Skip to content
2000
Volume 7, Issue 2
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Objective

This review study examines mucormycosis treatment challenges, gaps in medicines, and COVID-19-related effects. This paper examines diagnostic and drug development advances while addressing safety and specificity.

Methods

This review study searches PubMed, Web Science, and Scopus for relevant material. Keywords associated with mucormycosis, therapy, diagnosis, medication advancement, and COVID-19 are used to identify pertinent articles. Data extraction summarizes therapeutic obstacles, diagnostic advances, and innovative drug options.

Results and Discussion

This review article covers mucormycosis therapy, diagnostics, and drug development. It reveals limitations in present medicines, such as selectivity, safety, and resistance mechanisms. Diagnostic advances and mucormycosis in COVID-19 have also been explored.

Conclusion

This review emphasizes the need for more secure, specific mucormycosis therapies. It discusses therapy obstacles, diagnostic advances, and new drug techniques. Overall, this research emphasizes improving mucormycosis therapy to enhance patient outcomes.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975333545241011060632
2026-03-01
2026-01-02
Loading full text...

Full text loading...

References

  1. KubinC.J. McConvilleT.H. DietzD. Characterization of bacterial and fungal infections in hospitalized patients with coronavirus disease 2019 and factors associated with health care-associated infections.Open Forum Infect. Dis.201986ofab20110.1093/ofid/ofab201
    [Google Scholar]
  2. MittalR.K. SharmaV. BiswasT. MishraI. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents.Med. Chem.202420548750210.2174/0115734064280150231212113012
    [Google Scholar]
  3. PurohitP. MittalR.K. SharmaV. A synergistic broad-spectrum viral entry blocker: In-silico approach.Biointerface Res. Appl. Chem.2022131
    [Google Scholar]
  4. MittalR.K. PurohitP. AggarwalM. An eco-friendly synthetic approach through C (sp3)-H functionalization of the viral fusion “spike protein” inhibitors.Biointerface Res. Appl. Chem.202313269
    [Google Scholar]
  5. PanigrahiM.K. ManjuR. Vinod KumarS. ToiP.C. Pulmonary mucormycosis presenting as nonresolving pneumonia in a patient with diabetes mellitus.Respir. Care20145912e201e20510.4187/respcare.0320525006269
    [Google Scholar]
  6. PetrikkosG. SkiadaA. LortholaryO. RoilidesE. WalshT.J. KontoyiannisD.P. Epidemiology and clinical manifestations of mucormycosis.Clin. Infect. Dis.201254Suppl. 1S23S3410.1093/cid/cir86622247442
    [Google Scholar]
  7. JainT. ShrivastavaP. RaiP. PaulS. SharmaR.K. Mucormycosis: A rare fungal infection that emerged as epidemic.AIP Conf Proc2023272302000110.1063/5.0139135
    [Google Scholar]
  8. SobelJ.D. Vaginal mucormycosis: a case report.Infect. Dis. Obstet. Gynecol.20019211711810.1155/S106474490100020511495552
    [Google Scholar]
  9. MonikaP. ChandraprabhaM.N. Risks of mucormycosis in the current COVID-19 pandemic: A clinical challenge in both immunocompromised and immunocompetent patients.Mol. Biol. Rep.20224964977498810.1007/s11033‑022‑07160‑335107737
    [Google Scholar]
