Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

The aim of this study is to compare the molecular differences between the normal liver (NG) and attached liver (WG) of () based on label-free and TMT-labeled proteomics data. It provides a theoretical basis for the adaptation of in the plateau area with low temperature and low oxygen.

Methods

The differentially expressed proteins (DEPs) of label-free and TMT-labeled proteomics data were analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein structural domain (PSD) enrichment, and protein network interactions were constructed to reveal protein characteristics.

Results

In the label-free and TMT-labeled groups, we detected a total of 643 and 107 DEPs; 7 common DEPs (co-DEPs) were selected through PPI network information. Higher expression of evm.model.chr5.73, evm.model.chr18.610, evm.model.chr10.1201, and HIF-1 signaling pathway were associated with a hypoxic environment. evm.model.chr15.573, evm.model .chr5.320, evm.model.chr6.360, and evm.model.chr18.610 were associated with WG production. Significant expression of Ubiquitin-like protein 4A and Heat shock 70 kDa protein protects liver cells from injury in a hypothermic and hypoxic environment.

Conclusion

In terms of the number of DEPs, the labelling-free method is superior to the TMT-labeled method. The TMT-labeled method is better in terms of repeatability and accuracy. The myosin11 not only responds to low temperature and low oxygen but may also lead to WG production through Tight junctions. The NG may be more sensitive than WG in stress response to cancer and viral infections.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646315963240902071507
2024-09-18
2025-10-31
Loading full text...

Full text loading...

References

  1. YuanX. GuoB. LuM. ZangW. LiuC. WangB. HuangX. Eco-asset variations and their driving factors in the Qinghai–Tibet Plateau, China, under the context of Global Change.Sustainability (Basel)2023159746610.3390/su15097466
    [Google Scholar]
  2. XiaoS.J. MouZ.B. YangR.B. FanD.D. LiuJ.Q. ZouY. ZhuS.L. ZouM. ZhouC.W. LiuH.P. Genome and population evolution and environmental adaptation of Glyptosternon maculatum on the Qinghai-Tibet Plateau.Zool. Res.202142450251310.24272/j.issn.2095‑8137.2021.09634254744
    [Google Scholar]
  3. ZhangY.L. LiB.Y. LiuB.Y. LiuL.S. ZhengD. Revisiting the extent of the Tibetan Plateau.Geographical Studies2021400615431553
    [Google Scholar]
  4. LiH. Study on species composition and fauna resources distribution characteristics of indigenous fish in Yarlung Zangbo River.Tibetan Agricul. Sci. Technol.202345036369
    [Google Scholar]
  5. LiuJ LuG YangH DangT YanZ Ecological impact assessment of 110 micropollutants in the yarlung tsangpo river on the tibetan plateau.J. Environ. Manag.202026211029110.1016/j.jenvman.2020.110291
    [Google Scholar]
  6. Hunt von HerbingI. PanT.C.F. Méndez-SánchezF. Garduño-PazM. Hernández-GallegosO. Ruiz-GómezM.L. Rodríguez-VargasG. Chronic stress of rainbow trout Oncorhynchus mykiss at high altitude: A field study.J. Fish Biol.201587113815810.1111/jfb.1271026148653
    [Google Scholar]
  7. LiS. GuH. WangY. WangZ. Factors limiting the spread of middle- and low-altitude fishes to the Qinghai-Tibet plateau.Front. Mar. Sci.202310119369910.3389/fmars.2023.1193699
    [Google Scholar]
