Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background and Objectives

Venomous scorpions play a crucial role in medicine and public health. scorpion is known as one of the most populous species in East Asia and Iran, while its venom proteome has still not been fully determined.

Aims

In the current research, the proteomic profile of scorpion venom to determine the structural and functional characteristics of its compounds used for treatment will be examined for the first time.

Methods

2D-PAGE, HPLC, SDS-PAGE, sequencing, and MALDI-TOF MS techniques were used to investigate the properties of these peptides.

Results

The 2D-PAGE analysis of crude toxin from revealed a minimum of 96 protein spots, with isoelectric points ranging from 4 to 9 and molecular weights spanning from 3.6 to 205 kDa. Following this, HPLC was used to isolate 14 fractions of crude toxins, and the protein content of these fractions was measured. SDS-PAGE analysis identified 7 protein bands within the crude toxin fractions, with molecular weights ranging from 13 to 217 kDa. Further examination of fraction 7 through amino acid sequencing resulted in the identification of two protein bands labeled peptide 3 and peptide 4. Ultimately, these protein bands were extracted, and their molecular mass and amino acid sequences were analyzed using MALDI-TOF MS.

Conclusion

According to our results, the alignment of P3 and P4 protein sequences revealed the highest similarity to chrysophsin 2 and pheromone-bound protein 2, respectively.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646354270250114111820
2025-01-20
2025-09-19
Loading full text...

Full text loading...

