Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Analytical methods have an essential function in the healthcare sector, particularly when it emanates from the creation and approval of medications. These methods are essential for identifying the active ingredients, ensuring the purity of compounds, and quantifying the existence of any impurities or degradation products.

Objective

The objective of the research article is to discuss an analytical method available for the drug Onychomycosis, which is indeed crucial in treating nail infection, to confirm the efficacy and quality of pharmaceutical products. Among various analytical techniques available, UV Spectroscopy, RP-HPLC (high performance-liquid chromatography) and tandem mass spectrometry are normally employed due to their speed and accuracy.

Methods

Literature surveys typically reveal the predominance of UV, RP-HPLC and LC-MS/MS methods for estimating azole derivatives due to their established reliability, sensitivity, and applicability to an extensive range of compounds. Researchers often select the most suitable method based on factors such as sample complexity, sensitivity requirements, and available instrumentation.

Results

This present art states most of the validation parameters like LOQ, Linearity range, Column and mobile phase used in different dosage forms as well as versatile techniques.

Conclusion

This review article provides a comprehensive evaluation of various analytical methods employed in the estimation of antifungal agents, particularly those used to treat Onychomycosis. Onychomycosis, a prevalent infection on nails caused by fungi, demands precise and accurate analytical techniques to ensure the safety and effectiveness of antifungal therapies. In this review, we discussed and compared a range of analytical technologies, highlighting their applications and sensitivity in the context of Onychomycosis drug analysis. This critical assessment aims to guide researchers and practitioners in selecting the most suitable methods for their specific analytical needs.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129345132240921114210
2024-09-24
2025-09-28
Loading full text...

Full text loading...

References

  1. FrazierW.T. Santiago-DelgadoZ.M. StupkaK.C.II Onychomycosis: Rapid evidence reviews.Am. Fam. Physician2021104435936734652111
    [Google Scholar]
  2. GuptaA.K. VenkataramanM. TalukderM. Onychomycosis in older adults: Prevalence, diagnosis, and management.Drugs Aging202239319119810.1007/s40266‑021‑00917‑835102533
    [Google Scholar]
  3. GuptaA.K. GuptaG. JainH.C. LyndeC.W. FoleyK.A. DaigleD. CooperE.A. SummerbellR.C. The prevalence of unsuspected onychomycosis and its causative organisms in a multicentre Canadian sample of 30 000 patients visiting physicians’ offices.J. Eur. Acad. Dermatol. Venereol.20163091567157210.1111/jdv.1367727168494
    [Google Scholar]
  4. VasconcellosC. PereiraC.Q.M. SouzaM.C. PelegriniA. FreitasR.S. TakahashiJ.P. Identification of fungi species in the onychomycosis of institutionalized elderly.An. Bras. Dermatol.201388337738010.1590/abd1806‑4841.2013188423793195
    [Google Scholar]
  5. GuptaA.K. JainH.C. LyndeC.W. WatteelG.N. SummerbellR.C. Prevalence and epidemiology of unsuspected onychomycosis in patients visiting dermatologists’ offices in Ontario, Canada ‐ A multicenter survey of 2001 patients.Int. J. Dermatol.1997361078378710.1046/j.1365‑4362.1997.00349.x9372358
    [Google Scholar]
  6. SigurgeirssonB. BaranR. The prevalence of onychomycosis in the global population – A literature study.J. Eur. Acad. Dermatol. Venereol.201428111480149110.1111/jdv.1232324283696