  8. MaX. KangJ. ChenW. ZhouC. HeS. Biogeographic history and high-elevation adaptations inferred from the mitochondrial genome of Glyptosternoid fishes (Sisoridae, Siluriformes) from the southeastern Tibetan Plateau.BMC Evol. Biol.201515123310.1186/s12862‑015‑0516‑926511921
    [Google Scholar]
  9. TongC. FeiT. ZhangC. ZhaoK. Comprehensive transcriptomic analysis of Tibetan Schizothoracinae fish Gymnocypris przewalskii reveals how it adapts to a high altitude aquatic life.BMC Evol. Biol.20171717410.1186/s12862‑017‑0925‑z28274203
    [Google Scholar]
  10. PanY. LiZ. ZhouJ. WangQ. XuH. MouZ. Cupriavidus in the intestinal microbiota of Tibet endemic fish Glyptosternum maculatum can help it adapt to habitat of the Qinghai Tibet Plateau.BMC Vet. Res.202117137710.1186/s12917‑021‑03092‑534876102
    [Google Scholar]
  11. LiuH. LiuQ. ChenZ. LiuY. ZhouC. LiangQ. MaC. ZhouJ. PanY. ChenM. Wangjiu JiangW. XiaoS. MouZ. Draft genome of Glyptosternon maculatum, an endemic fish from Tibet Plateau.Gigascience20187910.1093/gigascience/giy104
    [Google Scholar]
  12. XueQ. Genetic diversity analysis of mitochondrial DNA sequences inG. maculatum. Dissertation, Huazhong Agricultural University2005
    [Google Scholar]
  13. XieC. Glyptosternum maculatum special organ-extra-abdominal liver.Advances Nat. Sci.200705683686
    [Google Scholar]
  14. ZhangH. G. maculatum development and related biological adaptation in the liver. Dissertation, Huazhong Agricultural University.2011
    [Google Scholar]
  15. LiuY.H. Studies on isozymes of glyptosternon maculatum. Dissertation, Huazhong Agricultural University.2006
    [Google Scholar]
  16. YingZ. Comparison of metabolic differences between liver and parafollicular liver of the black-spotted fishes.J. Fishery Sci. China20222903435445
    [Google Scholar]
  17. CamposA. De AlmeidaA. Top-down proteomics and farm animal and aquatic sciences.Proteomes2016443810.3390/proteomes4040038
    [Google Scholar]
  18. HunterT.C. AndonN.L. KollerA. YatesJ.R.III HaynesP.A. The functional proteomics toolbox: Methods and applications.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20027821-216518110.1016/S1570‑0232(02)00570‑612458005
    [Google Scholar]
  19. ZhouX. DingY. WangY. Proteomics: Present and future in fish, shellfish and seafood.Rev. Aquacult.201241112010.1111/j.1753‑5131.2012.01058.x
    [Google Scholar]
  20. DingZ. WangN. JiN. ChenZ.S. Proteomics technologies for cancer liquid biopsies.Mol. Cancer20222115310.1186/s12943‑022‑01526‑835168611
    [Google Scholar]
  21. MendesM.L. DittmarG. Targeted proteomics on its way to discovery.Proteomics20222215-16210033010.1002/pmic.20210033035816345
    [Google Scholar]
  22. ScheyK.L. HacheyA.J. RoseK.L. GreyA.C. MALDI imaging mass spectrometry of Pacific White Shrimp L. vannamei and identification of abdominal muscle proteins.Proteomics20161611-121767177410.1002/pmic.20150053126990122
    [Google Scholar]
  23. ColaertN. VandekerckhoveJ. GevaertK. MartensL. A comparison of MS2-based label-free quantitative proteomic techniques with regards to accuracy and precision.Proteomics20111161110111310.1002/pmic.20100052121365758
    [Google Scholar]
  24. DoblmannJ. DusbergerF. ImreR. HudeczO. StanekF. MechtlerK. DürnbergerG. Apquant: Accurate label-free quantification by quality filtering.J. Proteome Res.20181818b0011310.1021/acs.jproteome.8b0011330351950
    [Google Scholar]
