Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

Membrane proteins participate in many physiological and biochemical functions essential for cellular function. Identifying membrane protein types is a critical task in biology for studying the tertiary structure of membrane proteins.

Methods

In this paper, a novel classification method is proposed to predict membrane protein types based on the ensemble learning model, fusing protein sequence features and secondary structure information.

Results

The performance for predicting the type of membrane proteins was improved compared with other machine learning models.

Conclusion

Utilizing multimodal features and machine learning methods can effectively predict and classify membrane protein types.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646353986250124053327
2025-01-27
2025-09-30
Loading full text...

Full text loading...

References

  1. AlménM.S. NordströmK.J.V. FredrikssonR. SchiöthH.B. Mapping the human membrane proteome: A majority of the human membrane proteins can be classified according to function and evolutionary origin.BMC Biol.2009715010.1186/1741‑7007‑7‑5019678920
    [Google Scholar]
  2. OveringtonJ.P. Al-LazikaniB. HopkinsA.L. How many drug targets are there?Nat. Rev. Drug Discov.200651299399610.1038/nrd219917139284
    [Google Scholar]
  3. ChouK.C. ShenH.B. MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM.Biochem. Biophys. Res. Commun.2007360233934510.1016/j.bbrc.2007.06.02717586467
    [Google Scholar]
  4. SpiessM. Heads or tails: What determines the orientation of proteins in the membrane.FEBS Lett.19953691767910.1016/0014‑5793(95)00551‑J7641889
    [Google Scholar]
  5. KabirM. ArifM. AliF. AhmadS. SwatiZ.N.K. YuD.J. Prediction of membrane protein types by exploring local discriminative information from evolutionary profiles.Anal. Biochem.2019564-56512313210.1016/j.ab.2018.10.02730393088
    [Google Scholar]
  6. ChouK.C. ElrodD.W. Prediction of membrane protein types and subcellular locations.Proteins199934113715310.1002/(SICI)1097‑0134(19990101)34:1<137::AID‑PROT11>3.0.CO;2‑O10336379
    [Google Scholar]
  7. CedanoJ. AloyP. Pérez-PonsJ.A. QuerolE. Relation between amino acid composition and cellular location of proteins.J. Mol. Biol.1997266359460010.1006/jmbi.1996.08049067612
    [Google Scholar]
  8. CaiY.D. RicardoP.W. JenC.H. ChouK.C. Application of SVM to predict membrane protein types.J. Theor. Biol.2004226437337610.1016/j.jtbi.2003.08.01514759643
    [Google Scholar]
  9. ChouK.C. Prediction of protein cellular attributes using pseudo‐amino acid composition.Proteins200143324625510.1002/prot.103511288174
    [Google Scholar]
  10. WangM. YangJ. LiuG.P. XuZ.J. ChouK.C. Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition.Protein Eng. Des. Sel.200417650951610.1093/protein/gzh06115314209
    [Google Scholar]
  11. CaiY.D. ZhouG.P. ChouK.C. Support vector machines for predicting membrane protein types by using functional domain composition.Biophys. J.20038453257326310.1016/S0006‑3495(03)70050‑212719255
    [Google Scholar]
  12. CaiY.D. ChouK.C. Predicting membrane protein type by functional domain composition and pseudo-amino acid composition.J. Theor. Biol.2006238239540010.1016/j.jtbi.2005.05.03516040052
    [Google Scholar]
  13. LiuH. WangM. ChouK.C. Low-frequency Fourier spectrum for predicting membrane protein types.Biochem. Biophys. Res. Commun.2005336373773910.1016/j.bbrc.2005.08.16016140260
    [Google Scholar]
  14. HayatM. KhanA. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition.J. Theor. Biol.20112711101710.1016/j.jtbi.2010.11.01721110985
    [Google Scholar]
  15. AliF. HayatM. Classification of membrane protein types using Voting Feature Interval in combination with Chou׳s Pseudo Amino Acid Composition.J. Theor. Biol.2015384788310.1016/j.jtbi.2015.07.03426297889
    [Google Scholar]
  16. WangS.Q. YangJ. ChouK.C. Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition.J. Theor. Biol.2006242494194610.1016/j.jtbi.2006.05.00616806277
    [Google Scholar]
  17. ChenY.K. LiK.B. Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou’s pseudo amino acid composition.J. Theor. Biol.201331811210.1016/j.jtbi.2012.10.03323137835
    [Google Scholar]
  18. NanniL. BrahnamS. LuminiA. Wavelet images and Chou’s pseudo amino acid composition for protein classification.Amino Acids201243265766510.1007/s00726‑011‑1114‑921993538
    [Google Scholar]
  19. HayatM. KhanA. YeasinM. Prediction of membrane proteins using split amino acid and ensemble classification.Amino Acids20124262447246010.1007/s00726‑011‑1053‑521850437
    [Google Scholar]
  20. HayatM. KhanA. MemHyb: Predicting membrane protein types by hybridizing SAAC and PSSM.J. Theor. Biol.20122929310210.1016/j.jtbi.2011.09.02622001079
    [Google Scholar]
  21. WeiL. TangJ. ZouQ. Local-DPP: An improved DNA-binding protein prediction method by exploring local evolutionary information.Inf. Sci.201738413514410.1016/j.ins.2016.06.026
    [Google Scholar]
  22. WangS. LiM. GuoL. CaoZ. FeiY. Efficient utilization on PSSM combining with recurrent neural network for membrane protein types prediction.Comput. Biol. Chem.20198191510.1016/j.compbiolchem.2019.10709431472418
    [Google Scholar]