    [Google Scholar]
  7. ThomasJ. JacobsonG.A. NarkowiczC.K. PetersonG.M. BurnetH. SharpeC. REVIEW ARTICLE: Toenail onychomycosis: An important global disease burden.J. Clin. Pharm. Ther.201035549751910.1111/j.1365‑2710.2009.01107.x20831675
    [Google Scholar]
  8. ScherR.K. BaranR. Onychomycosis in clinical practice: Factors contributing to recurrence.Br. J. Dermatol.2003149s65Suppl. 655910.1046/j.1365‑2133.149.s65.5.x14510969
    [Google Scholar]
  9. EvansE.G.V. SigurgeirssonB. The LION Study Group Double blind, randomised study of continuous terbinafine compared with intermittent itraconazole in treatment of toenail onychomycosis.BMJ199931871901031103510.1136/bmj.318.7190.103110205099
    [Google Scholar]
  10. SigurgeirssonB. ÓlafssonJ.H. SteinssonJ. PaulC. BillsteinS. EvansE.G.V. Long-term effectiveness of treatment with terbinafine vs itraconazole in onychomycosis: A 5-year blinded prospective follow-up study.Arch. Dermatol.2002138335335710.1001/archderm.138.3.35311902986
    [Google Scholar]
  11. EpsteinE. How often does oral treatment of toenail onychomycosis produce a disease-free nail? An analysis of published data.Arch. Dermatol.1998134121551155410.1001/archderm.134.12.15519875192
    [Google Scholar]
  12. Gupta MDA.K. De Doncker PhDP. Scher MDR.K. Haneke MDE. Daniel III MDR.C. André MDJ. Baran MDR. Itraconazole for the treatment of onychomycosis.Int. J. Dermatol.199837430330810.1046/j.1365‑4362.1998.00360.x9585906
    [Google Scholar]
  13. HavuV. HeikkiläH. KuokkanenK. NuutinenM. RantanenT. SaariS. StubbS. SuhonenR. TurjanmaaK. A double-blind, randomized study to compare the efficacy and safety of terbinafine (Lamisil®) with fluconazole (Diflucan®) in the treatment of onychomycosis.Br. J. Dermatol.200014219710210.1046/j.1365‑2133.2000.03247.x10651701
    [Google Scholar]
  14. GuptaA.K. Drummond-MainC. PaquetM. Evidence-based optimal fluconazole dosing regimen for onychomycosis treatment.J. Dermatolog. Treat.2013241758010.3109/09546634.2012.70330822694221
    [Google Scholar]
  15. LeungA.K.C. LamJ.M. LeongK.F. HonK.L. BarankinB. LeungA.A.M. WongA.H.C. Onychomycosis: An updated review.Recent Pat. Inflamm. Allergy Drug Discov.2020141324510.2174/1872213X1366619102609071331738146
    [Google Scholar]
  16. AggarwalR. TarghotraM. SahooP.K. ChauhanM.K. Onychomycosis: Novel strategies for treatment.J. Drug Deliv. Sci. Technol.20205710177410.1016/j.jddst.2020.101774
    [Google Scholar]
  17. GregoriouS. KyriazopoulouM. TsiogkaA. RigopoulosD. Novel and investigational treatments for onychomycosis.J. Fungi.2022810107910.3390/jof810107936294644
    [Google Scholar]
  18. VlahovicT.C. Onychomycosis.Clin. Podiatr. Med. Surg.201633330531810.1016/j.cpm.2016.02.00127215153
    [Google Scholar]
  19. GuptaA.K. MaysR.R. VersteegS.G. ShearN.H. PiguetV. Update on current approaches to diagnosis and treatment of onychomycosis.Expert Rev. Anti Infect. Ther.2018161292993810.1080/14787210.2018.154489130411650
    [Google Scholar]
  20. KrasaeathR. ElizondoJ. Topical antifungals for treatment of onychomycosis.Am. Fam. Physician201694973427929250
    [Google Scholar]
  21. RichP. SpellmanM. PurohitV. ZangC. CrookT.J. FFPME TJ Tavaborole 5% topical solution for the treatment of toenail onychomycosis in pediatric patients: Results from a phase 4 open-label study.J. Drugs Dermatol.201918219019530811142
    [Google Scholar]
  22. KerridgeD. The plasma membrane of Candida albicans and its role in the action of antifungal drugs.The eukaryotic microbial cell. GoodayG.W. LloydD. TrinciA.P.J. Cambridge, EnglandCambridge University Press1980103