References

  1. PetricevichV.L. NavarroL.B. PossaniL.D. Therapeutic use of scorpion venom.Mol Asp Inflamm.20139209231
    [Google Scholar]
  2. Ahmad SalarianA. JalaliA. Zare MirakabadiA. VatanpourH. H ShiraziF. Cytotoxic effects of two Iranian scorpions Odontobuthusdoriae and Bothutus saulcyi on five human cultured cell lines and fractions of toxic venom.Iran. J. Pharm. Res.201211135736724250459
    [Google Scholar]
  3. JalaliA. VatanpourH. HosseininasabZ. RowanE.G. HarveyA.L. The effect of the venom of the yellow Iranian scorpion Odontobuthus doriae on skeletal muscle preparations in vitro.Toxicon20075081019102610.1016/j.toxicon.2007.05.00117976675
    [Google Scholar]
  4. GhoshA. RoyR. NandiM. MukhopadhyayA. Scorpion venom–toxins that aid in drug development: A review.Int. J. Pept. Res. Ther.2019251273710.1007/s10989‑018‑9721‑x32214927
    [Google Scholar]
  5. PetricevichV.L. Scorpion venom and the inflammatory response.Mediators Inflamm.2010201090329510.1155/2010/90329520300540
    [Google Scholar]
  6. SmithJ.J. JonesA. AlewoodP.F. Mass landscapes of seven scorpion species: The first analyses of Australian species with 1,5-DAN matrix.J. Venom Res.2012371423236582
    [Google Scholar]
  7. OrtizE. GurrolaG.B. SchwartzE.F. PossaniL.D. Scorpion venom components as potential candidates for drug development.Toxicon20159312513510.1016/j.toxicon.2014.11.23325432067
    [Google Scholar]
  8. MachadoR.J.A. EstrelaA.B. NascimentoA.K.L. MeloM.M.A. Torres-RêgoM. LimaE.O. RochaH.A.O. CarvalhoE. Silva-JuniorA.A. Fernandes-PedrosaM.F. Characterization of TistH, a multifunctional peptide from the scorpion Tityus stigmurus: Structure, cytotoxicity and antimicrobial activity.Toxicon201611936237010.1016/j.toxicon.2016.06.00227267248
    [Google Scholar]
  9. LaniadoM.E. FraserS.P. DjamgozM.B.A. Voltage-gated K+ channel activity in human prostate cancer cell lines of markedly different metastatic potential: Distinguishing characteristics of PC-3 and LNCaP cells.Prostate200146426227410.1002/1097‑0045(20010301)46:4<262::AID‑PROS1032>3.0.CO;2‑F11241548
    [Google Scholar]
  10. Fong-CoronadoP.A. RamirezV. Quintero-HernándezV. BallezaD. A critical review of short antimicrobial peptides from scorpion venoms, their physicochemical attributes, and potential for the development of new drugs.J. Membr. Biol.20242573-416520510.1007/s00232‑024‑00315‑238990274
    [Google Scholar]
  11. XiaZ. HeD. WuY. KwokH.F. CaoZ. Scorpion venom peptides: Molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers.Pharmacol. Res.202319710697810.1016/j.phrs.2023.10697837923027
    [Google Scholar]
  12. KarataşA. GharkhelooM.M. A contribution to the knowledge of Hottentotta saulcyi (Simon, 1880) (Scorpiones: Buthidae).Zool. Middle East2006381859210.1080/09397140.2006.10638169
    [Google Scholar]
  13. ReinJ.O. Scorpions in Iraq.2011
    [Google Scholar]
  14. Pirali-KheirabadiK. NavidpourS. FetV. KovaříkF. SolegladM.E. Scorpions of Iran (Arachnida, Scorpiones). Part V. Chahar Mahal & bakhtiyari province.Euscorpius200920097812310.18590/euscorpius.2009.vol2009.iss78.1
    [Google Scholar]
  15. NikkhahM. Naderi-ManeshH. SarboloukiM. RanjbarB. Efficient in vitro refolding and characterization of a new peptide from the scorpion Buthotus saulcyi venom produced in Escherichia coli.Protein Pept. Lett.200613765966410.2174/09298660677779055717018007
    [Google Scholar]
  16. Abd El-AzizT.M. SoaresA.G. StockandJ.D. Advances in venomics: Modern separation techniques and mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2020116012235210.1016/j.jchromb.2020.12235232971366
    [Google Scholar]
  17. LuanN. ShenW. LiuJ. WenB. LinZ. YangS. LaiR. LiuS. RongM. A combinational strategy upon RNA sequencing and peptidomics unravels a set of novel toxin peptides in scorpion mesobuthus martensii.Toxins (Basel)201681028610.3390/toxins810028627782050
    [Google Scholar]
  18. MaR. MahadevappaR. KwokH.F. Venom-based peptide therapy: Insights into anti-cancer mechanism.Oncotarget201785910090810093010.18632/oncotarget.2174029246030
