agric. Food Chem.199341122275227710.1021/jf00036a010
    [Google Scholar]
  86. LaughtonM.J. HalliwellB. EvansP.J. RobinJ. HoultS. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin.Biochem. Pharmacol.198938172859286510.1016/0006‑2952(89)90442‑52476132
    [Google Scholar]
  87. EstevãoM.S. CarvalhoL.C. RibeiroD. CoutoD. FreitasM. GomesA. FerreiraL.M. FernandesE. MarquesM.M.B. Antioxidant activity of unexplored indole derivatives: Synthesis and screening.Eur. J. Med. Chem.201045114869487810.1016/j.ejmech.2010.07.05920727623
    [Google Scholar]
  88. ReiterR.J. TanD. ManchesterL.C. QiW. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: A review of the evidence.Cell Biochem. Biophys.200134223725610.1385/CBB:34:2:23711898866
    [Google Scholar]
  89. PoeggelerB. ThuermannS. DoseA. SchoenkeM. BurkhardtS. HardelandR. Melatonin’s unique radical scavenging properties – Roles of its functional substituents as revealed by a comparison with its structural analogs.J. Pineal Res.2002331203010.1034/j.1600‑079X.2002.01873.x12121482
    [Google Scholar]
  90. Ateş-AlagözZ. CobanT. SuzenS. A comparative study: Evaluation of antioxidant activity of melatonin and some indole derivatives.Med. Chem. Res.200514316917910.1007/s00044‑005‑0132‑0
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010333886241015050836
Loading
/content/journals/cpb/10.2174/0113892010333886241015050836
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bitter test; enrichment; functional food; nano-emulsion; oxidation; Tryptophan
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test