  10. PrakashH. SinghS. RudramurthyS.M. An aero mycological analysis of mucormycetes in indoor and outdoor environments of northern India.Med. Mycol.202058111812310.1093/mmy/myz03130980083
    [Google Scholar]
  11. MeyerR.D. RosenP. ArmstrongD. Phycomycosis complicating leukemia and lymphoma.Ann. Intern. Med.197277687187910.7326/0003‑4819‑77‑6‑8714644165
    [Google Scholar]
  12. PurohitP. MittalR.K. KhatanaK. Quinoline-3-carboxylic acids “DNA minor groove-binding agent.Anti-Cancer Agent Med Chem202222234434810.2174/1871520621666210513160714
    [Google Scholar]
  13. BiswasT. MittalR.K. SharmaV. MishraI. Nitrogen-fused heterocycles: Empowering anticancer drug discovery.Med. Chem.202420436938410.2174/0115734064278334231211054053
    [Google Scholar]
  14. SkiadaA. PaganoL. GrollA. Zygomycosis in Europe: Analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007.Clin. Microbiol. Infect.201117121859186710.1111/j.1469‑0691.2010.03456.x21199154
    [Google Scholar]
  15. IbrahimAS SpellbergB WalshTJ KontoyiannisDP Pathogenesis of mucormycosis.Clin Infect Dis201254Suppl 1)(Suppl. 1S162210.1093/cid/cir86522247441
    [Google Scholar]
  16. MittalR.K. PurohitP. SankaranarayananM. In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-CoV-2 isolate.Mol. Divers.2023282651266510.1007/s11030‑023‑10703‑w37480422
    [Google Scholar]
  17. YadavA. COVID-19 and the challenges in world’s largest vaccination drive in India.J. Pure Appl. Microbiol.20211542431243810.22207/JPAM.15.4.69
    [Google Scholar]
  18. PattnaikB. Emergence of mucormycosis during COVID-19 pandemic in India.J. Pharmaceut Res. Int.20213350B9810310.9734/jpri/2021/v33i50B33432
    [Google Scholar]
  19. SharmaK. MishraS. GautamA. MalviyaR. Mucormycosis-a fungal infection in patient recovered from COVID-19.Lette Appl Nanosci20211138023810
    [Google Scholar]
  20. AtharF BhatI BegMA A contemporary intimidation for COVID-19 patients coinfected with mucormycosis in India.J Bacteriol Mycol: Open Access202192697110.15406/jbmoa.2021.09.00298
    [Google Scholar]
  21. ArokiasamyP. SalviS. SelvamaniY. Global burden of diabetes mellituIn: Handbook of Global Health.Springer International Publishing2021
    [Google Scholar]
  22. UnnikrishnanR. AnjanaR.M. MohanV. Diabetes mellitus and its complications in India.Nat. Rev. Endocrinol.201612635737010.1038/nrendo.2016.5327080137
    [Google Scholar]
  23. RamachandranA. SnehalathaC. ShettyA.S. NandithaA. Trends in prevalence of diabetes in Asian countries.World J. Diabetes20123611011710.4239/wjd.v3.i6.11022737281
    [Google Scholar]
  24. SinghA.K. SinghR. JoshiS.R. MisraA. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India.Diabetes Metab. Syndr.202115410214610.1016/j.dsx.2021.05.01934192610
    [Google Scholar]
  25. KalitaD. BhatiaM. RekhaU.S. SinghA. The mystery of mucormycosis in COVID-19: A multifactorial menace or an enigmatic delta variant associated phenomenon? An exploratory study from a tertiary care centre in North India with a brief literature review.J. Pharm. Bioallied Sci.2022141465110.4103/jpbs.jpbs_658_2135784107
    [Google Scholar]
  26. StoneN. GuptaN. SchwartzI. Mucormycosis: time to address this deadly fungal infection.Lancet Microbe202128e343e34410.1016/S2666‑5247(21)00148‑835544192
    [Google Scholar]
