Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Several medicinal plants are identified as therapeutic agents for the world’s most deadly disease cancer. A member of the “Cucurbitaceae” family of medicinal plants, () has various pharmacological actions.

Aims and Objectives

In the present study we have focused on the phytochemical analysis, antimicrobial, anticancer and investigation of fruit extracts of C. colocynthis. The chloroform, pure ethanolic and ethanolic extracts of whole fruit, peel and pulp separately have been investigated.

Methods

The phytochemical analysis revealed the presence of alkaloids, flavonoids, steroids, phenols, saponins and glycosides in various parts of the fruit. Some compounds have been identified using GC-MS analysis by comparing with NIST library data. The antimicrobial activity of all extracts was checked by agar well diffusion method against five different bacterial strains such as , and . The zone of inhibition (ZOI) ranged between 11 mm to 27 mm against different strains.

Results

The polar solvent extracts (ethanolic and ethanolic extract) of peel showed good sensitivity against all bacterial strains as compared to non-polar solvent (chloroform extract), which showed activity only against and . The cytotoxic activity of all extracts against human brain cancer cell lines (U-87) was assessed using MTT assay.

Conclusion

The % cell viability of ethanolic (ET-PL), and aq. ethanolic extract of whole fruit and pulp showed promising results. The cancerous cell line U-87 seems to be more sensitive towards polar solvents (ethanolic and aq. ethanolic) pulp extracts than peel. Further, based on results, compounds identified in ET-PP were screened for their potential as antibacterial and anticancer agents through molecular docking and MMGBSA studies. These studies strongly supported the in-vitro study results and identified new drug candidates.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010332012241027022502
2024-11-01
2025-09-16
Loading full text...

Full text loading...