    [Google Scholar]
  23. Van CutsemJ.M. ThienpontD. Miconazole, a broad-spectrum antimycotic agent with antibacterial activity.Chemotherapy197217639240410.1159/0002208754563141
    [Google Scholar]
  24. Explore chemistry.Available from: https://pubchem.ncbi.nlm.nih.gov
  25. Chemical Book.Available from: https://www.chemicalbook.com
  26. DittmarW. GrauW. RaetherW. SchrinnerE. WagnerW.H. Microbiological laboratory studies with ciclopiroxolamine (author’s transl).Arzneimittelforschung1981318A131713227197538
    [Google Scholar]
  27. ZhangA.Y. CampW.L. ElewskiB.E. Advances in topical and systemic antifungals.Dermatol. Clin.2007252165183, vi10.1016/j.det.2007.01.00217430754
    [Google Scholar]
  28. GuptaA.K. RyderJ.E. BaranR. The use of topical therapies to treat onychomycosis.Dermatol. Clin.200321348148910.1016/S0733‑8635(03)00025‑112956200
    [Google Scholar]
  29. LeeS.K. HaE.S. JeongJ.S. KimS. ParkH. KimJ.S. YooJ.W. MoonH.R. JungY. KimM.S. Determination and correlation of solubility of efinaconazole in fifteen mono solvents and three binary mixed solvents at various temperatures.J. Mol. Liq.202234911814810.1016/j.molliq.2021.118148
    [Google Scholar]
  30. LipnerS. ScherR. Efinaconazole in the treatment of onychomycosis.Infect. Drug Resist.2015816317210.2147/IDR.S6959626082652
    [Google Scholar]
  31. Jo SiuW.J. TatsumiY. SendaH. PillaiR. NakamuraT. SoneD. FothergillA. Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis.Antimicrob. Agents Chemother.20135741610161610.1128/AAC.02056‑1223318803
    [Google Scholar]
  32. MarkhamA. Tavaborole: First global approval.Drugs201474131555155810.1007/s40265‑014‑0276‑725118637
    [Google Scholar]
  33. ParkN.H. ShinK.H. KangM.K. 34 - Antifungal and antiviral agents.Pharmacology and Therapeutics for Dentistry.7th ed DowdF.J. JohnsonB.S. MariottiA.J. Mosby201748850310.1016/B978‑0‑323‑39307‑2.00034‑5
    [Google Scholar]
  34. HuiX. BakerS.J. WesterR.C. BarbadilloS. CashmoreA.K. SandersV. HoldK.M. AkamaT. ZhangY.K. PlattnerJ.J. MaibachH.I. in vitro penetration of a novel oxaborole antifungal (AN2690) into the human nail plate.J. Pharm. Sci.200796102622263110.1002/jps.2090117621679
    [Google Scholar]
  35. CiaravinoV. CoronadoD. LanphearC. HobermanA. ChandaS. Tavaborole, A novel Boron-Containing small molecule pharmaceutical agent for topical treatment of onychomycosis.Int. J. Toxicol.201635554355710.1177/109158181664193827138050
    [Google Scholar]
  36. CoronadoD. MerchantT. ChandaS. ZaneL.T. In vitro Nail Penetration and Antifungal Activity of Tavaborole, a Boron-Based Pharmaceutical.J. Drugs Dermatol.201514660961426091387
    [Google Scholar]
  37. GuptaAditya MaysRachel FoleyKelly Topical antifungal agents.Comprehensive Dermatologic Drug TherapyResearch Gate202148049210.1016/B978‑0‑323‑61211‑1.00042‑5
    [Google Scholar]
  38. CuiX. WangL. LüY. YueC. Development and research progress of anti-drug resistant fungal drugs.J. Infect. Public Health2022159986100010.1016/j.jiph.2022.08.00435981408
    [Google Scholar]
  39. ScherR.K. NakamuraN. TavakkolA. Luliconazole: A review of a new antifungal agent for the topical treatment of onychomycosis.Mycoses201457738939310.1111/myc.1216824621346
    [Google Scholar]
  40. KogaH. NanjohY. MakimuraK. TsuboiR. In vitro antifungal activities of luliconazole, a new topical imidazole.Med. Mycol.200947664064710.1080/1369378080254151819115136
    [Google Scholar]
  41. WatanabeS. KishidaH. OkuboA. Efficacy and safety of luliconazole 5% nail solution for the treatment of onychomycosis: A multicenter, double‐blind, randomized phase III study.J. Dermatol.201744775375910.1111/1346‑8138.1381628332720