  27. Rodriguez-MoralesA.J. SahR. Millan-OñateJ. COVID-19 associated mucormycosis: the urgent need to reconsider the indiscriminate use of immunosuppressive drugs.Ther. Adv. Infect. Dis.2021810.1177/2049936121102706534211710
    [Google Scholar]
  28. AsdaqS.M.B. RajanA. DamodaranA. Identifying mucormycosis severity in Indian COVID-19 patients: A nano-based diagnosis and the necessity for critical therapeutic intervention.Antibiotics (Basel)20211011130810.3390/antibiotics1011130834827246
    [Google Scholar]
  29. KöhlerJR HubeB PucciaR CasadevallA PerfectJR Fungi that infect humans.Microbiol Spectr2017535.3.0810.1128/microbiolspec.FUNK‑0014‑201628597822
    [Google Scholar]
  30. SpellbergB. EdwardsJ.Jr IbrahimA. Novel perspectives on mucormycosis: pathophysiology, presentation, and management.Clin. Microbiol. Rev.200518355656910.1128/CMR.18.3.556‑569.200516020690
    [Google Scholar]
  31. MaL.J. IbrahimA.S. SkoryC. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication.PLoS Genet.200957e100054910.1371/journal.pgen.100054919578406
    [Google Scholar]
  32. LiuM. SpellbergB. PhanQ.T. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice.J. Clin. Invest.201012061914192410.1172/JCI4216420484814
    [Google Scholar]
  33. IbrahimA.S. GebremariamT. LinL. The high affinity iron permease is a key virulence factor required for Rhizopus oryzae pathogenesis.Mol. Microbiol.201077358760410.1111/j.1365‑2958.2010.07234.x20545847
    [Google Scholar]
  34. SteinbachW.J. Latest thoughts on treating pediatric mucormycosis.J. Pediatric Infect. Dis. Soc.20209564064410.1093/jpids/piaa10633043976
    [Google Scholar]
  35. ArtisW.M. PatruskyE. RastinejadF. DuncanR.L.Jr Fungistatic mechanism of human transferrin for Rhizopus oryzae and Trichophyton mentagrophytes: Alternative to simple iron deprivation.Infect. Immun.19834131269127810.1128/iai.41.3.1269‑1278.19836885162
    [Google Scholar]
  36. ArtisW.M. FountainJ.A. DelcherH.K. JonesH.E. A mechanism of susceptibility to mucormycosis in diabetic ketoacidosis: Transferrin and iron availability.Diabetes198231121109111410.2337/diacare.31.12.11096816646
    [Google Scholar]
  37. BoelaertJ.R. Van CutsemJ. de LochtM. SchneiderY.J. CrichtonR.R. Deferoxamine augments growth and pathogenicity of Rhizopus, while hydroxypyridinone chelators have no effect.Kidney Int.199445366767110.1038/ki.1994.898196268
    [Google Scholar]
  38. IbrahimA.S. GebermariamT. FuY. The iron chelator deferasirox protects mice from mucormycosis through iron starvation.J. Clin. Invest.200711792649265710.1172/JCI3233817786247
    [Google Scholar]
  39. ChamilosG. LewisR.E. HuJ. Drosophila melanogaster as a model host to dissect the immunopathogenesis of zygomycosis.Proc. Natl. Acad. Sci. USA2008105279367937210.1073/pnas.070957810518583479
    [Google Scholar]
  40. SoummerA. MathonnetA. ScattonO. Failure of deferasirox, an iron chelator agent, combined with antifungals in a case of severe zygomycosis.Antimicrob. Agents Chemother.20085241585158610.1128/AAC.01611‑0718212106
    [Google Scholar]
  41. ReedC. IbrahimA. EdwardsJ.E.Jr WalotI. SpellbergB. Deferasirox, an iron-chelating agent, as salvage therapy for rhinocerebral mucormycosis.Antimicrob. Agents Chemother.200650113968396910.1128/AAC.01065‑0617000743
    [Google Scholar]