References

  1. DesaiA. QaziG. GanjuR. El-TamerM. SinghJ. SaxenaA. BediY. TanejaS. BhatH. Medicinal plants and cancer chemoprevention.Curr. Drug Metab.20089758159110.2174/13892000878582165718781909
    [Google Scholar]
  2. GreenwellM. RahmanP.K. Medicinal plants: Their use in anticancer treatment.Int. J. Pharm. Sci. Res.20156104103411226594645
    [Google Scholar]
  3. BabuT.D. KuttanG. PadikkalaJ. Cytotoxic and anti-tumour properties of certain taxa of Umbelliferae with special reference to Centella asiatica (L.) Urban.J. Ethnopharmacol.1995481535710.1016/0378‑8741(95)01284‑K8569247
    [Google Scholar]
  4. TandelG.S. BiswasM. KakdeO.G. TiwariA. SuriH.S. TurkM. LairdJ. AsareC. AnkrahA.A. KhannaN.N. MadhusudhanB.K. SabaL. SuriJ.S. A review on a deep learning perspective in brain cancer classification.Cancers (Basel)201911111110.3390/cancers1101011130669406
    [Google Scholar]
  5. SeethaJ. RajaS.S. Brain tumor classification using convolutional neural networks.Biomed. Pharmacol. J.20181131457146110.13005/bpj/1511
    [Google Scholar]
  6. PatelR. KayandeN. Review on: Indian Medicinal plants having anticancer property.PharmaTutor2016472528
    [Google Scholar]
  7. RoyA. AttreT. BharadvajaN. TiezziA. KarpińskiT. Anticancer agent from medicinal plants: A review.New aspects in medicinal plants and pharmacognosyPoznań, PolandJBBooks
    [Google Scholar]
  8. PravinB. TusharD. VijayP. KishanchnadK. Review on Citrullus colocynthis.Int. J. Res. Pharm. Chem.2013314653
    [Google Scholar]
  9. SavithrammaN. RaoM.L. SuhrulathaD. Screening of medicinal plants for secondary metabolites.Middle East J. Sci. Res.201183579584
    [Google Scholar]
  10. JonesW.P. KinghornA.D. Extraction of plant secondary metabolites.Natural products isolation.ChamSpringer200632335110.1385/1‑59259‑955‑9:323
    [Google Scholar]
  11. UmaC. SekarK. Phytochemical analysis of a folklore medicinal plant Citrullus colocynthis L (bitter apple).J. Pharmacogn. Phytochem.201426
    [Google Scholar]
  12. LyonG.D. ReglinskiT. NewtonA.C. Novel disease control compounds: The potential to ‘immunize’ plants against infection.Plant Pathol.199544340742710.1111/j.1365‑3059.1995.tb01664.x
    [Google Scholar]
  13. JonesW. P. KinghornA. D. Extraction of plant secondary metabolites.Methods Mol. Biol.201286434166
    [Google Scholar]
  14. KhanM.S. AlomariA. TabrezS. HassanI. WahabR. BhatS.A. AlafaleqN.O. AltwaijryN. ShaikG.M. ZaidiS.K. NouhW. AlokailM.S. IsmaelM.A. Anticancer potential of biogenic silver nanoparticles: A mechanistic study.Pharmaceutics202113570710.3390/pharmaceutics1305070734066092
    [Google Scholar]
  15. SertelS. EichhornT. PlinkertP.K. EfferthT. Cytotoxicity of Thymus vulgaris essential oil towards human oral cavity squamous cell carcinoma.Anticancer Res.2011311818721273584
    [Google Scholar]
  16. SyedN Pomegranate extracts and cancer prevention: Molecular and cellular activities.Anti-Cancer Agents Med. Chem.201313811491161
    [Google Scholar]
  17. ShawkeyA.M. RabehM.A. AbdulallA.K. AbdellatifA.O. Green nanotechnology: Anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts.Adv. Life Sci. Technol2013136070
    [Google Scholar]
  18. AbdulridhaM.K. Al-MarzoqiA.H. GhasemianA. The anticancer efficiency of Citrullus colocynthis toward the colorectal cancer therapy.J. Gastrointest. Cancer202051243944410.1007/s12029‑019‑00299‑631463888
    [Google Scholar]
  19. ShawkeyA.M. RabehM.A. AbdellatifA.O. Biofuntional moleculs from Citrullus colocynthis: An HPLC/MS analysis in correlation to antimicrobial and anticancer activities.Adv. Life Sci. Technol2014175161
    [Google Scholar]
  20. AyyadS.E.N. Abdel-LateffA. AlarifW.M. PatacchioliF.R. BadriaF.A. EzmirlyS.T. In vitro and in vivo study of cucurbitacins-type triterpene glucoside from Citrullus colocynthis growing in Saudi Arabia against hepatocellular carcinoma.Environ. Toxicol. Pharmacol.201233224525110.1016/j.etap.2011.12.01022245841
    [Google Scholar]
  21. a ChengX. QinM. ChenR. JiaY. ZhuQ. ChenG. WangA. LingB. RongW. Citrullus colocynthis (L.) Schrad.: A Promising Pharmaceutical Resource for Multiple Diseases.Molecules20232817622110.3390/molecules2817622137687049
    [Google Scholar]
  22. b RaoV. PooniaA. Citrullus colocynthis (bitter apple): Bioactive compounds, nutritional profile, nutraceutical properties and potential food applications: A review.Food Product., Process. Nutr.202351410.1186/s43014‑022‑00118‑9
    [Google Scholar]
  23. a JoshiG. KaurJ. SharmaP. KaurG. BhandariY. KumarR. SinghS. P53-mediated anticancer activity of Citrullus colocynthis extracts.Nat. Prod. J.20199430331110.2174/2210315509666181203114329
    [Google Scholar]
