Skip to content
2000
Volume 7, Issue 2
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Since late 2019, a pandemic caused by SARS-CoV-2, a highly contagious coronavirus, has jeopardized human and public health. Neurodegeneration and structural brain diseases produce dementia, which is developing rapidly. Strong evidence of COVID-19 brain abnormalities as neurotrophic viruses impair neurological systems. Neuron and glial cell degeneration can affect nerve transmission and brain function. Damage to these brain components raises dementia risk. Multiple studies linked SARS-CoV-2 to dementia. This manuscript contains selective data. This study aims to review the findings and suggest strategies to improve SARS-COVID dementia management. The study makes use of medical research databases like Google Scholar, PubMed, Medline, and Embase. Furthermore, information is also collected by recognized health organizations and government agencies. COVID-19 can produce neuropsychological deficits, agitation, confusion, inattention, and disorientation. Thus, SARS can worsen dementia and neurodegeneration. This article summarizes COVID-19's effects on dementia patients from several sources. The focus on existing treatments for affected patients ties the two.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975329888241010115929
2026-10-21
2026-01-03
Loading full text...

Full text loading...

References

  1. ZappulliV. FerroS. BonsembianteF. Pathology of coronavirus infections: A review of lesions in animals in the one-health perspective.Animals (Basel)20201012237710.3390/ani1012237733322366
    [Google Scholar]
  2. GusevE. SarapultsevA. SolomatinaL. ChereshnevV. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19.Int. J. Mol. Sci.2022233171610.3390/ijms2303171635163638
    [Google Scholar]
  3. ZhouY. XuJ. HouY. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment.Alzheimers Res. Ther.202113111010.1186/s13195‑021‑00850‑334108016
    [Google Scholar]
  4. GavriatopoulouM. Ntanasis-StathopoulosI. KorompokiE. Emerging treatment strategies for COVID-19 infection.Clin. Exp. Med.202121216717910.1007/s10238‑020‑00671‑y33128197
    [Google Scholar]
  5. da SilvaS.J.R. do NascimentoJ.C.F. Germano MendesR.P. Two years into the COVID-19 pandemic: Lessons learned.ACS Infect. Dis.2022891758181410.1021/acsinfecdis.2c0020435940589
    [Google Scholar]
  6. HuB. GuoH. ZhouP. ShiZ.L. Characteristics of SARS-CoV-2 and COVID-19.Nat. Rev. Microbiol.202119314115410.1038/s41579‑020‑00459‑733024307
    [Google Scholar]
  7. AdilM.T. RahmanR. WhitelawD. SARS-CoV-2 and the pandemic of COVID-19.Postgrad. Med. J.202197114411011610.1136/postgradmedj‑2020‑13838632788312
    [Google Scholar]
  8. AtzrodtC.L. MaknojiaI. McCarthyR.D.P. A guide to COVID‐19: A global pandemic caused by the novel coronavirus SARS‐CoV‐2.FEBS J.2020287173633365010.1111/febs.1537532446285
    [Google Scholar]
  9. KopańskaM. BarnaśE. BłajdaJ. KudukB. ŁagowskaA. Banaś-ZąbczykA. Effects of SARS-CoV-2 inflammation on selected organ systems of the human body.Int. J. Mol. Sci.2022238417810.3390/ijms2308417835456997
    [Google Scholar]
  10. BaigA.M. Deleterious outcomes in long-hauler COVID-19: The effects of SARS-CoV-2 on the cns in chronic COVID syndrome.ACS Chem. Neurosci.202011244017402010.1021/acschemneuro.0c0072533275404
    [Google Scholar]
  11. ØstergaardL. SARS-CoV‐2 related microvascular damage and symptoms during and after COVID‐19: Consequences of capillary transit‐time changes, tissue hypoxia and inflammation.Physiol. Rep.202193e1472610.14814/phy2.1472633523608
    [Google Scholar]
  12. Asadi-PooyaA.A. AkbariA. EmamiA. Long COVID syndrome‐associated brain fog.J. Med. Virol.202294397998410.1002/jmv.2740434672377
    [Google Scholar]
  13. JaniriD. KotzalidisG.D. GiuseppinG. Psychological distress after COVID-19 recovery: Reciprocal effects with temperament and emotional dysregulation. An exploratory study of patients over 60 years of age assessed in a post-acute care service.Front. Psychiatry20201159013510.3389/fpsyt.2020.59013533304286
    [Google Scholar]