  42. SpellbergB. IbrahimA.S. Chin-HongP.V. The deferasirox–AmBisome Therapy for Mucormycosis (DEFEAT Mucor) study: A randomized, double-blinded, placebo-controlled trial.J. Antimicrob. Chemother.201267371572210.1093/jac/dkr37521937481
    [Google Scholar]
  43. DonnellyJ.P. LahavM. Deferasirox as adjunctive therapy for mucormycosis.J. Antimicrob. Chemother.201267351952010.1093/jac/dkr54022186877
    [Google Scholar]
  44. AggarwalD. ChanderJ. JanmejaA. KatyalR. Pulmonary tuberculosis and mucormycosis co-infection in a diabetic patient.Lung India2015321535510.4103/0970‑2113.14845225624598
    [Google Scholar]
  45. Corzo-LeónD.E. Chora-HernándezL.D. Rodríguez-ZuluetaA.P. WalshT.J. Diabetes mellitus as the major risk factor for mucormycosis in Mexico: Epidemiology, diagnosis, and outcomes of reported cases.Med. Mycol.2018561294310.1093/mmy/myx01728431008
    [Google Scholar]
  46. JungJ. KimM.Y. LeeH.J. Comparison of computed tomographic findings in pulmonary mucormycosis and invasive pulmonary aspergillosis.Clin. Microbiol. Infect.2015217684.e11684.e1810.1016/j.cmi.2015.03.01925882362
    [Google Scholar]
  47. HaasB.M. ClaytonJ.D. ElickerB.M. OrdovasK.G. NaegerD.M. CT-guided percutaneous lung biopsies in patients with suspicion for infection may yield clinically useful information.AJR Am. J. Roentgenol.2017208245946310.2214/AJR.16.1625527845850
    [Google Scholar]
  48. MillonL. CaillotD. BerceanuA. Evaluation of serum Mucorales polymerase chain reaction (PCR) for the diagnosis of mucormycoses: The MODIMUCOR prospective trial.Clin. Infect. Dis.202275577778510.1093/cid/ciab106634986227
    [Google Scholar]
  49. MillonL. HerbrechtR. GrenouilletF. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF).Clin. Microbiol. Infect.2016229810.e1810.e810.1016/j.cmi.2015.12.00626706615
    [Google Scholar]
  50. SchererE. IriartX. BellangerA.P. Quantitative PCR (qPCR) detection of mucorales DNA in bronchoalveolar lavage fluid to diagnose pulmonary mucormycosis.J. Clin. Microbiol.2018568e00289e1810.1128/JCM.00289‑1829875192
    [Google Scholar]
  51. RocchiS. SchererE. MengoliC. Interlaboratory evaluation of mucorales PCR assays for testing serum specimens: A study by the fungal PCR Initiative and the modimucor study group.Med. Mycol.202159212613810.1093/mmy/myaa03632534456
    [Google Scholar]
  52. GueganH. IriartX. BougnouxM.E. BerryA. Robert-GangneuxF. GangneuxJ.P. Evaluation of MucorGenius® mucorales PCR assay for the diagnosis of pulmonary mucormycosis.J. Infect.202081231131710.1016/j.jinf.2020.05.05132474046
    [Google Scholar]
  53. FraterJ.L. HallG.S. ProcopG.W. Histologic features of zygomycosis: emphasis on perineural invasion and fungal morphology.Arch. Pathol. Lab. Med.2001125337537810.5858/2001‑125‑0375‑HFOZ11231486
    [Google Scholar]
  54. Lass-FlörlC. Zygomycosis: conventional laboratory diagnosis.Clin. Microbiol. Infect.200915Suppl. 5606510.1111/j.1469‑0691.2009.02999.x19754760
    [Google Scholar]
  55. Lass-FlörlC. ReschG. NachbaurD. The value of computed tomography-guided percutaneous lung biopsy for diagnosis of invasive fungal infection in immunocompromised patients.Clin. Infect. Dis.2007457e101e10410.1086/52124517806041
    [Google Scholar]
  56. MonheitJ.E. CowanD.F. MooreD.G. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy.Arch. Pathol. Lab. Med.198410886166186204621