  25. GrissJ. StanekF. HudeczO. DürnbergerG. Perez-RiverolY. VizcaínoJ.A. MechtlerK. Spectral clustering improves label-free quantification of low-abundant proteins.J. Proteome Res.20191841477148510.1021/acs.jproteome.8b0037730859831
    [Google Scholar]
  26. NeilsonK.A. AliN.A. MuralidharanS. MirzaeiM. MarianiM. AssadourianG. LeeA. van SluyterS.C. HaynesP.A. Less label, more free: Approaches in label-free quantitative mass spectrometry.Proteomics201111453555310.1002/pmic.20100055321243637
    [Google Scholar]
  27. WuP. HeF.C. JiangY. Label-free methods in quantitative proteomics.Zuo Wu Xue Bao201340328129210.3724/SP.J.1206.2012.00055
    [Google Scholar]
  28. WangH. DaiC. PfeufferJ. SachsenbergT. SanchezA. BaiM. Perez-RiverolY. Tissue-based absolute quantification using large-scale TMT and LFQ experiments.Proteomics20232320230018810.1002/pmic.202300188
    [Google Scholar]
  29. CreskeyM. LiL. NingZ. FeketeE.E.F. MayneJ. WalkerK. AmpawA. BenR. ZhangX. FigeysD. An economic and robust TMT labeling approach for high throughput proteomic and metaproteomic analysis.Proteomics20232321-22220011610.1002/pmic.20220011636528842
    [Google Scholar]
  30. GuoY. YuD. Cupp-SuttonK.A. LiuX. WuS. A benchmarking protocol for intact protein-level Tandem Mass Tag (TMT) labeling for quantitative top-down proteomics.MethodsX2022910187310.1016/j.mex.2022.10187336281278
    [Google Scholar]
  31. LiaoR. YouP. WengK. LiL. SongY. TMT labeling under acidic pH overcomes detrimental overlabeling and improves peptide identification rates.Anal. Chem.20239528105951060210.1021/acs.analchem.3c0052537403445
    [Google Scholar]
  32. EricksonB.E. Proteomics reveals effects effects of aquaculture on fish.J. Proteome Res.20054366710.1021/pr050510y15984101
    [Google Scholar]
  33. FornéI. AbiánJ. CerdàJ. Fish proteome analysis: Model organisms and non-sequenced species.Proteomics201010485887210.1002/pmic.20090060919953554
    [Google Scholar]
  34. PepeT. CerusoM. CarpentieriA. VentroneI. AmoresanoA. AnastasioA. Proteomics analysis for the identification of three species of Thunnus.Veter. Res. Commun.20103415315510.1007/s11259‑010‑9400‑7
    [Google Scholar]
  35. PiovesanaS. CapriottiA.L. CarusoG. CavaliereC. La BarberaG. Zenezini ChiozziR. LaganàA. Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata).J. Chromatogr. A2016142819320110.1016/j.chroma.2015.07.04926233254
    [Google Scholar]
  36. XiangY. SunC. ZhaoY. LiL. YangX. WuY. ChenS. WeiY. LiC. WangY. Label-free proteomic analysis reveals freshness-related proteins in sea bass (Lateolabrax japonicus) fillets stored on ice.Lebensm. Wiss. Technol.202215511288510.1016/j.lwt.2021.112885
    [Google Scholar]
  37. JiaR. HouY. FengW. LiB. ZhuJ. Alterations at biochemical, proteomic and transcriptomic levels in liver of tilapia (Oreochromis niloticus) under chronic exposure to environmentally relevant level of glyphosate.Chemosphere202229413381813381810.1016/j.chemosphere.2022.13381835114268
    [Google Scholar]
  38. HeH. ZhangB. SunS. LiuH. WangW. ZhouJ. Liver transcriptome analysis revealing response to high-temperature stress in Glyptosternum maculatum (Sisoridae: Siluriformes).Aquacult. Rep.20232910153810.1016/j.aqrep.2023.101538
    [Google Scholar]
  39. ZhangG. MouZ. XueW. LiuH. Phosphorylated protein modification analysis on normal liver and Exo-celiac liver of Glyptosternum maculatum.J. Fish Biol.20219951696170710.1111/jfb.1487734392541