    [Google Scholar]
  42. Available from: https://ipc.gov.in
  43. SnyderL.R. KirklandJ.J. GlajchJ.L. Introduction to Modern liquid chromatography.Wiley1979863
    [Google Scholar]
  44. MartinM. GuiochonG. Effects of high pressure in liquid chromatography.J. Chromatogr. A200510901-2163810.1016/j.chroma.2005.06.00516196131
    [Google Scholar]
  45. ThammanaM. A review on high performance liquid chromatography (HPLC). Res. Rev.J. Pharm. Anal.201652228p
    [Google Scholar]
  46. FennJ.B. MannM. MengC.K. WongS.F. WhitehouseC.M. Electrospray ionization for mass spectrometry of large biomolecules.Science19892464926647110.1126/science.26753152675315
    [Google Scholar]
  47. RashedM.S. BucknallM.P. LittleD. AwadA. JacobM. AlamoudiM. AlwattarM. OzandP.T. Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles.Clin. Chem.19974371129114110.1093/clinchem/43.7.11299216448
    [Google Scholar]
  48. JannettoP.J. FitzgeraldR.L. Effective use of mass spectrometry in the clinical laboratory.Clin. Chem.2016621929810.1373/clinchem.2015.24814626553795
    [Google Scholar]
  49. van den OuwelandJ.M.W. KemaI.P. The role of liquid chromatography–tandem mass spectrometry in the clinical laboratory.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2012883-884183210.1016/j.jchromb.2011.11.04422197607
    [Google Scholar]
  50. AdawayJ.E. KeevilB.G. Therapeutic drug monitoring and LC–MS/MS.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2012883-884334910.1016/j.jchromb.2011.09.04121992751
    [Google Scholar]
  51. ShipkovaM. SvinarovD. LC–MS/MS as a tool for TDM services: Where are we?Clin. Biochem.20164913-141009102310.1016/j.clinbiochem.2016.05.00127163969
    [Google Scholar]
  52. AtoleD.M. RajputH.H. Ultraviolet spectroscopy and its pharmaceutical applications-a brief review.Asian J. Pharm. Clin. Res.2018112596610.22159/ajpcr.2018.v11i2.21361
    [Google Scholar]
  53. SinghalA. SainiU. ChopraB. DhingraA.K. JainA. ChaudharyJ. UV-visible spectroscopy: A review on its pharmaceutical and bio-allied sciences applications.Curr. Pharm. Anal.202420316117710.2174/0115734129300562240408042614
    [Google Scholar]
  54. LandersJ.P. Handbook of capillary and microchip electrophoresis and associated microtechniques.Boca RatonCRC Press2008
    [Google Scholar]
  55. RizviS.A.A. DoD.P. SalehA.M. Fundamentals of micellar electrokinetic chromatography (MEKC).Eur. J. Chem.20112227628110.5155/eurjchem.2.2.276‑281.401
    [Google Scholar]
  56. HancuG. SimonB. RusuA. MirciaE. GyéresiA. Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis.Adv. Pharm. Bull.2013311824312804
    [Google Scholar]
  57. TagliaroF. ManettoG. CrivellenteF. SmithF.P. A brief introduction to capillary electrophoresis.Forensic Sci. Int.1998922-3758810.1016/S0379‑0738(98)00010‑3
    [Google Scholar]
  58. DeylZ. MikšíkI. TagliaroF. Advances in capillary electrophoresis.Forensic Sci. Int.1998922-38912410.1016/S0379‑0738(98)00011‑59627977
    [Google Scholar]
  59. AhujaS. JimidarM.I. Capillary electrophoresis methods for pharmaceutical analysis.LondonAcademic Press2008
    [Google Scholar]
  60. BelliardoF. BertolinoA. BrandoloG. LucarelliC. Micro-liquid chromatography method for the determination of ciclopiroxolamine after pre-column derivatization in topical formulations.J. Chromatogr. A19915531-2414510.1016/S0021‑9673(01)88470‑31787166
    [Google Scholar]
  61. CoppiG SilingardiS. HPLC method for pharmacokinetic studies on ciclopirox olamine in rabbits after intravenous and intravaginal administrationsFarmaco1992475 Suppl779786