    [Google Scholar]
  57. SharmaA. AlamM.A. DhoundiyalS. SharmaP.K. Review on mucormycosis: pathogenesis, epidemiology, microbiology and diagnosis.Infect. Disord. Drug Targ2024241465510.2174/1871526523666230822154407
    [Google Scholar]
  58. RibesJ.A. Vanover-SamsC.L. BakerD.J. Zygomycetes in human disease.Clin. Microbiol. Rev.200013223630110.1128/CMR.13.2.23610756000
    [Google Scholar]
  59. ChakrabartiA. DasA. MandalJ. The rising trend of invasive zygomycosis in patients with uncontrolled diabetes mellitus.Med. Mycol.200644433534210.1080/1369378050046493016772227
    [Google Scholar]
  60. Lass-FlörlC. MayrA. Diagnosing invasive fungal diseases – limitations of microbiological diagnostic methods.Expert Opin. Med. Diagn.20093446147010.1517/1753005090287803123485213
    [Google Scholar]
  61. WalshT.J. GamaletsouM.N. McGinnisM.R. HaydenR.T. KontoyiannisD.P. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (zygomycosis).Clin. Infect. Dis.201254Suppl. 1S55S6010.1093/cid/cir86822247446
    [Google Scholar]
  62. GuarnerJ. BrandtM.E. Histopathologic diagnosis of fungal infections in the 21st century.Clin. Microbiol. Rev.201124224728010.1128/CMR.00053‑1021482725
    [Google Scholar]
  63. GuptaM.K. KumarN. DhamejaN. SharmaA. TilakR. Laboratory diagnosis of mucormycosis.J. Family Med. Prim. Care20221151664167110.4103/jfmpc.jfmpc_1479_2135800582
    [Google Scholar]
  64. AlvarezE. SuttonD.A. CanoJ. Spectrum of zygomycete species identified in clinically significant specimens in the United States.J. Clin. Microbiol.20094761650165610.1128/JCM.00036‑0919386856
    [Google Scholar]
  65. SchrödlW. HeydelT. SchwartzeV.U. Direct analysis and identification of pathogenic Lichtheimia species by matrix-assisted laser desorption ionization-time of flight analyzer-mediated mass spectrometry.J. Clin. Microbiol.201250241942710.1128/JCM.01070‑1122135259
    [Google Scholar]
  66. VitaleR.G. de HoogG.S. SchwarzP. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales.J. Clin. Microbiol.2012501667510.1128/JCM.06133‑1122075600
    [Google Scholar]
  67. BonifazA. StchigelA.M. GuarroJ. Primary cutaneous mucormycosis produced by the new species Apophysomyces mexicanus.J. Clin. Microbiol.201452124428443110.1128/JCM.02138‑1425297328
    [Google Scholar]
  68. SandvenP. EduardW. Detection and quantitation of antibodies against Rhizopus by enzyme‐linked immunosorbent assay.Acta Pathol Microbiol Scand Suppl19921007-1298198710.1111/j.1699‑0463.1992.tb04029.x1472367
    [Google Scholar]
  69. WysongD.R. WaldorfA.R. Electrophoretic and immunoblot analyses of Rhizopus arrhizus antigens.J. Clin. Microbiol.198725235836310.1128/jcm.25.2.358‑363.19873546367
    [Google Scholar]
  70. PotenzaL. ValleriniD. BarozziP. Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients.Blood2011118205416541910.1182/blood‑2011‑07‑36652621931119
    [Google Scholar]
  71. YangM. LeeJ.H. KimY.K. KiC.S. HuhH.J. LeeN.Y. Identification of mucorales from clinical specimens: a 4-year experience in a single institution.Ann. Lab. Med.2016361606310.3343/alm.2016.36.1.6026522761
    [Google Scholar]
  72. SonH.J. SungH. ParkS.Y. Diagnostic performance of the (1–3)-β-D-glucan assay in patients with Pneumocystis jirovecii compared with those with candidiasis, aspergillosis, mucormycosis, and tuberculosis, and healthy volunteers.PLoS One20171211e018886010.1371/journal.pone.018886029190812