  23. WangH. DingY. TangJ. GuoF. Identification of membrane protein types via multivariate information fusion with Hilbert–Schmidt Independence Criterion.Neurocomputing202038325726910.1016/j.neucom.2019.11.103
    [Google Scholar]
  24. AlphonseA.S. MaryN.A.B. StarvinM.S. Classification of membrane protein using tetra peptide pattern.Anal. Biochem.2020606111384510.1016/j.ab.2020.11384532739352
    [Google Scholar]
  25. ZhangX. ChenL. Prediction of membrane protein types by fusing protein-protein interaction and protein sequence information.Biochim. Biophys. Acta. Proteins Proteomics202018681214052410.1016/j.bbapap.2020.14052432858174
    [Google Scholar]
  26. HayatM. KhanA. Mem-PHybrid: Hybrid features-based prediction system for classifying membrane protein types.Anal. Biochem.20124241354410.1016/j.ab.2012.02.00722342883
    [Google Scholar]
  27. NanniL. LuminiA. An ensemble of support vector machines for predicting the membrane protein type directly from the amino acid sequence.Amino Acids200835357358010.1007/s00726‑008‑0083‑018427715
    [Google Scholar]
  28. WanS. MakM.W. KungS.Y. Mem-ADSVM: A two-layer multi-label predictor for identifying multi-functional types of membrane proteins.J. Theor. Biol.20163987324210.1016/j.jtbi.2016.03.01327000774
    [Google Scholar]
  29. WangL. YuanZ. ChenX. ZhouZ. The prediction of membrane protein types with NPE.IEICE Electron. Express20107639740210.1587/elex.7.397
    [Google Scholar]
  30. MyersJ.K. OasT.G. Preorganized secondary structure as an important determinant of fast protein folding.Nat. Struct. Biol.20018655255810.1038/8862611373626
    [Google Scholar]
  31. WanS. MakM.W. KungS.Y. Benchmark data for identifying multi-functional types of membrane proteins.Data Brief2016810510710.1016/j.dib.2016.05.02427294176
    [Google Scholar]
  32. ShenH.B. ChouK.C. PseAAC: A flexible web server for generating various kinds of protein pseudo amino acid composition.Anal. Biochem.2008373238638810.1016/j.ab.2007.10.01217976365
    [Google Scholar]
  33. ChouK.C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes.Bioinformatics2005211101910.1093/bioinformatics/bth46615308540
    [Google Scholar]
  34. ChouK.C. Prediction of protein subcellular locations by incorporating quasi-sequence-order effect.Biochem. Biophys. Res. Commun.2000278247748310.1006/bbrc.2000.381511097861
    [Google Scholar]
  35. DillK.A. Dominant forces in protein folding.Biochemistry199029317133715510.1021/bi00483a0012207096
    [Google Scholar]
  36. OldfieldC.J. DunkerA.K. Intrinsically disordered proteins and intrinsically disordered protein regions.Annu. Rev. Biochem.201483155358410.1146/annurev‑biochem‑072711‑16494724606139
    [Google Scholar]
  37. KabschW. SanderC. Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features.Biopolymers198322122577263710.1002/bip.3602212116667333
    [Google Scholar]
  38. CuffJ.A. BartonG.J. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction.Proteins199934450851910.1002/(SICI)1097‑0134(19990301)34:4<508::AID‑PROT10>3.0.CO;2‑410081963
    [Google Scholar]
  39. WangS. LiW. LiuS. XuJ. RaptorX-Property: A web server for protein structure property prediction.Nucleic Acids Res.201644W1W430W43510.1093/nar/gkw30627112573
    [Google Scholar]
  40. WangS. MaJ. XuJ. AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields.Bioinformatics20163217i672i67910.1093/bioinformatics/btw44627587688
    [Google Scholar]
  41. WangS SunS Q XuJ B UC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling.Machine Learning and Knowledge Discovery in Database.Springer2016116
    [Google Scholar]
  42. WangS. PengJ. MaJ. XuJ. Protein secondary structure prediction using deep convolutional neural fields.Sci. Rep.2016611896210.1038/srep1896226752681
    [Google Scholar]
  43. SukY. KangH. KimJ.S. Random forests approach for causal inference with clustered observational data.Multivariate Behav. Res.202156682985210.1080/00273171.2020.180843732856937
    [Google Scholar]
  44. CortesC. VapnikV. Support-vector networks.Mach. Learn.199520327329710.1007/BF00994018
    [Google Scholar]
  45. RatnerB. Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data.Crc PresNew York2017
    [Google Scholar]
  46. SilvaS. Seara VieiraA. CelardP. IglesiasE.L. BorrajoL. A query expansion method using multinomial naive bayes.Appl. Sci.202111211028410.3390/app112110284
    [Google Scholar]
  47. DemirözG. GüvenirH.A. VansomerenM. Classification by voting feature intervals.Lect. Notes Comput. Sci.19971224859210.1007/3‑540‑62858‑4_74
    [Google Scholar]
  48. WieczorekW. KozakJ. StrąkŁ. NowakowskiA. Minimum query set for decision tree construction.Entropy20212312168210.3390/e2312168234945988
    [Google Scholar]
  49. GorodkinJ. Comparing two K-category assignments by a K-category correlation coefficient.Comput. Biol. Chem.2004285-636737410.1016/j.compbiolchem.2004.09.00615556477
    [Google Scholar]
  50. HuangG. ZhangY. ChenL. ZhangN. HuangT. CaiY.D. Prediction of multi-type membrane proteins in human by an integrated approach.PLoS One201493e9355310.1371/journal.pone.009355324676214
    [Google Scholar]
/content/journals/cp/10.2174/0115701646353986250124053327
Loading
/content/journals/cp/10.2174/0115701646353986250124053327
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test