Skip to content
2000
Volume 6, Issue 4
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Inhalational therapy has emerged as a pivotal modality in the management of COVID-19, offering targeted and efficient delivery of pharmaceutical agents directly to the respiratory system. This paper provides a comprehensive overview of the diverse inhalational approaches employed in the treatment of COVID-19, ranging from nebulizers to nasal sprays. The various mechanisms of action, efficacy, and safety profiles of various inhalational treatments, considering both antiviral medications and supportive therapies. The evolution of inhalational therapy during the course of the pandemic is also mentioned in this review, emphasizing the continuous efforts to optimize delivery methods and enhance patient outcomes. Furthermore, the paper addresses the challenges associated with implementing inhalational therapies on a global scale, considering factors such as accessibility, affordability, and regulatory considerations. By giving special emphasis on current research and clinical experiences, this review contributes to a deeper understanding of the role of inhalational therapy in combating COVID-19 patients with multiple infections like DM and hypoglycemia.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975319146240809095756
2024-08-12
2025-10-03
Loading full text...

Full text loading...

References

  1. LauerS.A. GrantzK.H. BiQ. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application.Ann. Intern. Med.2020172957758210.7326/M20‑0504 32150748
    [Google Scholar]
  2. ChanJ.F.W. YuanS. KokK.H. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster.Lancet20203951022351452310.1016/S0140‑6736(20)30154‑9 31986261
    [Google Scholar]
  3. BassettiM. VenaA. GiacobbeD.R. The novel Chinese coronavirus (2019‐nCoV) infections: Challenges for fighting the storm.Eur. J. Clin. Invest.2020503e1320910.1111/eci.13209 32003000
    [Google Scholar]
  4. HuangC. WangY. LiX. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  5. HuiD.S. AzharE.I. MadaniT.A. NtoumiF. KockR. DarO. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information.Int. J. Infect. Dis.202091January26426610.1016/j.ijid.2020.01.009 31953166
    [Google Scholar]
  6. COVID-19 weekly epidemiological update. World Health Organization.2022
  7. ChanJ.F.W. KokK.H. ZhuZ. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan.Emerg. Microbes Infect.20209122123610.1080/22221751.2020.1719902 31987001
    [Google Scholar]
  8. SalazarM. MaierJ. EspecheW. EnnisI. COVID-19 and its relationship with hypertension and cardiovascular disease.Hipertens. Riesgo Vasc.2020374176180
    [Google Scholar]
  9. MaierH.J. BickertonE. BrittonP. Coronaviruses: Methods and protocols.Coronaviruses: Methods and protocols2015128211282
    [Google Scholar]
  10. AllegranziB. TartariE. PittetD. “Seconds save lives e clean your hands”: the 5 May 2021 World Health Organization SAVE LIVES: Clean Your Hands campaign.J. Hosp. Infect.2020
    [Google Scholar]
  11. KerblR. ZeppF. Coronavirus disease 2019.Monatsschr. Kinderheilkd.2021169430831110.1007/s00112‑021‑01158‑0 33814618
    [Google Scholar]
  12. ChowN. Fleming-DutraK. GierkeR. HallA. HughesM. PilishviliT. Preliminary estimates of the prevalence of selected underlying health conditions among patients with COVID-19 - US, February 12-March 28, 2020.MMWR Morb. Mortal. Wkly. Rep.20206913382386 32240123