    [Google Scholar]
  73. DichtlK. ForsterJ. OrmannsS. Comparison of β-D-glucan and galactomannan in serum for detection of invasive aspergillosis: Retrospective analysis with focus on early diagnosis.J. Fungi (Basel)20206425310.3390/jof604025333126428
    [Google Scholar]
  74. ChoudharyH. KaurH. SinghS. A novel indirect ELISA for serodiagnosis of mucormycosis using antigens from Rhizopus arrhizus.Mycoses2024675e1373010.1111/myc.1373038712824
    [Google Scholar]
  75. DengH. WangF. WuQ. Novel multiresistant osmotin-like protein from sweetpotato as a promising biofungicide to control Ceratocystis fimbriata by destroying spores through accumulation of reactive oxygen species.J. Agric. Food Chem.20247231487149910.1021/acs.jafc.3c0766338215405
    [Google Scholar]
  76. JonesK.W. KaufmanL. Development and evaluation of an immunodiffusion test for diagnosis of systemic zygomycosis (mucormycosis): preliminary report.J. Clin. Microbiol.1978719710110.1128/jcm.7.1.97‑101.197875212
    [Google Scholar]
  77. BettelliF. ValleriniD. LagrecaI. Identification and validation of diagnostic cut-offs of the ELISpot assay for the diagnosis of invasive aspergillosis in high-risk patients.PLoS One2024197e030672810.1371/journal.pone.030672838980880
    [Google Scholar]
  78. SatoK. OinumaK.I. NikiM. Identification of a novel Rhizopus-specific antigen by screening with a signal sequence trap and evaluation as a possible diagnostic marker of mucormycosis.Med. Mycol.201755771371910.1093/mmy/myw14628199672
    [Google Scholar]
  79. HamilosG. SamonisG. KontoyiannisD.P. Pulmonary mucormycosis.Semin. Respir. Crit. Care Med.201132669370210.1055/s‑0031‑1295717
    [Google Scholar]
  80. JeicanI.I. HorhatD.I. DumitruM. COVID-19-associated rhino-orbital mucormycosis: histological and electron microscopy characteristics.Diagnostics (Basel)202414442910.3390/diagnostics1404042938396469
    [Google Scholar]
  81. HwangS.S. KimH.H. ParkS.H. JungJ.I. JangH.S. The value of CT-guided percutaneous needle aspiration in immunocompromised patients with suspected pulmonary infection.AJR Am. J. Roentgenol.2000175123523810.2214/ajr.175.1.175023510882278
    [Google Scholar]
  82. SharmaS. GuptaP. GuptaN. LalA. BeheraD. RajwanshiA. Pulmonary infections in immunocompromised patients: the role of image‐guided fine needle aspiration cytology.Cytopathology2017281465410.1111/cyt.1235927292015
    [Google Scholar]
  83. PyrgosV. ShohamS. WalshT.J. Pulmonary zygomycosis.Semin. Respirat. Crit. Care Med.200829211112010.1055/s‑2008‑1063850
    [Google Scholar]
  84. BlauwkampT.A. ThairS. RosenM.J. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease.Nat. Microbiol.20194466367410.1038/s41564‑018‑0349‑630742071
    [Google Scholar]
  85. LiangM. XuJ. LuoY. QuJ. Epidemiology, pathogenesis, clinical characteristics, and treatment of mucormycosis: a review.Ann. Med.2024561239657010.1080/07853890.2024.239657039221718
    [Google Scholar]
  86. HussainM.K. AhmedS. KhanA. SiddiquiA.J. KhatoonS. JahanS. Mucormycosis: A hidden mystery of fungal infection, possible diagnosis, treatment and development of new therapeutic agents.Eur. J. Med. Chem.202324611501010.1016/j.ejmech.2022.11501036566630