    [Google Scholar]
  19. ZhangY.Y. WuL.C. WangZ.P. WangZ.X. JiaQ. JiangG.S. ZhangW.D. Anti-proliferation effect of polypeptide extracted from scorpion venom on human prostate cancer cells in vitro.J. Clin. Med. Res.200911243110.4021/jocmr2009.01.122022505961
    [Google Scholar]
  20. AlipourY. ZarganJ. Haji Nour MohammadiA. Antibacterial effects of crude venom and their protein fractions of Hottentotta saulcyi scorpion.Koomesh2022243376387
    [Google Scholar]
  21. JahangirianE. ZarganJ. RabbaniH. ZamaniJ. Investigating the inhibitory and penetrating properties of three novel anticancer and antimicrobial scorpion peptides via molecular docking and molecular dynamic simulation.J. Biomol. Struct. Dyn.20234124153541538510.1080/07391102.2023.218895636927377
    [Google Scholar]
  22. ZarganJ. JahangirianE. KhanH.A. AliS. Proteomic analysis of two novel peptides from the Odontobuthus doriae scorpion venom.J. Asian Nat. Prod. Res.202412210.1080/10286020.2024.240361239287957
    [Google Scholar]
  23. JahangirianE. ZarganJ. Investigating the antibacterial effects of 3 novel peptides isolated from the venom of Iranian odontobuthus doriae and buthotus saulcyi scorpions on Escherichia coli (UTI89) and enterococcus faecalis causing urinary tract infection.Int. J. Pept. Res. Ther.20232945510.1007/s10989‑023‑10529‑y
    [Google Scholar]
  24. Cloudsley-ThompsonJ.L. ConstantinouC. How does the scorpion Euscorpius flavicaudis (Deg.) manage to survive in Britain?Int. J. Biometeorol.1983272879210.1007/BF02185737
    [Google Scholar]
  25. LoweG. KutcherS.R. EdwardsD. A powerful new light source for ultraviolet detection of scorpions in the field.Euscorpius2003200381710.18590/euscorpius.2003.vol2003.iss8.1
    [Google Scholar]
  26. BorgesA. SilvaS. Op den CampH.J.M. VelascoE. AlvarezM. AlfonzoM.J.M. JorqueraA. De SousaL. DelgadoO. In vitro leishmanicidal activity of Tityus discrepans scorpion venom.Parasitol. Res.200699216717310.1007/s00436‑006‑0133‑z16538481
    [Google Scholar]
  27. LaemmliU.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature1970227525968068510.1038/227680a05432063
    [Google Scholar]
  28. CaliskanF. GarcíaB.I. CoronasF.I.V. BatistaC.V.F. ZamudioF.Z. PossaniL.D. Characterization of venom components from the scorpion Androctonus crassicauda of Turkey: Peptides and genes.Toxicon2006481122210.1016/j.toxicon.2006.04.00316762386
    [Google Scholar]
  29. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  30. UcarG. TAfiC. Cholinesterase inhibitory activities of the scorpion Mesobuthus gibbosus (Buthidae) venom peptides.FABAD J Pharm Sci.2003286170
    [Google Scholar]
  31. BadheR. ThomasA. DeshpandeA.D. SalviN. WaghmareA. The action of red scorpion (Mesobuthus tamulus Coconsis, Pocock) venom and its isolated protein fractions on blood sodium levels.J. Venom. Anim. Toxins Incl. Trop. Dis.20073110.1590/S1678‑91992007000100006
    [Google Scholar]
  32. HamesB.D. Gel electrophoresis of proteins: A practical approachOxford University Press199010.1093/oso/9780199636402.001.0001
    [Google Scholar]
  33. LesseA.J. CampagnariA.A. BittnerW.E. ApicellaM.A. Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis.J. Immunol. Methods1990126110911710.1016/0022‑1759(90)90018‑Q2106001
    [Google Scholar]
  34. KeskinN.A. KoçH. A study on venom proteins of Iurus dufoureius asiaticus Birula, 1903 (Scorpiones: Iuridae).Turkiye Parazitol Derg.2006301596117106859
    [Google Scholar]
  35. SchäggerH. Tricine–SDS-PAGE.Nat. Protoc.200611162210.1038/nprot.2006.417406207
    [Google Scholar]
  36. DanielM. Bollag, Michael D. Rozycki.Edelstein, SJProtein Methods1996
    [Google Scholar]
  37. GiulianG.G. MossR.L. GreaserM. Analytical isoelectric focusing using a high-voltage vertical slab polyacrylamide gel system.Anal. Biochem.1984142242143610.1016/0003‑2697(84)90486‑X6528977
    [Google Scholar]
  38. SwitzerR.C.III MerrilC.R. ShifrinS. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels.Anal. Biochem.197998123123710.1016/0003‑2697(79)90732‑294518