    [Google Scholar]
  13. Behavioral and Emotional Disorders in Children during the COVID-19 Epidemic.2020Available from: https://pu.edu.pk/MHH-COVID-19/Articles/Article3.pdf
  14. ZouX. ChenK. ZouJ. HanP. HaoJ. HanZ. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection.Front. Med.202014218519210.1007/s11684‑020‑0754‑0 32170560
    [Google Scholar]
  15. HoffmannM. Kleine-WeberH. SchroederS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280
    [Google Scholar]
  16. TosepuR. EffendyD.S. AhmadL.O.A.I. The first confirmed cases of COVID-19 in Indonesian citizens.Public Health of Indonesia202062707110.36685/phi.v6i2.337
    [Google Scholar]
  17. ZhuN. ZhangD. WangW. A novel coronavirus from patients with pneumonia in china, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa2001017 31978945
    [Google Scholar]
  18. ZhangT. WuQ. ZhangZ. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak.Curr. Biol.202030713461351.e210.1016/j.cub.2020.03.022 32197085
    [Google Scholar]
  19. YuI.T.S. LiY. WongT.W. Evidence of airborne transmission of the severe acute respiratory syndrome virus.N. Engl. J. Med.2004350171731173910.1056/NEJMoa032867 15102999
    [Google Scholar]
  20. SalascF. LahlaliT. LaurentE. Rosa-CalatravaM. PizzornoA. Treatments for COVID-19: Lessons from 2020 and new therapeutic options.Curr. Opin. Pharmacol.202262435910.1016/j.coph.2021.11.002 34915400
    [Google Scholar]
  21. BosteelsC. MaesB. Van DammeK. Sargramostim to treat patients with acute hypoxic respiratory failure due to COVID-19 (SARPAC): A structured summary of a study protocol for a randomised controlled trial.Trials20202112
    [Google Scholar]
  22. MüllerN.L. OoiG.C. KhongP.L. ZhouL.J. TsangK.W.T. NicolaouS. High-resolution CT findings of severe acute respiratory syndrome at presentation and after admission.AJR Am. J. Roentgenol.20041821394410.2214/ajr.182.1.1820039 14684509
    [Google Scholar]
  23. DasK.M. LeeE.Y. LangerR.D. LarssonS.G. Middle east respiratory syndrome coronavirus: What does a radiologist need to know?AJR Am. J. Roentgenol.201620661193120110.2214/AJR.15.15363 26998804
    [Google Scholar]
  24. ChouchanaL. BeekerN. GarcelonN. Association of antihypertensive agents with the risk of in-hospital death in patients with Covid-19.Cardiovasc. Drugs Ther.202216
    [Google Scholar]
  25. ZhaoJ. YangY. HuangH. Relationship between the ABO blood group and the coronavirus disease 2019 (COVID-19) susceptibility.Clin. Infect. Dis.202173232833110.1093/cid/ciaa1150 32750119
    [Google Scholar]
  26. SarduC. MarfellaR. MaggiP. Implications of AB0 blood group in hypertensive patients with covid-19.BMC Cardiovasc. Disord.202020137310.1186/s12872‑020‑01658‑z 32799852
    [Google Scholar]
  27. SarduC. D’OnofrioN. BalestrieriM.L. Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control?Diabetes Care20204371408141510.2337/dc20‑0723 32430456
    [Google Scholar]
  28. KlonoffD.C. MesslerJ.C. UmpierrezG.E. Association between achieving inpatient glycemic control and clinical outcomes in hospitalized patients with COVID-19: a multicenter, retrospective hospital-based analysis.Diabetes Care202144257858510.2337/dc20‑1857 33323475
    [Google Scholar]
  29. SinghA.K. SinghR. Does poor glucose control increase the severity and mortality in patients with diabetes and COVID-19?Diabetes Metab. Syndr.202014572572710.1016/j.dsx.2020.05.037 32473903
    [Google Scholar]