  14. MocciaL. JaniriD. PepeM. Affective temperament, attachment style, and the psychological impact of the COVID-19 outbreak: An early report on the Italian general population.Brain Behav. Immun.202087757910.1016/j.bbi.2020.04.04832325098
    [Google Scholar]
  15. ZareiM. AsheghiM. ZareiM. Artificial intelligence in dementia diagnosis: Past, present, and future.Int J Aging202311e1410.34172/ija.2023.e14
    [Google Scholar]
  16. ShahsavariniaK. Hajipoor KashgsarayN. GhojazadehM. FalakiZ. SoleimanpourM. SoleimanpourH. Stroke and COVID-19: An umbrella review.Arch. Acad. Emerg. Med.2024121e6539290764
    [Google Scholar]
  17. BagiH.M. SoleimanpourM. AbdollahiF. SoleimanpourH. Evaluation of clinical outcomes of patients with mild symptoms of coronavirus disease 2019 (COVID-19) discharged from the emergency department.PLoS One20211610e025869710.1371/journal.pone.025869734673806
    [Google Scholar]
  18. ShahsavariniaK. GhojazadehM. GhabousianA. HatefniaF. SoleimanpourM. SoleimanpourH. An umbrella review of clinical efficacy and adverse cardiac events associated with hydroxychloroquine or chloroquine with or without azithromycin in patients with COVID-19.Anesth. Pain Med.2021114e11582710.5812/aapm.11582734692436
    [Google Scholar]
  19. McCulloughP.A. AlexanderP.E. ArmstrongR. Multifaceted highly targeted sequential multidrug treatment of early ambulatory high-risk SARS-CoV-2 infection (COVID-19).Rev. Cardiovasc. Med.202021451753010.31083/j.rcm.2020.04.26433387997
    [Google Scholar]
  20. GyasiR.M. AbassK. Adu-GyamfiS. How do lifestyle choices affect the link between living alone and psychological distress in older age? Results from the AgeHeaPsyWel-HeaSeeB study.BMC Public Health202020185910.1186/s12889‑020‑08870‑832571357
    [Google Scholar]
  21. MatschkeJ. LütgehetmannM. HagelC. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series.Lancet Neurol.2020191191992910.1016/S1474‑4422(20)30308‑233031735
    [Google Scholar]
  22. StracciariA. BottiniG. GuarinoM. MagniE. PantoniL. Cognitive and behavioral manifestations in SARS-CoV-2 infection: Not specific or distinctive features?Neurol. Sci.20214262273228110.1007/s10072‑021‑05231‑033846880
    [Google Scholar]
  23. Beatriz LaraB. CarnesA. DakterzadaF. BenitezI. Piñol-RipollG. Neuropsychiatric symptoms and quality of life in Spanish Alzheimer’s disease patients during COVID-19 lockdown.Eur. J. Neurol.2020271744174710.1111/ene.1433932449791
    [Google Scholar]
  24. RoyD. GhoshR. DubeyS. DubeyM.J. Benito-LeónJ. Kanti RayB. Neurological and neuropsychiatric impacts of COVID-19 pandemic.Can. J. Neurol. Sci.202148192410.1017/cjn.2020.17332753076
    [Google Scholar]
  25. DesforgesM. Le CoupanecA. BrisonÉ. Meessen-PinardM. TalbotP.J. Human respiratory coronaviruses: Neuroinvasive, neurotropic and potentially neurovirulent pathogens.Virologie201418151632260043
    [Google Scholar]
  26. WangH. LiT. BarbarinoP. Dementia care during COVID-19.Lancet2020395102311190119110.1016/S0140‑6736(20)30755‑832240625
    [Google Scholar]
  27. ZhangL. LiuY. Potential interventions for novel coronavirus in China: A systematic review.J. Med. Virol.202092547949010.1002/jmv.2570732052466
    [Google Scholar]
  28. PatersonR.W. BrownR.L. BenjaminL. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings.Brain2020143103104312010.1093/brain/awaa24032637987
    [Google Scholar]
  29. DouaudG. LeeS. Alfaro-AlmagroF. SARS-CoV-2 is associated with changes in brain structure in UK Biobank.Nature2022604790769770710.1038/s41586‑022‑04569‑535255491
    [Google Scholar]
  30. ZhangH. SunY. WangY. Recent developments in the immunopathology of COVID-19.Allergy202378236938810.1111/all.1559336420736
    [Google Scholar]
  31. JianF. YuY. SongW. Further humoral immunity evasion of emerging SARS-CoV-2 BA.4 and BA.5 subvariants.Lancet Infect. Dis.202222111535153710.1016/S1473‑3099(22)00642‑936179744
    [Google Scholar]
  32. LipsitchM. KrammerF. Regev-YochayG. LustigY. BalicerR.D. SARS-CoV-2 breakthrough infections in vaccinated individuals: Measurement, causes and impact.Nat. Rev. Immunol.2022221576510.1038/s41577‑021‑00662‑434876702
    [Google Scholar]