    [Google Scholar]
  40. ZhangG. MouZ. WangH. LiuH. Comprehensive proteomic analysis of the main liver and attached liver of <i>Glyptosternum maculatum</i> on the basis of data-independent mass spectrometry acquisition.J. Anim. Feed Sci.20223218511810.22358/jafs/154070/2022
    [Google Scholar]
  41. WiśniewskiJ.R. ZougmanA. NagarajN. MannM. Universal sample preparation method for proteome analysis.Nat. Methods20096535936210.1038/nmeth.132219377485
    [Google Scholar]
  42. TangB. LiY. ZhaoL. YuanS. WangZ. LiB. ChenQ. Stable isotope dimethyl labeling combined with LTQ mass spectrometric detection, a quantitative proteomics technology used in liver cancer research.Biomed. Rep.20131454955410.3892/br.2013.10024648984
    [Google Scholar]
  43. WuJ. XieX. LiuY. HeJ. BenitezR. BuckanovichR.J. LubmanD.M. Identification and confirmation of differentially expressed fucosylated glycoproteins in the serum of ovarian cancer patients using a lectin array and LC-MS/MS.J. Proteome Res.20121194541455210.1021/pr300330z22827608
    [Google Scholar]
  44. MeggerD.A. PottL.L. AhrensM. PaddenJ. BrachtT. KuhlmannK. EisenacherM. MeyerH.E. SitekB. Comparison of label-free and label-based strategies for proteome analysis of hepatoma cell lines.Biochim. Biophys. Acta. Proteins Proteomics20141844596797610.1016/j.bbapap.2013.07.01723954498
    [Google Scholar]
  45. LiuM.S. ToddB.D. SadusR.J. Cooperativity in the motor activities of the ATP-fueled molecular motors.Biochim. Biophys. Acta. Proteins Proteomics20051752211112310.1016/j.bbapap.2005.06.01316140597
    [Google Scholar]
  46. RemboldC.M. Regulation of contraction and relaxation in arterial smooth muscle.Hypertension199220212913710.1161/01.HYP.20.2.1291639454
    [Google Scholar]
  47. IshiiS. OyamaK. Kobirumaki-ShimozawaF. NakanishiT. NakaharaN. SuzukiM. IshiwataS. FukudaN. Myosin and tropomyosin–troponin complementarily regulate thermal activation of muscles.J. Gen. Physiol.202315512e20231341410.1085/jgp.20231341437870863
    [Google Scholar]
  48. KatochS.S. SoniA. Changes in myosin ATPase activity in skeletal muscles of rat during cold stress.Indian J. Biochem. Biophys.199936320420610650719
    [Google Scholar]
  49. CaiM.C. HuangQ.Y. LiaoW.G. WuZ. LiuF.Y. GaoY.Q. Hypoxic training increases metabolic enzyme activity and composition of α-myosin heavy chain isoform in rat ventricular myocardium.Eur. J. Appl. Physiol.2010108110511110.1007/s00421‑009‑1189‑019756706
    [Google Scholar]
  50. QiH. WangP. LiuC. LiM. WangS. HuangY. WangF. Involvement of HIF-1α in MLCK-dependent endothelial barrier dysfunction in hypoxia.Cell. Physiol. Biochem.2011273-425126210.1159/00032795121471714
    [Google Scholar]
  51. PeterM.C. Inducible nitric oxide synthase/nitric oxide system as a biomarker for stress and ease response in fish: Implication on Nasup+/sup homeostasis during hypoxia.Front. Physiol.20221382130082130010.3389/fphys.2022.82130035655956
    [Google Scholar]
  52. MesarwiO.A. MoyaE.A. ZhenX. GautaneM. ZhaoH. Wegbrans GiróP. AlshebliM. McCarleyK.E. BreenE.C. MalhotraA. Hepatocyte hif-1 and intermittent hypoxia independently impact liver fibrosis in murine nonalcoholic fatty liver disease.Am. J. Respir. Cell Mol. Biol.202165439040210.1165/rcmb.2020‑0492OC34003729
    [Google Scholar]