    [Google Scholar]
  87. SunQ.N. NajvarL.K. BocanegraR. LoebenbergD. GraybillJ.R. In vivo activity of posaconazole against Mucor spp. in an immunosuppressed-mouse model.Antimicrob. Agents Chemother.20024672310231210.1128/AAC.46.7.2310‑2312.200212069997
    [Google Scholar]
  88. SHIGLE TLPharmacology of drugs used in hematopoietic cell transplant and chimeric antigen receptor therapies.In: Manual of Hematopoietic Cell Transplantation and Cellular Therapies-E-Book.Elsevier2022
    [Google Scholar]
  89. De BeuleK. Van GestelJ. Pharmacology of itraconazole.Drugs200161Suppl. 1273710.2165/00003495‑200161001‑0000311219548
    [Google Scholar]
  90. BastidasR.J. ShertzC.A. LeeS.C. HeitmanJ. CardenasM.E. Rapamycin exerts antifungal activity in vitro and in vivo against Mucor circinelloides via FKBP12-dependent inhibition of Tor.Eukaryot. Cell201211327028110.1128/EC.05284‑1122210828
    [Google Scholar]
  91. GebremariamT. WiederholdN.P. FothergillA.W. VT-1161 protects immunosuppressed mice from Rhizopus arrhizus var. Arrhizus infection.Antimicrob. Agents Chemother.201559127815781710.1128/AAC.01437‑1526369977
    [Google Scholar]
  92. HarrisT.E. LawrenceJ.C.Jr TOR Signaling.Sci. STKE20032003212re1510.1126/stke.2122003re1514668532
    [Google Scholar]
  93. RyderN.S. Terbinafine: Mode of action and properties of the squalene epoxidase inhibition.Br. J. Dermatol.1992126s39Suppl. 392710.1111/j.1365‑2133.1992.tb00001.x1543672
    [Google Scholar]
  94. BhattacharyaS. EsquivelB.D. WhiteT.C. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae.MBio201894e01291e1810.1128/mBio.01291‑1830042199
    [Google Scholar]
  95. MazuT.K. BrickerB.A. Flores-RozasH. AblordeppeyS.Y. The mechanistic targets of antifungal agents: An overview.Mini Rev. Med. Chem.201616755557810.2174/138955751666616011811210326776224
    [Google Scholar]
  96. RosamK. MonkB.C. LacknerM. Sterol 14α-demethylase ligand-binding pocket-mediated acquired and intrinsic azole resistance in fungal pathogens.J. Fungi (Basel)202071110.3390/jof701000133374996
    [Google Scholar]
  97. SucherA.J. ChahineE.B. BalcerH.E. Echinocandins: the newest class of antifungals.Ann. Pharmacother.200943101647165710.1345/aph.1M23719724014
    [Google Scholar]
  98. DouglasC.M. D’IppolitoJ.A. SheiG.J. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors.Antimicrob. Agents Chemother.199741112471247910.1128/AAC.41.11.24719371352
    [Google Scholar]
  99. LiG. CaoX. TumukundeE. ZengQ. WangS. The target of rapamycin signaling pathway regulates vegetative development, aflatoxin biosynthesis, and pathogenicity in Aspergillus flavus.eLife202412RP8947810.7554/eLife.8947838990939
    [Google Scholar]
  100. KamińskiD.M. Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments.Eur. Biophys. J.20144310-1145346710.1007/s00249‑014‑0983‑825173562
    [Google Scholar]
  101. AndersonT.M. ClayM.C. CioffiA.G. Amphotericin forms an extramembranous and fungicidal sterol sponge.Nat. Chem. Biol.201410540040610.1038/nchembio.149624681535
    [Google Scholar]
  102. NakamuraT. YoshinouchiT. OkumuraM. Antifungal potency of terbinafine as a therapeutic agent against Exophiala dermatitidis in vitro.bioRxiv20240525595862 202410.1101/2024.05.25.595862
    [Google Scholar]