  24. b Tannin-SpitzT. GrossmanS. DovratS. GottliebH.E. BergmanM. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells.Biochem. Pharmacol.2007731566710.1016/j.bcp.2006.09.01217049494
    [Google Scholar]
  25. RaniM. ShimW.J. JangM. HanG.M. HongS.H. Releasing of hexabromocyclododecanes from expanded polystyrenes in seawater -field and laboratory experiments.Chemosphere201718579880510.1016/j.chemosphere.2017.07.04228734216
    [Google Scholar]
  26. BhasinS. GillT.M. ReubenD.B. LathamN.K. GanzD.A. GreeneE.J. DziuraJ. BasariaS. GurwitzJ.H. DykesP.C. McMahonS. StorerT.W. GazarianP. MillerM.E. TravisonT.G. EssermanD. CarnieM.B. GoehringL. FaganM. GreenspanS.L. AlexanderN. WigginsJ. KoF. SiuA.L. VolpiE. WuA.W. RichJ. WaringS.C. WallaceR.B. CasteelC. ResnickN.M. MagazinerJ. CharpentierP. LuC. AraujoK. RajeevanH. MengC. AlloreH. BrawleyB.F. EderR. McGloinJ.M. SkokosE.A. DuncanP.W. BakerD. BoultC. Correa-de-AraujoR. PeduzziP. InvestigatorsS.T. A randomized trial of a multifactorial strategy to prevent serious fall injuries.N. Engl. J. Med.2020383212914010.1056/NEJMoa200218332640131
    [Google Scholar]
  27. AbbasA.O. AlaqilA.A. KamelN.N. MoustafaE.S. Citrullus colocynthis Seed ameliorates layer performance and immune response under acute oxidative stress induced by paraquat injection.Animals (Basel)202212894510.3390/ani1208094535454193
    [Google Scholar]
  28. ShiC. KarimS. WangC. ZhaoM. MurtazaG. A review on antidiabetic activity of Citrullus colocynthis Schrad.Acta Pol. Pharm.201471336336725265814
    [Google Scholar]
  29. HussainA.I. RathoreH.A. SattarM.Z.A. ChathaS.A.S. SarkerS.D. GilaniA.H. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential.J. Ethnopharmacol.20141551546610.1016/j.jep.2014.06.01124936768
    [Google Scholar]
  30. RahimiR. AminG. ArdekaniM.R.S. A review on Citrullus colocynthis Schrad.: From traditional Iranian medicine to modern phytotherapy.J. Altern. Complement. Med.201218655155410.1089/acm.2011.029722784342
    [Google Scholar]
  31. KumarS. KumarD. JushaM. SarohaK. SinghN. VashishtaB. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract.Acta Pharm.200858221522010.2478/v10007‑008‑0008‑118515231
    [Google Scholar]
  32. RathoreS.K. DwibediB. KarS.K. DixitS. SabatJ. PandaM. Viral aetiology and clinico-epidemiological features of acute encephalitis syndrome in eastern India.Epidemiol. Infect.2014142122514252110.1017/S095026881300339724476571
    [Google Scholar]
  33. LiH. HuoY. HeX. YaoL. ZhangH. CuiY. XiaoH. XieW. ZhangD. WangY. ZhangS. TuH. ChengY. GuoY. CaoX. ZhuY. JiangT. GuoX. QinY. ShaJ. A male germ-cell-specific ribosome controls male fertility.Nature2022612794172573110.1038/s41586‑022‑05508‑036517592
    [Google Scholar]
  34. AgarwalV. SharmaA.K. UpadhyayA. SinghG. GuptaR. Hypoglycemic effects of Citrullus colocynthis roots.Acta Pol. Pharm.2012691757922574509
    [Google Scholar]
  35. RezaiM. DavoodiA. AsoriM. AzadbakhtM. Cytotoxic activity of citrullus colocynthis (L.) schrad fruit extract on gastric adenocarcinoma and breast cancer cell lines.Int J Pharm Sci Rev Res2017451175178
    [Google Scholar]
  36. AhmedM. JiM. QinP. GuZ. LiuY. SikandarA. IqbalM. JaveedA. Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis sativa L.Appl. Ecol. Environ. Res.20191736961697910.15666/aeer/1703_69616979
    [Google Scholar]
  37. GurudeebanS. RamanathanT. SatyavaniK. Characterization of volatile compounds from bitter apple (Citrullus colocynthis) using GC-MS.Int J Chem Anal Sci20112108110
    [Google Scholar]
  38. HameedB. AliQ. HafeezM. MalikA. Antibacterial and antifungal activity of fruit, seed and root extracts of Citrullus colocynthis plant.Biol. Clin. Sci. Res. J.2020202011033
    [Google Scholar]
  39. MemonU. BrohiA.H. AhmedS.W. AzharI. BanoH. Antibacterial screening of Citrullus colocynthis.Pak. J. Pharm. Sci.20031611616414561
    [Google Scholar]
  40. Santana DE OliveiraM. DA CruzJ. N. Almeida DA CostaW. SilvaS. G. BritoM. D. P. DE MenezesS. A. F. DE Jesus Chaves NetoA. M. DE Aguiar AndradeE. H. DE Carvalho JuniorR. N. Chemical composition, antimicrobial properties of Siparuna guianensis essential oil and a molecular docking and dynamics molecular study of its major chemical constituent.Molecules2020253852
    [Google Scholar]
  41. (b Tavakkol AfshariJ. RakhshandehH. ZamaniA. Mahdavi ShahriN. Cytotoxicity effects of Citrullus colocynthis on Hep2 and L929 cell lines.Cell2005110506
    [Google Scholar]
  42. (a DHARAL. TRIPATHIA. Antimicrobial activity of eugenol and cinnamaldehyde against extended spectrum beta lactamase producing enterobacteriaceae by in vitro and molecular docking analysis.Eur. J. Integr. Med.20135527536
    [Google Scholar]
  43. (b HollingsworthS.A. KarplusP.A. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins.Biomol. Concepts201013-427128310.1515/bmc.2010.02221436958