  30. YoungB.E. OngS.W.X. KalimuddinS. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore.JAMA2020323151488149410.1001/jama.2020.3204 32125362
    [Google Scholar]
  31. MarfellaR. PaolissoP. SarduC. Negative impact of hyperglycaemia on tocilizumab therapy in COVID-19 patients.Diabetes Metab.202046540340510.1016/j.diabet.2020.05.005 32447102
    [Google Scholar]
  32. SongP. LiW. XieJ. HouY. YouC. Cytokine storm induced by SARS-CoV-2.Clin. Chim. Acta202050928028710.1016/j.cca.2020.06.017 32531256
    [Google Scholar]
  33. MisawaS. KuwabaraS. OgawaraK. KitanoY. YaguiK. HattoriT. Hyperglycemia alters refractory periods in human diabetic neuropathy.Clin. Neurophysiol.2004115112525252910.1016/j.clinph.2004.06.008 15465442
    [Google Scholar]
  34. RauJ.L. The inhalation of drugs: advantages and problems.Respir. Care2005503367382 15737247
    [Google Scholar]
  35. AlabsiW. Al-ObeidiF.A. PoltR. MansourH.M. Organic solution advanced spray-dried microparticulate/nanoparticulate dry powders of lactomorphin for respiratory delivery: Physicochemical characterization, in vitro aerosol dispersion, and cellular studies.Pharmaceutics20201312610.3390/pharmaceutics13010026 33375607
    [Google Scholar]
  36. BrunaughA.D. WuT. KanapuramS.R. SmythH.D.C. Effect of particle formation process on characteristics and aerosol performance of respirable protein powders.Mol. Pharm.201916104165418010.1021/acs.molpharmaceut.9b00496 31448924
    [Google Scholar]
  37. WuR. WangL. KuoH.C.D. An update on current therapeutic drugs treating COVID-19.Curr. Pharmacol. Rep.202063567010.1007/s40495‑020‑00216‑7 32395418
    [Google Scholar]
  38. VartakR. PatilS.M. SaraswatA. PatkiM. KundaN.K. PatelK. Aerosolized nanoliposomal carrier of remdesivir: an effective alternative for COVID-19 treatment in vitro.Nanomedicine (Lond.)202116141187120210.2217/nnm‑2020‑0475 33982600
    [Google Scholar]
  39. SahakijpijarnS. MoonC. KolengJ.J. ChristensenD.J. WilliamsR.O.III Development of remdesivir as a dry powder for inhalation by thin film freezing.Pharmaceutics20201211100210.3390/pharmaceutics12111002 33105618
    [Google Scholar]
  40. WrappD. WangN. CorbettK.S. GoldsmithJ.A. HsiehC.L. AbionaO. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.Science2020367648312601263
    [Google Scholar]
  41. AmeratungaR. LehnertK. LeungE. Inhaled modified angiotensin converting enzyme 2 (ACE2) as a decoy to mitigate SARS-CoV-2 infection.N. Z. Med. J.20201331515112118 32438383
    [Google Scholar]
  42. LeiC. FuW. QianK. Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig.BioRxiv2020202092997610.1101/2020.02.01.929976
    [Google Scholar]
  43. HadjadjJ. YatimN. BarnabeiL. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients.Science2020369650471872410.1126/science.abc6027 32661059
    [Google Scholar]
  44. DjukanovićR. HarrisonT. JohnstonS.L. The effect of inhaled IFN-β on worsening of asthma symptoms caused by viral infections. A randomized trial.Am. J. Respir. Crit. Care Med.2014190214515410.1164/rccm.201312‑2235OC 24937476
    [Google Scholar]
  45. MatsuyamaS. KawaseM. NaoN. The inhaled steroid ciclesonide blocks SARS-CoV-2 RNA replication by targeting the viral replication-transcription complex in cultured cells.J. Virol.2020951e01648e2010.1128/JVI.01648‑20 33055254
    [Google Scholar]