  103. WarrilowA.G.S. HullC.M. ParkerJ.E. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme.Antimicrob. Agents Chemother.201458127121712710.1128/AAC.03707‑1425224009
    [Google Scholar]
  104. BrandS.R. SobelJ.D. NyirjesyP. GhannoumM.A. SchotzingerR.J. DegenhardtT.P. A randomized phase 2 study of VT-1161 for the treatment of acute vulvovaginal candidiasis.Clin. Infect. Dis.2021737e1518e152410.1093/cid/ciaa120432818963
    [Google Scholar]
  105. WaldmeierP. ZimmermannK. QianT. Tintelnot-BlomleyM. LemastersJ. Cyclophilin D as a drug target.Curr. Med. Chem.200310161485150610.2174/092986703345716012871122
    [Google Scholar]
  106. TavakkoliA. JohnstonT.P. SahebkarA. Antifungal effects of statins.Pharmacol. Ther.202020810748310.1016/j.pharmthera.2020.10748331953128
    [Google Scholar]
  107. Desnos-OllivierM. BlancC. Garcia-HermosoD. HoinardD. AlanioA. DromerF. Misidentification of Saprochaete clavata as Magnusiomyces capitatus in clinical isolates: utility of internal transcribed spacer sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry and importance of reliable databases.J. Clin. Microbiol.20145262196219810.1128/JCM.00039‑1424696028
    [Google Scholar]
  108. SipsasN.V. GamaletsouM.N. AnastasopoulouA. KontoyiannisD.P. Therapy of mucormycosis.J. Fungi (Basel)2018439010.3390/jof403009030065232
    [Google Scholar]
  109. DonnelleyM.A. ZhuE.S. ThompsonG.R.III Isavuconazole in the treatment of invasive aspergillosis and mucormycosis infections.Infect. Drug Resist.20169798627330318
    [Google Scholar]
  110. ArendrupM.C. JensenR.H. MeletiadisJ. In vitro activity of isavuconazole and comparators against clinical isolates of the mucorales order.Antimicrob. Agents Chemother.201559127735774210.1128/AAC.01919‑1526438494
    [Google Scholar]
  111. LuoG. GebremariamT. LeeH. EdwardsJ.E.Jr KovandaL. IbrahimA.S. Isavuconazole therapy protects immunosuppressed mice from mucormycosis.Antimicrob. Agents Chemother.20145842450245310.1128/AAC.02301‑1324492363
    [Google Scholar]
  112. MartyF.M. Ostrosky-ZeichnerL. CornelyO.A. Isavuconazole treatment for mucormycosis: a single-arm open-label trial and case-control analysis.Lancet Infect. Dis.201616782883710.1016/S1473‑3099(16)00071‑226969258
    [Google Scholar]
  113. TissotF AgrawalS PaganoL ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients.haematologica20171023433
    [Google Scholar]
  114. CornelyO.A. Arikan-AkdagliS. DannaouiE. ESCMID† and ECMM‡ joint clinical guidelines for the diagnosis and management of mucormycosis 2013.Clin. Microbiol. Infect.201420Suppl. 352610.1111/1469‑0691.1237124479848
    [Google Scholar]
  115. KongC. ZongL. JiS. LiuY. LiM. Case report: Disseminated mucormycosis misdiagnosed as malignancy developed from allergic bronchopulmonary mycosis caused by Rhizopus microsporus following SARS-CoV-2 infection in a woman.Front. Med. (Lausanne)202411139450010.3389/fmed.2024.139450038988360
    [Google Scholar]
  116. AlqarihiA. KontoyiannisD.P. IbrahimA.S. Mucormycosis in 2023: an update on pathogenesis and management.Front. Cell. Infect. Microbiol.202313125491910.3389/fcimb.2023.125491937808914
    [Google Scholar]
/content/journals/covid/10.2174/0126667975333545241011060632
Loading
/content/journals/covid/10.2174/0126667975333545241011060632
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test