  33. CummingsJ.L. TongG. BallardC. Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options.J. Alzheimers Dis.201967377979410.3233/JAD‑18076630689575
    [Google Scholar]
  34. NAMZARIC- Memantine hydrochloride and donepezil hydrochloride capsule.2016Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=90fedc32-19e5-480c-afc6-f35a5cf4b9aa
  35. SharmaS.K. COVID-19 and Dementia.Ann. Neurosci.2021281-210110410.1177/0972753121100942034733061
    [Google Scholar]
  36. IqbalK. AlonsoA.C. ChenS. Tau pathology in Alzheimer disease and other tauopathies.Biochim. Biophys. Acta200517392-319821010.1016/j.bbadis.2004.09.00815615638
    [Google Scholar]
  37. TomaszewskiS. GauthierS. WimoA. Rosa-NetoP. Combination therapy of anti-tau and anti-amyloid drugs for disease modification in early-stage Alzheimer’s disease: Socio-economic considerations modeled on treatments for tuberculosis, HIV/AIDS and breast cancer.J. Prev. Alzheimers Dis.20163316417229205255
    [Google Scholar]
  38. GauthierS. FeldmanH.H. SchneiderL.S. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: A randomised, controlled, double-blind, parallel-arm, phase 3 trial.Lancet2016388100622873288410.1016/S0140‑6736(16)31275‑227863809
    [Google Scholar]
  39. vTv therapeutics announces topline results from part B of phase 3 STEADFAST study.2008Available from: https://ir.vtvtherapeutics.com/news-releases/news-release-details/vtv-therapeutics-announces-topline-results-part-b-phase-3
  40. UptonN. ChuangT.T. HunterA.J. VirleyD.J. 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease.Neurotherapeutics20085345846910.1016/j.nurt.2008.05.00818625457
    [Google Scholar]
  41. TrougakosI.P. StamatelopoulosK. TerposE. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications.J. Biomed. Sci.2021281910.1186/s12929‑020‑00703‑533435929
    [Google Scholar]
  42. GkogkouE. BarnasasG. VougasK. TrougakosI.P. Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators.Redox Biol.20203610161510.1016/j.redox.2020.10161532863223
    [Google Scholar]
  43. ChakravartyN. SenthilnathanT. PaiolaS. Neurological pathophysiology of SARS‐CoV‐2 and pandemic potential RNA viruses: A comparative analysis.FEBS Lett.2021595232854287110.1002/1873‑3468.1422734757622
    [Google Scholar]
  44. RadhakrishnanR.K. KandasamyM. SARS-CoV-2-mediated neuropathogenesis, deterioration of Hippocampal neurogenesis and Dementia.Am. J. Alzheimers Dis. Other Demen.20223710.1177/1533317522107841835133907
    [Google Scholar]
  45. KayL.M. COVID-19 and olfactory dysfunction: A looming wave of dementia?J. Neurophysiol.2022128243644410.1152/jn.00255.202235894511
    [Google Scholar]
  46. HouY.J. OkudaK. EdwardsC.E. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract.Cell20201822429446.e1410.1016/j.cell.2020.05.04232526206
    [Google Scholar]
  47. BaranovaA. CaoH. ZhangF. Causal effect of COVID‐19 on Alzheimer’s disease: A Mendelian randomization study.J. Med. Virol.2023951e2810710.1002/jmv.2810736039844
    [Google Scholar]
  48. ReikenS. SittenfeldL. DridiH. LiuY. LiuX. MarksA.R. Alzheimer’s‐like signaling in brains of COVID‐19 patients.Alzheimers Dement.202218595596510.1002/alz.1255835112786
    [Google Scholar]
  49. WuY. XuX. ChenZ. Nervous system involvement after infection with COVID-19 and other coronaviruses.Brain Behav. Immun.202087182210.1016/j.bbi.2020.03.03132240762
    [Google Scholar]
  50. ShiS. QinM. ShenB. Association of cardiac injury with mortality in hospitalized patients with COVID‐19 in Wuhan, China.JAMA Cardiol.20205780281010.1001/jamacardio.2020.095032211816
    [Google Scholar]
  51. LanJ. GeJ. YuJ. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.Nature2020581780721522010.1038/s41586‑020‑2180‑532225176
    [Google Scholar]
  52. LouJ.J. MovassaghiM. GordyD. Neuropathology of COVID-19 (neuro-COVID): Clinicopathological update.Free Neuropathol.20212233554218
    [Google Scholar]
  53. MeinhardtJ. RadkeJ. DittmayerC. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19.Nat. Neurosci.202124216817510.1038/s41593‑020‑00758‑533257876
    [Google Scholar]