    [Google Scholar]
  62. GagliardiL. MultariG. CavazzuttiG. De OrsiD. TonelliD. HPLC determination of ciclopirox, octopirox, and pyrithiones in pharmaceuticals and antidandruff preparations.J. Liq. Chromatogr. Relat. Technol.199821152365237310.1080/10826079808000544
    [Google Scholar]
  63. EscarroneA.L.V. BittencourtC.F. LaportaL.V. dos SantosM.R. PrimelE.G. CaldasS.S. LC–UV method with pre-column derivatization for the determination of ciclopirox olamine in raw material and topical solution.Chromatographia20086711-1296797110.1365/s10337‑008‑0623‑5
    [Google Scholar]
  64. LiJ. JiangY. SunT. RenS. Fast and simple method for assay of ciclopirox olamine by micellar electrokinetic capillary chromatography.J. Pharm. Biomed. Anal.2008474-592993310.1016/j.jpba.2008.02.02318403159
    [Google Scholar]
  65. BuW. FanX. SextonH. HeymanI. A direct LC/MS/MS method for the determination of ciclopirox penetration across human nail plate in in vitro penetration studies.J. Pharm. Biomed. Anal.201051123023510.1016/j.jpba.2009.08.01919744810
    [Google Scholar]
  66. FelixF.S. do LagoC.L. AngnesL. Determination of ciclopirox olamine in pharmaceutical products by capillary electrophoresis with capacitively coupled contactless conductivity detection.Electrophoresis201132890090510.1002/elps.20100061221394732
    [Google Scholar]
  67. SataniB.H. PatelJ.V. GamiR.B. PatelC.N. Development and validation of a stability-indicating RP-HPLC method for estimation of ciclopirox olamine in bulk drug and cream formulation.J. Pharm. Res.201361102
    [Google Scholar]
  68. Mielech-ŁukasiewiczK. RogińskaK. Voltammetric determination of antifungal agents in pharmaceuticals and cosmetics using boron-doped diamond electrodes.Anal. Methods20146197912792210.1039/C4AY01421A
    [Google Scholar]
  69. SotoC. SaavedraR. ToralM.I. NacaratteF. PozaC. Preliminary studies for ciclopirox olamine determination by thermal lens spectrophotometry.Microchem. J.2016129364010.1016/j.microc.2016.06.004
    [Google Scholar]
  70. BaghelM RajputS Degradation and impurity profile study of ciclopirox olamine after pre-column derivatization: A risk-based approachJ. Chromatogr. Sci.201755989991010.1093/chromsci/bmx047
    [Google Scholar]
  71. LiP.J. PengQ.D. HuG. GengJ. Determination of four enantiomers in Efinaconazole by HPLC. Chinese.J. Pharm.20164714421444
    [Google Scholar]
  72. PatelR.B. PatelM.R. PatniN.R. AgrawalV. Efinaconazole: DoE-supported development and validation of a quantitative HPTLC method and its application for the assay of drugs in solution and microemulsion-based formulations.Anal. Methods202012101380138810.1039/C9AY02599E
    [Google Scholar]
  73. VikasA. RashminP. MrunaliP. SandipM. KaushikT. RP-HPLC method for quantitative estimation of Efinaconazole in topical microemulsion and microemulsion-based-gel formulations and in presence of its degradation products.Microchem. J.202015510475310.1016/j.microc.2020.104753
    [Google Scholar]
  74. UppalaR. MaruthapillaiA. Quantification of potential genotoxic impurity IMP-A and IMP-B in efinaconazole drug material by LC-MS/MS.Mater. Today Proc.202140S198S20510.1016/j.matpr.2020.08.810
    [Google Scholar]
  75. KolimiP. ShankarV.K. ShettarA. RangappaS. RepkaM.A. MurthyS.N. Development and validation of HPLC method for Efinaconazole: Application to human nail permeation studies.AAPS PharmSciTech20222316310.1208/s12249‑021‑02196‑335091878
    [Google Scholar]
  76. GovindarajanS. AsharaniI.V. Development and validation of a LC–MS/MS method for the profiling of impurities formed during stress study of antifungal agent-Efinaconazole.J. Chromatogr. Sci.202260432433510.1093/chromsci/bmab07934160008