  46. MaesT. BrackeK. BrusselleG.G. COVID-19, asthma, and inhaled corticosteroids: another beneficial effect of inhaled corticosteroids?Am. J. Respir. Crit. Care Med.2020202181010.1164/rccm.202005‑1651ED 32437628
    [Google Scholar]
  47. YamayaM. NishimuraH. DengX. Inhibitory effects of glycopyrronium, formoterol, and budesonide on coronavirus HCoV-229E replication and cytokine production by primary cultures of human nasal and tracheal epithelial cells.Respir. Investig.202058315516810.1016/j.resinv.2019.12.005 32094077
    [Google Scholar]
  48. Inhaled budesonide for COVID-19 in people at high risk of complications in the community in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptive platform trial.Lancet202139810303843855
    [Google Scholar]
  49. Dexamethasone in hospitalised patients with COVID-19: Addressing uncertainties.2020Available from: https://escholarship.org/content/qt62f3w0zd/qt62f3w0zd_noSplash_acb2bfcaf2e54585b69f6f8f4b102c3e.pdf
  50. RamakrishnanS. NicolauD.V.Jr LangfordB. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial.Lancet Respir. Med.20219776377210.1016/S2213‑2600(21)00160‑0 33844996
    [Google Scholar]
  51. MilesL.A. LighvaniS. BaikN. New insights into the role of Plg-RKT in macrophage recruitment.Int. Rev. Cell Mol. Biol.201430925930210.1016/B978‑0‑12‑800255‑1.00005‑3 24529725
    [Google Scholar]
  52. WuY. WangT. GuoC. Plasminogen improves lung lesions and hypoxemia in patients with COVID-19.QJM2020113853954510.1093/qjmed/hcaa121 32275753
    [Google Scholar]
  53. HikmawatiI. SetiyabudiR. Epidemiology of COVID-19 in Indonesia: common source and propagated source as a cause for outbreaks.J. Infect. Dev. Ctries.202115564665210.3855/jidc.14240 34106887
    [Google Scholar]
  54. Safaee FakhrB. Di FenzaR. GianniS. Inhaled high dose nitric oxide is a safe and effective respiratory treatment in spontaneous breathing hospitalized patients with COVID-19 pneumonia.Nitric Oxide202111671310.1016/j.niox.2021.08.003 34400339
    [Google Scholar]
  55. SharunK. DhamaK. PatelS.K. Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19.Ann. Clin. Microbiol. Antimicrob.20201912310.1186/s12941‑020‑00368‑w 32473642
    [Google Scholar]
  56. BabalolaO.E. BodeC.O. AjayiA.A. Ivermectin shows clinical benefits in mild to moderate COVID19: a randomized controlled double-blind, dose-response study in Lagos.QJM20221141178078810.1093/qjmed/hcab035 33599247
    [Google Scholar]
  57. ShahbaznejadL. DavoudiA. EslamiG. Effects of ivermectin in patients with COVID-19: a multicenter, double-blind, randomized, controlled clinical trial.Clin. Ther.20214361007101910.1016/j.clinthera.2021.04.007 34052007
    [Google Scholar]
  58. FrayhaG.J. SmythJ.D. GobertJ.G. SavelJ. The mechanisms of action of antiprotozoal and anthelmintic drugs in man.Gen. Pharmacol.199728227329910.1016/S0306‑3623(96)00149‑8 9013207
    [Google Scholar]
  59. SazH.J. BuedingE. Relationships between anthelmintic effects and biochemical and physiological mechanisms.Pharmacol. Rev.1966181871894 5325211
    [Google Scholar]
  60. GassenN.C. NiemeyerD. MuthD. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection.Nat. Commun.2019101577010.1038/s41467‑019‑13659‑4 31852899
    [Google Scholar]
  61. MckiernanS. GulatiR. SchweizerM.T. HaugkK. ChengH. MaesJ.L. A phase I study of niclosamide in combination with enzalutamide in men with castration-resistant prostate cancer.PLoS One2018136e0198389
    [Google Scholar]