  53. SatoraL. MytychJ. Bilska-KosA. KoziołK. From epithelial remodelling to carcinogenesis.Prog. Biophys. Mol. Biol.202015020320510.1016/j.pbiomolbio.2019.08.00131381892
    [Google Scholar]
  54. YuR.M.K. ChenE.X.H. KongR.Y.C. NgP.K.S. MokH.O.L. AuD.W.T. Hypoxia induces telomerase reverse transcriptase (TERT) gene expression in non-tumor fish tissues in vivo: The marine medaka (Oryzias melastigma) model.BMC Mol. Biol.2006712710.1186/1471‑2199‑7‑27
    [Google Scholar]
  55. CheungI.D. BagnatM. MaT.P. DattaA. EvasonK. MooreJ.C. LawsonN.D. MostovK.E. MoensC.B. StainierD.Y.R. Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b.Dev. Biol.20123611687810.1016/j.ydbio.2011.10.00422020048
    [Google Scholar]
  56. MoonS. ZhengY. Rho GTPase-activating proteins in cell regulation.Trends Cell Biol.2003131132210.1016/S0962‑8924(02)00004‑112480336
    [Google Scholar]
  57. GalanisA. PappaA. GiannakakisA. LanitisE. DangajD. SandaltzopoulosR. Reactive oxygen species and HIF-1 signalling in cancer.Cancer Lett.20082661122010.1016/j.canlet.2008.02.02818378391
    [Google Scholar]
  58. WangP. HIF-1 signal pathway in cellular response to hypoxic.J. Zhejiang Univ.: Med. J.2011405559566
    [Google Scholar]
  59. WongE.V. SchaeferA.W. LandrethG. LemmonV. Involvement of p90rsk in neurite outgrowth mediated by the cell adhesion molecule L1.J. Biol. Chem.199627130182171822310.1074/jbc.271.30.182178663493
    [Google Scholar]
  60. VihantoM.M. PlockJ. ErniD. FreyB.M. FreyF.J. Huynh-DoU. Hypoxia up-regulates expression of Eph receptors and ephrins in mouse skin.FASEB J.200519121689169110.1096/fj.04‑3647fje16081502
    [Google Scholar]
  61. KangC. K. LinC. S. HuY. C. TsaiS. C. LeeT. H. The expression of vill protein is hypoosmotic-dependent in the lamellar gill ionocytes of otocephala teleost fish, chanos chanos.Comp Biochem Physiol A Mol Integr Physiol.2017203596810.1016/j.cbpa.2016.08.016
    [Google Scholar]
  62. FriederichE. PringaultE. ArpinM. LouvardD. From the structure to the function of villin, an actin-binding protein of the brush border.BioEssays199012940340810.1002/bies.9501209022256904
    [Google Scholar]
  63. ChenH.Z. LiL. HuJ.S. ZhaoZ.J. JiL. ChengC.D. ZhangG.Q. ZhangT. LiY.L. ChenH. PanS.H. SunB. Ubl4a inhibits autophagy-mediated proliferation andmetastasis of pancreatic ductal adenocarcinoma via targeting lamp1.Pancreas201948101412
    [Google Scholar]
  64. HeS.Y. WangG. PeiY.H. ZhuH.P. miR -34b-3p protects against acute kidney injury in sepsis mice via targeting ubiquitin-like protein 4A.Kaohsiung J. Med. Sci.2020361081782410.1002/kjm2.1225532609950
    [Google Scholar]
  65. FangS.M. ZhangQ. ZhangY.L. ZhangG.Z. ZhangZ. YuQ.Y. Heat shock protein 70 family in response to multiple abiotic stresses in the silkworm.Insects2021121092810.3390/insects1210092834680697
    [Google Scholar]
  66. ZhouA. XieS. SunD. LiuS. ZhangC. SunZ. ZhangY. ChenY. ZouJ. Expression of HSP70 family mRNAs in albino northern snakehead, Channa argus: Response to extreme temperature stress and bacterial infection.Fish Shellfish Immunol.202010445746910.1016/j.fsi.2020.05.03332565393
    [Google Scholar]
  67. SchiaffonatiL. TacchiniL. PappalardoC. Heat shock response in the liver: Expression and regulation of the HSP70 gene family and early response genes afterin vivo hyperthermia.Hepatology199420497598310.1002/hep.18402004297927240
    [Google Scholar]