    [Google Scholar]
  77. Anil KumarS. Development and validation of area under curve method for the estimation of Efinaconazole in bulk drug and pharmaceutical formulations.JETIR202310
    [Google Scholar]
  78. TirukkovalluriS.R. BalireddiV. TatikondaK.M. Analytical method development and validation of stability indicating method of RP-HPLC for quantification of Tavaborole related substances: Application to 5% topical solution.Eur. J. Biomed. Pharm. Sci.201859545550
    [Google Scholar]
  79. TampucciS. TerreniE. BurgalassiS. ChetoniP. MontiD. Development and validation of an HPLC–UV method to quantify Tavaborole during in vitro transungual permeation studies.J. AOAC Int.2018101243744310.5740/jaoacint.17‑003928766480
    [Google Scholar]
  80. SheelaA.S. AnnapurnaM.M. YasaswiniR.S. New validated analytical methods for the determination of Tavaborole (An anti-fungal agent).Res. J. Pharm. Technol.20201341895190010.5958/0974‑360X.2020.00341.8
    [Google Scholar]
  81. IndabawaAH AbubakarSU YahayaSM UV-spectrometric method development and validation of TavaboroleJ. Chem. Pharm.202113519
    [Google Scholar]
  82. PuppalaU. MarisettiV.M. SrinivasK.S.V. ReddyK.V. KaliyaperumalM. DoddipallaR. Oxidative degradation profile studies of tavaborole by a validated stability indicating RP-UPLC method: Isolation and characterization of novel degradant using 2D-NMR and HRMS.Biomed. Chromatogr.2021356e507010.1002/bmc.507033453064
    [Google Scholar]
  83. DamleMC SuryawanshiMH Oxidative degradation of Tavaborole: Determination by derivative UV spectrophotometry.Indian Drugs2023600606
    [Google Scholar]
  84. KulkarniD.C. DadhichA.S. AnnapurnaM.M. Method development and validation of a new stability indicating HPLC and LC-ESI-MS/MS methods for the determination of Tavaborole.J. Drug Deliv. Ther.202414616116910.22270/jddt.v14i6.6642
    [Google Scholar]
  85. WolterMarek Development of an LC-MS/MS method for the determination of the antifungal luliconazole in human toenails.American Association of Pharmaceutical ScientistsSan Antonio, Texas, USA, 10 November 2013
    [Google Scholar]
  86. DesaiN.J. MaheshwariD.G. UV spectrophotometric method for the estimation of luliconazole in marketed formulation (lotion).Pharma Sci. Monitor2014524854
    [Google Scholar]
  87. HeY. PeiwuG. WangC. LianY. LiuZ. YangS. LinY. WenC. DingT. Pharmacokinetic study of luliconazole in rat by UPLC-MS/MS.Lat. Am. J. Pharm.2015344810815
    [Google Scholar]
  88. SonawaneS. GideP. Application of experimental design for the optimization of forced degradation and development of a validated stability-indicating LC method for luliconazole in bulk and cream formulation.Arab. J. Chem.20169S1428S143410.1016/j.arabjc.2012.03.019
    [Google Scholar]
  89. SultanM.A. Abou El-AlaminM.M. AtiaM.A. Aboul-EneinH.Y. Stability-indicating methods for the determination of luliconazole by TLC and HPTLC—densitometry in bulk powder and cream dosage form.J. Planar Chromatogr. Mod. TLC2017301687410.1556/1006.2017.30.1.10
    [Google Scholar]
  90. MalasiyaA. GoyalA. Method development and validation of RP HPLC method for assay and related substances of luliconazole in topical dosage form.Int. J. Pharm. Chem. Anal.2017424650
    [Google Scholar]
  91. SantoshR.T. SawantS.D. AnujaP.B. Estimation of luliconazole in formulation and biofluid.J. Anal. Pharm. Res.20176500187
    [Google Scholar]
  92. Tomal MajumderM.R. RoyP. PramanikR. HasanM.N. Method development and validation of RP-HPLC method for estimation of luliconazole in marketed formulation (Cream).Pharma Innov. J.201985103108