    [Google Scholar]
  44. (a EshtiaghiS. NazariR. Fasihi-RamandiM. Molecular docking, anti-biofilm & antibacterial activities and therapeutic index of mCM11 peptide on acinetobacter baumannii strains.Curr. Microbiol.202380191
    [Google Scholar]
  45. (b TangH. JensenK. HouangE. McRobbF.M. BhatS. SvenssonM. BochevarovA. DayT. DahlgrenM.K. BellJ.A. FryeL. SkeneR.J. LewisJ.H. OsborneJ.D. TierneyJ.P. GordonJ.A. PalomeroM.A. GallatiC. ChapmanR.S.L. JonesD.R. HirstK.L. SephtonM. ChauhanA. SharpeA. TardiaP. DechauxE.A. TaylorA. WaddellR.D. ValentineA. JanssensH.B. AzizO. BloomfieldD.E. LadhaS. FraserI.J. EllardJ.M. Discovery of a novel class of d -amino acid oxidase inhibitors using the schrödinger computational platform.J. Med. Chem.20226596775680210.1021/acs.jmedchem.2c0011835482677
    [Google Scholar]
  46. MalieheT.S. MthembuN.N. ShanduJ. Anti-Staphylococcus aureus activity, ADMET properties and molecular docking study of phytocompounds from Erianthemum dregei.Int. J. Pharm. Sci. Res.20211233493359
    [Google Scholar]
  47. (b PoustforooshA. HashemipourH. TüzünB. AzadpourM. FaramarzS. PardakhtyA. MehrabaniM. NematollahiM.H. The impact of D614G mutation of SARS-COV-2 on the efficacy of anti-viral drugs: A comparative molecular docking and molecular dynamics study.Curr. Microbiol.202279824110.1007/s00284‑022‑02921‑635792936
    [Google Scholar]
  48. PoustforooshA. FaramarzS. NematollahiM. H. HashemipourH. TüzünB. PardakhtyA. MehrabaniM. 3D‐QSAR, molecular docking, molecular dynamics, and ADME/T analysis of marketed and newly designed flavonoids as inhibitors of Bcl‐2 family proteins for targeting U‐87 glioblastoma.J. Cell. Biochem.2022123390405
    [Google Scholar]
  49. (b FriesnerR.A. MurphyR.B. RepaskyM.P. FryeL.L. GreenwoodJ.R. HalgrenT.A. SanschagrinP.C. MainzD.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.J. Med. Chem.200649216177619610.1021/jm051256o17034125
    [Google Scholar]
  50. AnilS. ShuklaY. SushilK. Recent development in plant derived antimicrobial constituents-a review.Curr. Res. Med. Aromat. Plants2000222/3349405
    [Google Scholar]
  51. KelmansonJ.E. JägerA.K. van StadenJ. Zulu medicinal plants with antibacterial activity.J. Ethnopharmacol.200069324124610.1016/S0378‑8741(99)00147‑610722206
    [Google Scholar]
  52. GurudeebanS. RajamanickamE. RamanathanT. SatyavaniK. Antimicrobial activity of Citrullus colocynthis in Gulf of Mannar.Int. J. Curr. Res.201027881
    [Google Scholar]
  53. AliA. AlianM. ElmahiH. Phytochemical analysis of some chemical metabolites of Colocynth plant [Citrullus colocynthis L.] and its activities as antimicrobial and antiplasmidial.J. Basic Appl. Sci. Res.201335228236
    [Google Scholar]
  54. BowieJ.U. LüthyR. EisenbergD. A method to identify protein sequences that fold into a known three-dimensional structure.Science1991253501616417010.1126/science.18532011853201
    [Google Scholar]
  55. LüthyR. BowieJ.U. EisenbergD. Assessment of protein models with three-dimensional profiles.Nature19923566364838510.1038/356083a01538787
    [Google Scholar]
  56. PontiusJ. RichelleJ. WodakS.J. Deviations from standard atomic volumes as a quality measure for protein crystal structures.J. Mol. Biol.1996264112113610.1006/jmbi.1996.06288950272
    [Google Scholar]
  57. RostkowskiM. OlssonM.H.M. SøndergaardC.R. JensenJ.H. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA.BMC Struct. Biol.2011111610.1186/1472‑6807‑11‑621269479
    [Google Scholar]
  58. SatarkerS. MaityS. MudgalJ. NampoothiriM. In silico screening of neurokinin receptor antagonists as a therapeutic strategy for neuroinflammation in Alzheimer’s disease.Mol. Divers.202226144346610.1007/s11030‑021‑10276‑634331670
    [Google Scholar]
  59. KrishnanA. DhamodharanD. SundaramT. SundaramV. ByunH.S. Computational discovery of novel human LMTK3 inhibitors by high throughput virtual screening using NCI database.Korean J. Chem. Eng.20223961368137410.1007/s11814‑022‑1120‑5
    [Google Scholar]
  60. HussainM. QadriT. HussainZ. SaeedA. ChannarP.A. ShehzadiS.A. HassanM. LarikF.A. MahmoodT. MalikA. Synthesis, antibacterial activity and molecular docking study of vanillin derived 1,4-disubstituted 1,2,3-triazoles as inhibitors of bacterial DNA synthesis.Heliyon2019511e0281210.1016/j.heliyon.2019.e0281231768438
    [Google Scholar]
  61. WangE. SunH. WangJ. WangZ. LiuH. ZhangJ.Z.H. HouT. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design.Chem. Rev.2019119169478950810.1021/acs.chemrev.9b0005531244000
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010332012241027022502
Loading
/content/journals/cpb/10.2174/0113892010332012241027022502
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test