    [Google Scholar]
  39. DyasonK. BrandtW. PrendiniL. VerdonckF. TytgatJ. PlessisJ. MüllerG. WaltJ. Determination of species‐specific components in the venom of Parabuthus scorpions from southern Africa using matrix‐assisted laser desorption time‐of‐flight mass spectrometry.Rapid Commun. Mass Spectrom.200216876877310.1002/rcm.63711921261
    [Google Scholar]
  40. IijimaN. TanimotoN. EmotoY. MoritaY. UematsuK. MurakamiT. NakaiT. Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major.Eur. J. Biochem.2003270467568610.1046/j.1432‑1033.2003.03419.x12581207
    [Google Scholar]
  41. HsuJ.C. LinL.C. TzenJ.T.C. ChenJ.Y. Characteristics of the antitumor activities in tumor cells and modulation of the inflammatory response in RAW264.7 cells of a novel antimicrobial peptide, chrysophsin-1, from the red sea bream (Chrysophrys major).Peptides201132590091010.1016/j.peptides.2011.02.01321349308
    [Google Scholar]
  42. PelosiP. Odorant-Binding Proteins.Crit. Rev. Biochem. Mol. Biol.199429319922810.3109/104092394090868018070277
    [Google Scholar]
  43. RoyU. ShaliniR. VanithaS. SahaS.K. SrivastavaR.C. A preliminary study of smelling agents using electrical potential oscillations at liquid-liquid interface.Indian J. Biotechnol.200871
    [Google Scholar]
  44. PengJ. GygiS.P. Proteomics: The move to mixtures.J. Mass Spectrom.200136101083109110.1002/jms.22911747101
    [Google Scholar]
  45. CatterallW.A. CestèleS. Yarov-YarovoyV. YuF.H. KonokiK. ScheuerT. Voltage-gated ion channels and gating modifier toxins.Toxicon200749212414110.1016/j.toxicon.2006.09.02217239913
    [Google Scholar]
  46. MekiA.R.A.M. HasanH.A. Mohey El-DeenZ.M. BakkarS. Dysregulation of apoptosis in scorpion envenomed children: its reflection on their outcome.Toxicon200342322923710.1016/S0041‑0101(03)00128‑414559073
    [Google Scholar]
  47. SchwartzE.F. Diego-GarciaE. Rodríguez de la VegaR.C. PossaniL.D. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones).BMC Genomics20078111910.1186/1471‑2164‑8‑11917506894
    [Google Scholar]
  48. MintonS.A.J. Venomous arachnids and myriapods.Venom Diseases19742765
    [Google Scholar]
  49. TatoP. GavilanesM. MunozL. FletcherP. MolinariJ.L. Epidemiological aspects of scorpionism in Mexico—1. Purification of neurotoxins from Centruroides limpidus limpidus venom. ToxinsScience Direct197863964610.1016/B978‑0‑08‑022640‑8.50065‑2
    [Google Scholar]
  50. KovaříkF. YağmurE.A. MoradiM. Two new Hottentotta species from Iran, with a review of Hottentotta saulcyi (Scorpiones: Buthidae).Euscorpius2018201826511410.18590/euscorpius.2018.vol2018.iss265.1
    [Google Scholar]
  51. PossaniL.D. BecerrilB. DelepierreM. TytgatJ. Scorpion toxins specific for Na + ‐channels.Eur. J. Biochem.1999264228730010.1046/j.1432‑1327.1999.00625.x10491073
    [Google Scholar]
  52. SrinivasanK.N. GopalakrishnakoneP. TanP.T. ChewK.C. ChengB. KiniR.M. KohJ.L.Y. SeahS.H. BrusicV. SCORPION, a molecular database of scorpion toxins.Toxicon2002401233110.1016/S0041‑0101(01)00182‑911602275
    [Google Scholar]
  53. BatistaC. DelpozoL. ZamudioF. ContrerasS. BecerrilB. WankeE. PossaniL. Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20048031556610.1016/j.jchromb.2003.09.00215025998
    [Google Scholar]
  54. DehghaniR. DjadidN.D. ShahbazzadehD. BigdelliS. Introducing Compsobuthus matthiesseni (Birula, 1905) scorpion as one of the major stinging scorpions in Khuzestan, Iran.Toxicon200954327227510.1016/j.toxicon.2009.04.01119393258
    [Google Scholar]
  55. DehghaniR. FathiB. Scorpion sting in Iran: A review.Toxicon201260591993310.1016/j.toxicon.2012.06.00222750221
    [Google Scholar]
  56. Mohammadi BavaniM. SaeediS. SaghafipourA. Spatial distribution of medically important scorpions in Iran: A review article.Shiraz E Med. J.2020225e10220110.5812/semj.102201
    [Google Scholar]
  57. NejatiJ. SaghafipourA. MozaffariE. KeyhaniA. JesriN. Scorpions and scorpionism in Iran’s central desert.Acta Trop.201716629329810.1016/j.actatropica.2016.12.00327923555