    [Google Scholar]
  93. SowjanyaG. MohanaK. Quantification and stability aspects of Luliconazole in bulk and pharmaceutical dosage forms by UV spectroscopy.J. Drug Deliv. Ther.201992-s300306
    [Google Scholar]
  94. GummadiS. Development and validation of a chromatographic assay method for the determination of luliconazole in creams.Int. J. Pharm. Sci. Res.202011946224628
    [Google Scholar]
  95. ShaikhM.S. KaleM.A. MahaparleP.R. RajputH. KarkheleS.M. Development and validation of UV spectrophotometric method for the estimation of luliconazole in bulk, marketed formulations.J. Curr. Pharma Res.202010337593770
    [Google Scholar]
  96. BhanuP. SundararajanR. PrathyushaP. MukthinuthalapatiM.A. A new stability indicating RP-UFLC method for determination of Luliconazole in bulk and pharmaceutical formulation.Res. J. Pharm. Technol.20201362859286310.5958/0974‑360X.2020.00509.0
    [Google Scholar]
  97. ShresthaS PakhrinS MaharjanS GCR GiriS ThapaN ShresthaJR UV spectrophotometric determination of luliconazole semisolid dosage form.Am. Sci. Res. J. Eng. Technol. Sci.2021771161171
    [Google Scholar]
  98. FathimaS. PadmavathiY. DivyaA. BabuN.R. AlvalaR. Development and validation of microbiological analytical method for determination of Potency of luliconazole cream.Asian J Pharm Health Sci.202110424082414
    [Google Scholar]
  99. BrahambhattN.R. ManiarV.P. MahesvariV. SharmaH.B. Quantitative analysis of luliconazole by using UV-spectroscopy bulk and formulations.Int. J. Pharm. Res. Appl.202162729735
    [Google Scholar]
  100. Dos Santos PortoD. BajerskiL. Donadel MalesuikM. Braun AzeredoJ. Reisdorfer PaulaF. Soldateli PaimC. Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies.Colomb. J. Chem.-Pharm. Sci.20215016185
    [Google Scholar]
  101. SolankiB. JoshiH. Development and validation of a new rp-hplc analytical method for the simultaneous determination of luliconazole and clobetasol propionate in synthetic mixture.J. Pharm. Res. Int.20213332B536010.9734/jpri/2021/v33i32B31742
    [Google Scholar]
  102. GadhweS.P. WaghmareV.V. IthapeS.J. RamgudeP.K. TelangS.S. MaliP.D. Development and validation of RP-HPLC method for estimation of luliconazole in bulk and formulation.World J. Pharm. Res.202211317631772
    [Google Scholar]
  103. Prashar Kumar JasraD. Combination effect of luliconazole and clobetasol for treatment of skin ailments.Int. J. Curr. Pharm. Res.20221423640
    [Google Scholar]
  104. YangJ. LiangZ. LuP. SongF. ZhangZ. XiaH. HeJ. ZhouT. ZhangJ. A sensitive and rapid bioanalytical method for the quantitative determination of luliconazole in rabbit eye tissues using UPLC-MS/MS assay.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2022119412317310.1016/j.jchromb.2022.12317335219088
    [Google Scholar]
  105. PanthiV.K. NepalU. Formulation and development of a water-in-oil emulsion-based luliconazole cream: In vitro characterization and analytical method validation by rp-hplc.Int. J. Anal. Chem.20222022111210.1155/2022/727384036193208
    [Google Scholar]
  106. ChaturV. RP-HPLC method development and validation for the estimation of luliconazole in semisolid dosage form, Bull. Env. Pharmacol. Life Sci. Spl Issue20223211219
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129345132240921114210
Loading
/content/journals/cpa/10.2174/0115734129345132240921114210
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ciclopirox; efinaconazole; luliconazole; Onychomycosis; RP-HPLC; tavaborole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test