  62. RayE. VaghasiyaK. SharmaA. Autophagy-inducing inhalable co-crystal formulation of niclosamide-nicotinamide for lung cancer therapy.AAPS PharmSciTech202021726010.1208/s12249‑020‑01803‑z 32944787
    [Google Scholar]
  63. IdA.D.B. SeoH. WarnkenZ. DingL. SeoS.H. IdD.C.S. Development and evaluation of inhalable composite niclosamide-lysozyme particles: A broad-spectrum, patient-adaptable treatment for coronavirus infections and sequalae.PLoS One2021162e0246803
    [Google Scholar]
  64. GeversS. KwaM.S.G. WijnansE. van NieuwkoopC. Safety considerations for chloroquine and hydroxychloroquine in the treatment of COVID-19.Clin. Microbiol. Infect.20202691276127710.1016/j.cmi.2020.05.006 32422406
    [Google Scholar]
  65. ChenC. PanK. WuB. Safety of hydroxychloroquine in COVID-19 and other diseases: a systematic review and meta-analysis of 53 randomized trials.Eur. J. Clin. Pharmacol.2021771132410.1007/s00228‑020‑02962‑5 32780229
    [Google Scholar]
  66. AbulikemuM. TabriziB.E.A. GhobadlooS.M. MofarahH.M. JabbourG.E. Silver nanoparticle-decorated personal protective equipment for inhibiting human coronavirus infectivity.ACS Appl. Nano Mater.20225130931710.1021/acsanm.1c03033 37556279
    [Google Scholar]
  67. NakamuraT. IsodaN. SakodaY. HarashimaH. Strategies for fighting pandemic virus infections: Integration of virology and drug delivery.J. Control. Release202234336137810.1016/j.jconrel.2022.01.046 35122872
    [Google Scholar]
  68. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.004 26410277
    [Google Scholar]
  69. BrenneckeA. VillarL. WangZ. Is Inhaled Furosemide a Potential Therapeutic for COVID-19?Am. J. Med. Sci.2020360321622110.1016/j.amjms.2020.05.044 32622469
    [Google Scholar]
  70. GrogonoJ.C. ButlerC. IzadiH. MoosaviS.H. Inhaled furosemide for relief of air hunger versus sense of breathing effort: a randomized controlled trial.Respir. Res.201819118110.1186/s12931‑018‑0886‑9 30236110
    [Google Scholar]
  71. WangZ. WangY. VilekarP. Small molecule therapeutics for COVID-19: repurposing of inhaled furosemide.PeerJ202087e953310.7717/peerj.9533 32704455
    [Google Scholar]
  72. NishinoT. IdeT. SudoT. SatoJ. Inhaled furosemide greatly alleviates the sensation of experimentally induced dyspnea.Am. J. Respir. Crit. Care Med.200016161963196710.1164/ajrccm.161.6.9910009 10852774
    [Google Scholar]
  73. SuF. PatelG.B. HuS. ChenW. Induction of mucosal immunity through systemic immunization: Phantom or reality?Hum. Vaccin. Immunother.20161241070107910.1080/21645515.2015.1114195 26752023
    [Google Scholar]
  74. PizzollaA. WakimL.M. MemoryT. MemoryT. Cell Dynamics in the Lung during Influenza Virus Infection.J. Immunol.2019202237438110.4049/jimmunol.1800979 30617119
    [Google Scholar]
  75. CorthésyB. Multi-faceted functions of secretory IgA at mucosal surfaces.Front. Immunol.2013418510.3389/fimmu.2013.00185
    [Google Scholar]
  76. SassonS.C. GordonC.L. ChristoS.N. KlenermanP. MackayL.K. Local heroes or villains: tissue-resident memory T cells in human health and disease.Cell. Mol. Immunol.202017211312210.1038/s41423‑019‑0359‑1 31969685
    [Google Scholar]
  77. StroblJ. HaniffaM. Functional heterogeneity of human skin‐resident memory T cells in health and disease.Immunol. Rev.2023316110411910.1111/imr.13213 37144705
    [Google Scholar]
  78. FengL. WangQ. ShanC. An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques.Nat. Commun.2020111420710.1038/s41467‑020‑18077‑5 32826924
