Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Biotechnology, a field discovered in 1919, unites biology and engineering to harness living organisms for medical purposes. Fueled by using DNA's discovery in the 1950s, biotechnology has converted through genetic engineering, yielding impactful merchandise regulated by means of entities like the FDA. The manufacturing involves upstream and downstream processing including the various techniques involved in the downstream processing of biotechnological drugs, along with relevant guidelines and chromatographic analysis methods. The biotechnological industry, which integrates biological science with engineering, has significantly advanced since the discovery of DNA's structure, leading to the development of biopharmaceuticals. These drugs, including monoclonal antibodies, recombinant proteins, and gene therapies, are produced using living organisms and hold the potential for treating complex diseases. The downstream process, a crucial phase in biopharmaceutical production, involves the purification and formulation of drug products to meet stringent regulatory standards. Traditional techniques such as centrifugation, filtration, and chromatography are employed to extract and purify biopharmaceuticals. Chromatographic techniques, including ion exchange, affinity, and size exclusion chromatography, play a pivotal role in achieving the desired purity levels. However, these methods are often time-consuming and expensive, necessitating continuous advancements in the field. The paper highlights the importance of regulatory guidelines, including cGMP, in ensuring the quality and safety of biopharmaceuticals. It also discusses the significant role of organizations such as the FDA and EMA in regulating biotechnological drug production. The evolution of downstream processing techniques and the development of novel methods promise greater efficiency, scalability, and cost-effectiveness in biopharmaceutical production. Understanding these advancements is essential for continued growth and innovation in the industry, ultimately contributing to improved patient care and pharmaceutical innovation.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129317408240903150800
2024-09-09
2025-09-28
Loading full text...

Full text loading...

References

  1. GuptaV. Basic and applied aspects of biotechnology.Springer201710.1007/978‑981‑10‑0875‑7
    [Google Scholar]
  2. McDonaldK. HoK. ICH Q11: development and manufacture of drug substances–chemical and biotechnological/biological entities.GaBi J.201213-414214410.5639/gabij.2012.0103‑4.025
    [Google Scholar]
  3. Kesik-BrodackaM. Progress in biopharmaceutical development.Biotechnol. Appl. Biochem.201865330632210.1002/bab.161728972297
    [Google Scholar]
  4. ieis.org.tr, Biyobenzeri LAÇLARIN YÜKSELiŞi.
  5. INITIATIVE, G.A.B. and B.t.i.c.-e. treatments. Biosimilars approved in Europe.201112/05/2023Available from: https://www.gabionline.net/biosimilars/general/biosimilars-approved-in-europe
  6. MisraM. Biosimilars: Current perspectives and future implications.Indian J. Pharmacol.2012441121410.4103/0253‑7613.9185922345862
    [Google Scholar]
  7. GuptaV. An introduction to biotechnology.Basic and Applied Aspects of Biotechnology2017121
    [Google Scholar]
  8. ShanuK. Downstream Processing for Bio-product Recovery and Purification 202410.1007/978‑981‑97‑1451‑3_7
    [Google Scholar]
  9. AlhazmiH.A. AlbrattyM. Analytical techniques for the characterization and quantification of monoclonal antibodies.Pharmaceuticals (Basel)202316229110.3390/ph1602029137259434
    [Google Scholar]
  10. WohlgemuthR. Product Recovery.Comprehensive Biotechnology.2nd ed.Elsevier.Amsterdam, Netherlands. Moo-YoungM. ButlerM. WebbC. MoreiraA. GrodzinskiB. CuiZ.F. AgathosA. 2011591601
    [Google Scholar]
  11. AgarwalA. JaiswalN. TripathiA.D. PaulV. Downstream processing; applications and recent updates.DBioprocessing for Biofuel Production: Strategies to Improve Process Parameters.Springer Nature.2021295510.1007/978‑981‑15‑7070‑4_2
    [Google Scholar]
  12. JungbauerA. Continuous downstream processing of biopharmaceuticals.Trends Biotechnol.201331847949210.1016/j.tibtech.2013.05.01123849674
    [Google Scholar]
  13. De LucaC. LievoreG. BozzaD. BurattiA. CavazziniA. RicciA. MacisM. CabriW. FellettiS. CataniM. Downstream processing of therapeutic peptides by means of preparative liquid chromatography.Molecules20212615468810.3390/molecules2615468834361839