    [Google Scholar]
  58. BoghozianA. NazemH. FazilatiM. HejaziS.H. Sheikh SajjadiehM. Toxicity and protein composition of venoms of Hottentotta saulcyi, Hottentotta schach and Androctonus crassicauda, three scorpion species collected in Iran.Vet. Med. Sci.2021762418242610.1002/vms3.59334358414
    [Google Scholar]
  59. WudayagiriR. InceogluB. HerrmannR. DerbelM. ChoudaryP.V. HammockB.D. Isolation and characterization of a novel lepidopteran-selective toxin from the venom of South Indian red scorpion, Mesobuthus tamulus.BMC Biochem.2001211610.1186/1471‑2091‑2‑1611782289
    [Google Scholar]
  60. ChagotB. PimentelC. DaiL. PilJ. TytgatJ. NakajimaT. CorzoG. DarbonH. FerratG. An unusual fold for potassium channel blockers: NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis.Biochem. J.2005388126327110.1042/BJ2004170515631621
    [Google Scholar]
  61. TiwariS.K. SrivastavaS. Purification and characterization of plantaricin LR14: A novel bacteriocin produced by Lactobacillus plantarum LR/14.Appl. Microbiol. Biotechnol.200879575976710.1007/s00253‑008‑1482‑618496687
    [Google Scholar]
  62. ShalabiA. ZamudioF. WuX. ScaloniA. PossaniL.D. VillerealM.L. Tetrapandins, a new class of scorpion toxins that specifically inhibit store-operated calcium entry in human embryonic kidney-293 cells.J. Biol. Chem.200427921040104910.1074/jbc.M30823420014583617
    [Google Scholar]
  63. PossaniL.D. Rodriguezdl.V.R.C. Scorpion venom peptides.Handbook of Biologically Active Peptides2006
    [Google Scholar]
  64. UpadhyayU.R.R.K. Animal proteins and peptides: Anticancer and antimicrobial potential. Journal of Pharmacy Research. 3(12) Review article.J. Pharm. Res.201033100
    [Google Scholar]
  65. Lima e SilvaR. ShenJ. GongY.Y. SeidelC.P. HackettS.F. KesavanK. JacobyD.B. CampochiaroP.A. Agents that bind annexin A2 suppress ocular neovascularization.J. Cell. Physiol.2010225385586410.1002/jcp.2229620607799
    [Google Scholar]
  66. GuptaS.D. GomesA. DebnathA. SahaA. GomesA. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: Through mitochondrial pathway and inhibition of heat shock proteins.Chem. Biol. Interact.2010183229330310.1016/j.cbi.2009.11.00619913524
    [Google Scholar]
  67. PocockR.I. The scottish silurian scorpion.J. Cell Sci.1901s2-4417429131110.1242/jcs.s2‑44.174.291
    [Google Scholar]
  68. Kjellesvig-WaeringE.N. A restudy of the fossil scorpions of the world.1986551287
    [Google Scholar]
  69. DunlopJ.A. WebsterM. Fossil Evidence, Terrestrialization and Arachnid Phylogeny.J. Arachnol.19992718693
    [Google Scholar]
  70. GaspariniS. GilquinB. MénezA. Comparison of sea anemone and scorpion toxins binding to Kv1 channels: An example of convergent evolution.Toxicon200443890190810.1016/j.toxicon.2004.03.02915208023
    [Google Scholar]
  71. VogtR.G. KöhneA.C. DubnauJ.T. PrestwichG.D. Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar.J. Neurosci.1989993332334610.1523/JNEUROSCI.09‑09‑03332.19892795166
    [Google Scholar]
  72. LiC.M. HaratipourP. LingemanR.G. PerryJ.P. GuL. HickeyR.J. MalkasL.H. Novel peptide therapeutic approaches for cancer treatment.Cells20211011290810.3390/cells1011290834831131
    [Google Scholar]
  73. Díaz-GómezJ.L. Martín-EstalI. Rivera-AboytesE. Gaxiola-MuñízR.A. Puente-GarzaC.A. García-LaraS. Castorena-TorresF. Biomedical applications of synthetic peptides derived from venom of animal origin: A systematic review.Biomed. Pharmacother.202417011601510.1016/j.biopha.2023.11601538113629
    [Google Scholar]
  74. CooperB.M. IegreJ. Peptides as a platform for targeted therapeutics for cancer: Peptide–drug conjugates (PDCs).Chem. Soc. Rev.2021501480149410.1039/D0CS00556H
    [Google Scholar]
/content/journals/cp/10.2174/0115701646354270250114111820
Loading
/content/journals/cp/10.2174/0115701646354270250114111820
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Buthotus saulcyi; MALDI-TOF/MS; peptide; proteomic; scorpion; venom
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test