    [Google Scholar]
  79. AnD. LiK. RoweD.K. Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5–based COVID-19 vaccine.Sci. Adv.2021727eabi524610.1126/sciadv.abi5246 34215591
    [Google Scholar]
  80. EedaraB.B. AlabsiW. Encinas-BasurtoD. PoltR. LedfordJ.G. MansourH.M. Inhalation delivery for the treatment and prevention of COVID-19 infection.Pharmaceutics2021137107710.3390/pharmaceutics13071077 34371768
    [Google Scholar]
  81. SonvicoF. ColomboG. QuartaE. Nasal delivery as a strategy for the prevention and treatment of COVID-19.Expert Opin. Drug Deliv.20232081115113010.1080/17425247.2023.2263363 37755135
    [Google Scholar]
  82. AlshrariA.S. HuduS.A. ImranM. AsdaqS.M.B. AliA.M. RabbaniS.I. Innovations and development of COVID-19 vaccines: A patent review.J. Infect. Public Health202215112313110.1016/j.jiph.2021.10.021 34742639
    [Google Scholar]
  83. BeleteT.M. Review on up-to-date status of candidate vaccines for COVID-19 disease.Infect. Drug Resist.20211415116110.2147/IDR.S288877 33500636
    [Google Scholar]
  84. MudgalR. NehulS. TomarS. Prospects for mucosal vaccine: shutting the door on SARS-CoV-2.Hum. Vaccin. Immunother.202016122921293110.1080/21645515.2020.1805992 32931361
    [Google Scholar]
  85. Wilder-SmithA. MulhollandK. Effectiveness of an inactivated SARS-CoV-2 vaccine.N. Engl. J. Med.20213851094694810.1056/NEJMe2111165 34469651
    [Google Scholar]
  86. ZhangY. ZengG. PanH. Immunogenicity and safety of a SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: Report of the randomized, double-blind, and placebo-controlled phase 2 clinical trial.medrxiv202020202016121610.1101/2020.07.31.20161216
    [Google Scholar]
  87. EllaR. VadrevuK.M. JogdandH. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial.Lancet Infect. Dis.202121563764610.1016/S1473‑3099(20)30942‑7 33485468
    [Google Scholar]
  88. DavisM.D. ClementeT.M. GiddingsO.K. A treatment to eliminate SARS-CoV-2 replication in human airway epithelial cells is safe for inhalation as an aerosol in healthy human subjects.Respir. Care202166111311910.4187/respcare.08425 32962996
    [Google Scholar]
  89. BarnesN.C. The properties of inhaled corticosteroids: similarities and differences.Prim. Care Respir. J.200716314915410.3132/pcrj.2007.00038 17530144
    [Google Scholar]
  90. DeokarK. AgarwalM. DuttN. A review of Ciclesonide in COVID-19. Still a long way to go.Adv. Respir. Med.2020891798110.5603/ARM.a2020.0173 33471354
    [Google Scholar]
  91. DuvignaudA. LhommeE. OnaisiR. Inhaled ciclesonide for outpatient treatment of COVID-19 in adults at risk of adverse outcomes: a randomised controlled trial (COVERAGE).Clin. Microbiol. Infect.20222871010101610.1016/j.cmi.2022.02.031 35304280
    [Google Scholar]
  92. DewanB. ShindeS. Aviptadil in acute respiratory distress syndrome associated with COVID-19 infection.Eur. J. Pharm. Med. Res.202296243253
    [Google Scholar]
  93. RaveendranA.V. Al DhuhliK.S. KumarG.H. Role of Aviptadil in COVID-19.BMH Med J2021827783
    [Google Scholar]
  94. RomanY.M. BurelaP.A. PasupuletiV. PiscoyaA. VidalJ.E. HernandezA.V. Ivermectin for the treatment of coronavirus disease 2019: a systematic review and meta-analysis of randomized controlled trials.Clin. Infect. Dis.20227461022102910.1093/cid/ciab591 34181716
    [Google Scholar]