    [Google Scholar]
  14. CrommelinD.J.A. SindelarR.D. MeibohmB. Pharmaceutical biotechnology: fundamentals and applications.Springer Science & Business Media4th Ed201355110.1007/978‑1‑4614‑6486‑0
    [Google Scholar]
  15. CrommelinD.J.A. SindelarR.D. MeibohmB. Pharmaceutical biotechnology: fundamentals and applications.Springer Science & Business MediaBoca Raton.3rd ed2008
    [Google Scholar]
  16. Describe briefly downstream processing with a diagram.https://www.learnatnoon.com/s/in/describe-briefly-downstream-processing-with-a-diagram/92359/
    [Google Scholar]
  17. SahooN. ChoudhuryK. ManchikantiP. Manufacturing of Biodrugs.BioDrugs200923421722910.2165/11317110‑000000000‑0000019697964
    [Google Scholar]
  18. https://www.ema.europa.eu/en/human-regulatory-overview/research-and-development/scientific-guidelines/multidisciplinary-guidelines/multidisciplinary-biosimilar
  19. MellstedtH. NiederwieserD. LudwigH. The challenge of biosimilars.Ann Oncol.200819341141910.1093/annonc/mdm345
    [Google Scholar]
  20. GutkaH.J. YangH. KakarS. Biosimilars: Regulatory, Clinical, and Biopharmaceutical Development.Springer.2018709
    [Google Scholar]
  21. AgencyE.M. ICH guidelines.https://www.ema.europa.eu/en/human-regulatory-overview/research-and-development/scientific-guidelines/ich-guidelines
    [Google Scholar]
  22. ADMINISTRATION https://www.fda.gov/vaccines-blood-biologics/general-biologics-guidances/biosimilars-guidances
  23. Guidance on the licensing of biosimilar products.2022https://www.gov.uk/government/publications/guidance-on-the-licensing-of-biosimilar-products/guidance-on-the-licensing-of-biosimilar-products
    [Google Scholar]
  24. Marichal-GallardoP.A. ÁlvarezM.M. State-of-the-art in downstream processing of monoclonal antibodies: Process trends in design and validation.Biotechnol. Prog.201228489991610.1002/btpr.156722641473
    [Google Scholar]
  25. LeungW.W-F. Centrifugal separations in biotechnology.Butterworth-Heinemann2nd Ed.2020
    [Google Scholar]
  26. SommerfeldS. StrubeJ. Challenges in biotechnology production—generic processes and process optimization for monoclonal antibodies.Chem. Eng. Process.200544101123113710.1016/j.cep.2005.03.006
    [Google Scholar]
  27. MehtaA. Downstream processing for biopharmaceuticals recovery.Pharmaceuticals from MicrobesSpringer International Publishing201916319010.1007/978‑3‑030‑01881‑8_6
    [Google Scholar]
  28. SuJ.Q. YangX.R. ZhengT.L. TianY. JiaoN.Z. CaiL.Z. HongH.S. Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense.Harmful Algae20076679981010.1016/j.hal.2007.04.004
    [Google Scholar]
  29. MartireD.E. BoehmR.E. Unified molecular theory of chromatography and its application to supercritical fluid mobile phases. 1. Fluid-liquid (absorption) chromatography.J. Phys. Chem.19879192433244610.1021/j100293a045
    [Google Scholar]
  30. WeisskopfK. Characterization of polyethylene terephthalate by gel permeation chromatography (GPC).J. Polym. Sci. A Polym. Chem.19882671919193510.1002/pola.1988.080260718
    [Google Scholar]
  31. JungbauerA. HahnR. Ion-Exchange Chromatography.Methods Enzymol.200946334937110.1016/S0076‑6879(09)63022‑619892182
    [Google Scholar]
  32. OhmineI. TanakaT. Salt effects on the phase transition of ionic gels.J. Chem. Phys.198277115725572910.1063/1.443780
    [Google Scholar]
  33. AmbatiC.R. VantakuV. DonepudiS.R. AmaraC.S. RaviS.S. MandalapuA. PerlaM. PutluriV. SreekumarA. PutluriN. Measurement of methylated metabolites using liquid chromatography-mass spectrometry and its biological application.Anal. Methods2019111495710.1039/C8AY02168F31762797
    [Google Scholar]
  34. FeketeS. GanzlerK. GuillarmeD. Critical evaluation of fast size exclusion chromatographic separations of protein aggregates, applying sub-2μm particles.J. Pharm. Biomed. Anal.201378-7914114910.1016/j.jpba.2013.02.01323499912
    [Google Scholar]
  35. WilsonM. Purification Methods.Medicines from Animal Cell Culture.John Wiley & Sons2007347370
    [Google Scholar]
  36. FeketeS. MolnárI. GuillarmeD. Separation of antibody drug conjugate species by RPLC: A generic method development approach.J. Pharm. Biomed. Anal.2017137606910.1016/j.jpba.2017.01.01328092856
    [Google Scholar]
  37. SousaF. GonçalvesV.M.F. SarmentoB. Development and validation of a rapid reversed-phase HPLC method for the quantification of monoclonal antibody bevacizumab from polyester-based nanoparticles.J. Pharm. Biomed. Anal.201714217117710.1016/j.jpba.2017.05.01528511059