  68. NingM. TangF. ChenJ. SongW. CaiW. ZhangQ. ZhaoX. YangX. ShanC. HaoG. Low-temperature adaptation and preservation revealed by changes in physiological–biochemical characteristics and proteome expression patterns in post-harvest Hami melon during cold storage.Planta202225549110.1007/s00425‑022‑03874‑735320421
    [Google Scholar]
  69. JuZ. DunhamR. LiuZ. Differential gene expression in the brain of channel catfish (Ictalurus punctatus) in response to cold acclimation.Mol. Genet. Genomics20022681879510.1007/s00438‑002‑0727‑912242503
    [Google Scholar]
  70. Sánchez-NuñoS. SanahujaI. Fernández-AlacidL. Ordóñez- GrandeB. CarbonellT. IbarzA. Oxidative attack during temperature fluctuation challenge compromises liver protein homeostasis of a temperate fish model.Comp. Biochem. Physiol. B Biochem. Mol. Biol.201923611031111031110.1016/j.cbpb.2019.110311
    [Google Scholar]
  71. GoffX.L. MotegiF. SalimovaE. MabuchiI. SimanisV. The S. pombe rlc1 gene encodes a putative myosin regulatory light chain that binds the type II myosins myo3p and myo2p.J. Cell Sci.2000113234157416310.1242/jcs.113.23.415711069761
    [Google Scholar]
  72. UrayK. MajorE. LontayB. MicroRNA regulatory pathways in the control of the actin–myosin cytoskeleton.Cells202097164910.3390/cells907164932660059
    [Google Scholar]
  73. KamijoR. HaradaH. MatsuyamaT. BoslandM. GerecitanoJ. ShapiroD. LeJ. KohS.I. KimuraT. GreenS.J. MakT.W. TaniguchiT. VilčekJ. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages.Science199426351531612161510.1126/science.75104197510419
    [Google Scholar]
  74. LeeK.J. LeeH. JooC.H. Negative regulation of IKK ε -Mediated IRF7 Phosphorylation by HSP70.J. Immunol.202020492562257410.4049/jimmunol.190029732169844
    [Google Scholar]
  75. BenitaY. KikuchiH. SmithA.D. ZhangM.Q. ChungD.C. XavierR.J. An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia.Nucleic Acids Res.200937144587460210.1093/nar/gkp42519491311
    [Google Scholar]
  76. PintoD. RobineS. JaisserF. MarjouF.E. LouvardD. Regulatory sequences of the mouse villin gene that efficiently drive transgenic expression in immature and differentiated epithelial cells of small and large intestines.J. Biol. Chem.1999274106476648210.1074/jbc.274.10.647610037740
    [Google Scholar]
  77. SalonpääP. KrauseK. PelkonenO. RaunioH. Up-regulation of CYP2A5 expression by porphyrinogenic agents in mouse liver.Naunyn Schmiedebergs Arch. Pharmacol.1995351444645210.1007/BF001690877543189
    [Google Scholar]
  78. DobnikarL. TaylorA.L. ChappellJ. OldachP. HarmanJ.L. OertonE. DzierzakE. BennettM.R. SpivakovM. JørgensenH.F. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels.Nat. Commun.201891456710.1038/s41467‑018‑06891‑x30385745
    [Google Scholar]
  79. WangD.Z. ChangP.S. WangZ. SutherlandL. RichardsonJ.A. SmallE. KriegP.A. OlsonE.N. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor.Cell2001105785186210.1016/S0092‑8674(01)00404‑411439182
    [Google Scholar]
  80. KhachigianL.M. BlackB.L. FerdinandyP. De CaterinaR. MadonnaR. GengY.J. Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: Novel targets for therapy.Vascul. Pharmacol.202214610709110.1016/j.vph.2022.10709135896140
    [Google Scholar]
/content/journals/cp/10.2174/0115701646315963240902071507
Loading
/content/journals/cp/10.2174/0115701646315963240902071507
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test