  54. SeneffS. KyriakopoulosA.M. NighG. McCulloughP.A. A potential role of the spike protein in neurodegenerative diseases: A narrative review.Cureus2023152e3487210.7759/cureus.3487236788995
    [Google Scholar]
  55. OkaM. FujisakiN. Maruko-OtakeA. Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy.J. Biochem.2017162533534210.1093/jb/mvx03828992057
    [Google Scholar]
  56. WangJ.Z. Grundke-IqbalI. IqbalK. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration.Eur. J. Neurosci.2007251596810.1111/j.1460‑9568.2006.05226.x17241267
    [Google Scholar]
  57. MateckiS. DridiH. JungB. Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation.Proc. Natl. Acad. Sci. USA2016113329069907410.1073/pnas.160970711327457930
    [Google Scholar]
  58. LacampagneA. LiuX. ReikenS. Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer’s disease-like pathologies and cognitive deficits.Acta Neuropathol.2017134574976710.1007/s00401‑017‑1733‑728631094
    [Google Scholar]
  59. DridiH. LiuX. YuanQ. Role of defective calcium regulation in cardiorespiratory dysfunction in huntington’s disease.JCI Insight2020519e14061410.1172/jci.insight.14061432897880
    [Google Scholar]
  60. LiuX. BetzenhauserM.J. ReikenS. Role of leaky neuronal ryanodine receptors in stress-induced cognitive dysfunction.Cell201215051055106710.1016/j.cell.2012.06.05222939628
    [Google Scholar]
  61. LiuK.Y. HowardR. BanerjeeS. Dementia wellbeing and COVID‐19: Review and expert consensus on current research and knowledge gaps.Int. J. Geriatr. Psychiatry202136111597163910.1002/gps.556734043836
    [Google Scholar]
  62. DubeyS. DasS. GhoshR. The effects of SARS-CoV-2 infection on the cognitive functioning of patients with pre-existing dementia.J. Alzheimers Dis. Rep.20237111912810.3233/ADR‑22009036891252
    [Google Scholar]
  63. GuoP. Benito BallesterosA. YeungS.P. COVCOG 1: Factors predicting physical, neurological and cognitive symptoms in long COVID in a community sample. A first publication from the COVID and cognition study.Front. Aging Neurosci.20221480492210.3389/fnagi.2022.80492235370617
    [Google Scholar]
  64. BertuccelliM. CiringioneL. RubegaM. BisiacchiP. MasieroS. Del FeliceA. Cognitive impairment in people with previous COVID-19 infection: A scoping review.Cortex202215421223010.1016/j.cortex.2022.06.00235780756
    [Google Scholar]
  65. García CenaC. CostaM.C. Saltarén PazmiñoR. SantosC.P. Gómez-AndrésD. Benito-LeónJ. Eye movement alterations in post-COVID-19 condition: A proof-of-concept study.Sensors (Basel)2022224148110.3390/s2204148135214383
    [Google Scholar]
  66. CebanF. LingS. LuiL.M.W. Fatigue and cognitive impairment in post-COVID-19 syndrome: A systematic review and meta-analysis.Brain Behav. Immun.20221019313510.1016/j.bbi.2021.12.02034973396
    [Google Scholar]
  67. HenneghanA.M. LewisK.A. GillE. KeslerS.R. Cognitive impairment in non-critical, mild-to-moderate COVID-19 survivors.Front. Psychol.20221377045910.3389/fpsyg.2022.77045935250714
    [Google Scholar]
  68. HampshireA. TrenderW. ChamberlainS.R. Cognitive deficits in people who have recovered from COVID-19.EClinicalMedicine20213910104410.1016/j.eclinm.2021.10104434316551
    [Google Scholar]
  69. CrivelliL. PalmerK. CalandriI. Changes in cognitive functioning after COVID‐19: A systematic review and meta‐analysis.Alzheimers Dement.20221851047106610.1002/alz.1264435297561
    [Google Scholar]
  70. DubeyS. SenguptaS. GhoshR. COVID-19 pandemic, personality and geriatric population: Proposed pragmatism.J. Patient Exp.2021810.1177/2374373521105905134869840
    [Google Scholar]
  71. ShahidZ. KalayanamitraR. McClaffertyB. COVID-19 and older adults: What we know.J. Am. Geriatr. Soc.202068592692910.1111/jgs.1647232255507
    [Google Scholar]
  72. SodagarA. JavedR. TahirH. Pathological features and neuroinflammatory mechanisms of SARS-CoV-2 in the brain and potential therapeutic approaches.Biomolecules202212797110.3390/biom1207097135883527
    [Google Scholar]
/content/journals/covid/10.2174/0126667975329888241010115929
Loading
/content/journals/covid/10.2174/0126667975329888241010115929
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test