    [Google Scholar]
  38. BobályB. D’AtriV. LauberM. BeckA. GuillarmeD. FeketeS. Characterizing various monoclonal antibodies with milder reversed phase chromatography conditions.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2018109611010.1016/j.jchromb.2018.07.03930121339
    [Google Scholar]
  39. FeketeS. BeckA. FeketeJ. GuillarmeD. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: Salt gradient approach.J. Pharm. Biomed. Anal.2015102334410.1016/j.jpba.2014.08.03525240157
    [Google Scholar]
  40. BaekJ. SchwahnA.B. LinS. PohlC.A. De PraM. TremintinS.M. CookK. New insights into the chromatography mechanisms of ion-exchange charge variant analysis: dispelling myths and providing guidance for robust method optimization.Anal. Chem.20209219134111341910.1021/acs.analchem.0c0277532970410
    [Google Scholar]
  41. DadouchM. LadnerY. BichC. LarroqueM. LarroqueC. MorelJ. BonnetP.A. PerrinC. An in-line enzymatic microreactor for the middle-up analysis of monoclonal antibodies by capillary electrophoresis.Analyst (Lond.)202014551759176710.1039/C9AN01906E31913378
    [Google Scholar]
  42. GoyonA. FrancoisY.N. ColasO. BeckA. VeutheyJ.L. GuillarmeD. High-resolution separation of monoclonal antibodies mixtures and their charge variants by an alternative and generic CZE method.Electrophoresis201839162083209010.1002/elps.20180013129774560
    [Google Scholar]
  43. DerenneA. DerfoufiK.M. CowperB. DelporteC. GoormaghtighE. FTIR spectroscopy as an analytical tool to compare glycosylation in therapeutic monoclonal antibodies.Anal. Chim. Acta20201112627110.1016/j.aca.2020.03.03832334683
    [Google Scholar]
  44. GoyonA. D’AtriV. BobalyB. Wagner-RoussetE. BeckA. FeketeS. GuillarmeD. Corrigendum to “Protocols for the analytical characterization of therapeutic monoclonal antibodies. I-Non-denaturing chromatographic techniques” [J. Chromatogr. B 1058 (2017) 73-84].J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171058738410.1016/j.jchromb.2017.05.01029032952
    [Google Scholar]
  45. BouvarelT. CamperiJ. GuillarmeD. Multi-dimensional technology – Recent advances and applications for biotherapeutic characterization.J. Sep. Sci.2024475230092810.1002/jssc.20230092838471977
    [Google Scholar]
  46. HutchinsonJ. Improved Clearance of Host Cell Protein Impurities at the Polishing Purification Step Using Multimodal Chromatography.SSRN482961910.1016/j.chroma.2024.465229
    [Google Scholar]
  47. BhamidipatiaG. PatelR. Virus Purification by Membrane Chromatography: A Review.Membrane Journal202434212413110.14579/MEMBRANE_JOURNAL.2024.34.2.124
    [Google Scholar]
  48. BabaeiM. KashanianS. LeeH-T. HardingF. Proteomics techniques in protein biomarker discovery.Quant. Biol.2024121536910.1002/qub2.35
    [Google Scholar]
  49. RibeiroJ. LuísM.Â. RodriguesB. SantosF.M. MesquitaJ. BotoR. TomazC.T. Cryogels and Monoliths: Promising Tools for Chromatographic Purification of Nucleic Acids.Gels202410319810.3390/gels1003019838534616
    [Google Scholar]
  50. SvecF. Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation.J. Chromatogr. A20101217690292410.1016/j.chroma.2009.09.07319828151
    [Google Scholar]
  51. de RooijR. BruinsM.E. Continuous Processing in Pharmaceutical Manufacturing.Wiley-VCH2015528
    [Google Scholar]
  52. StrubeJ. Seidel-MorgensternA. Continuous Chromatography: Process Design, Operation, and Scale-Up.Wiley-VCH2016
    [Google Scholar]
  53. SharmaV. MottafeghA. JooJ.U. KangJ.H. WangL. KimD.P. Toward microfluidic continuous-flow and intelligent downstream processing of biopharmaceuticals.Lab Chip202424112861288210.1039/D3LC01097J38751338
    [Google Scholar]
  54. RomannP. GillerP. SibiliaA. HerwigC. ZydneyA.L. PerilleuxA. SouquetJ. BielserJ.M. VilligerT.K. Co-current filtrate flow in TFF perfusion processes: Decoupling transmembrane pressure from crossflow to improve product sieving.Biotechnol. Bioeng.2024121264065410.1002/bit.2858937965698
    [Google Scholar]
  55. RathoreA.S. BhambureR. High-performance tangential flow filtration: Applications in biopharmaceutical manufacturing.Biotechnol. Bioeng.20171143465475
    [Google Scholar]
  56. StockdaleJ.E. Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries.Wiley2017
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129317408240903150800
Loading
/content/journals/cpa/10.2174/0115734129317408240903150800
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test