  95. MomekovG. MomekovaD. Ivermectin as a potential COVID-19 treatment from the pharmacokinetic point of view: antiviral levels are not likely attainable with known dosing regimens.Biotechnol. Biotechnol. Equip.202034146947410.1080/13102818.2020.1775118
    [Google Scholar]
  96. KhaniE. KhialiS. Entezari-MalekiT. Potential COVID‐19 therapeutic agents and vaccines: an evidence‐based review.J. Clin. Pharmacol.202161442946010.1002/jcph.1822 33511638
    [Google Scholar]
  97. WattK. LiJ.S. BenjaminD.K.Jr Cohen-WolkowiezM. Pediatric cardiovascular drug dosing in critically ill children and extracorporeal membrane oxygenation.J. Cardiovasc. Pharmacol.201158212613210.1097/FJC.0b013e318213aac2 21346597
    [Google Scholar]
  98. BatchuR. GugulothuM. EnugurthiS. GouribhatlaP. In vitro and in vivo anti-inflammatory activity of Tabebuia pallida leaves.WJBPHS202417326126710.30574/wjbphs.2024.17.3.0140
    [Google Scholar]
  99. PitreT. SuJ. MahJ. Higher-versus lower-dose corticosteroids for severe to critical COVID-19: a systematic review and dose–response meta-analysis.Ann. Am. Thorac. Soc.202320459660410.1513/AnnalsATS.202208‑720OC 36449393
    [Google Scholar]
  100. Crisan DabijaR. AntoheI. TroforA. AntoniuS.A. Corticosteroids in SARS-COV2 infection: certainties and uncertainties in clinical practice.Expert Rev. Anti Infect. Ther.202119121553156210.1080/14787210.2021.1933437 34015985
    [Google Scholar]
  101. MoscowJ.A. SwansonC.A. CowanK.H. Decreased melphalan accumulation in a human breast cancer cell line selected for resistance to melphalan.Br. J. Cancer199368473273710.1038/bjc.1993.419 8398701
    [Google Scholar]
  102. JohnsonJ.A. MallariK.F. PepeV.M. Mechanically ventilated COVID-19 patients admitted to the intensive care unit in the United States with or without respiratory failure secondary to COVID-19 pneumonia: a retrospective comparison of characteristics and outcomes.Acute Crit. Care202338329830710.4266/acc.2022.01123 37652859
    [Google Scholar]
  103. GuptaB. JainG. ChandrakarS. GuptaN. Nebulized Heparin to Reduce COVID-19-induced Acute Lung Injury: A Prospective Observational Study.Indian J. Crit. Care Med.202327322222410.5005/jp‑journals‑10071‑24420 36960112
    [Google Scholar]
  104. van HarenF.M.P. RichardsonA. YoonH.J. INHALEd nebulised unfractionated HEParin for the treatment of hospitalised patients with COVID‐19 (INHALE‐HEP): Protocol and statistical analysis plan for an investigator‐initiated international metatrial of randomised studies.Br. J. Clin. Pharmacol.20218783075309110.1111/bcp.14714 33377218
    [Google Scholar]
  105. VincentM.J. BergeronE. BenjannetS. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread.Virol. J.2005216910.1186/1743‑422X‑2‑69 16115318
    [Google Scholar]
  106. WangM. CaoR. ZhangL. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.Cell Res.2020303269271
    [Google Scholar]
  107. TaiT.T. WuT.J. WuH.D. A strategy to treat COVID‐19 disease with targeted delivery of inhalable liposomal hydroxychloroquine: A preclinical pharmacokinetic study.Clin. Transl. Sci.202114113213610.1111/cts.12923 33135382
    [Google Scholar]
  108. ParvathaneniV. KulkarniN.S. MuthA. KundaN.K. GuptaV. Therapeutic potential of inhalable medications to combat coronavirus disease-2019.Ther. Deliv.202112210511010.4155/tde‑2020‑0092 33198605
    [Google Scholar]
  109. BenturO.S. HuttR. BrassilD. Preclinical and Human Phase 1 Studies of Aerosolized Hydroxychloroquine: Implications for Antiviral COVID-19 Therapy.medRxiv202320232329170210.1101/2023.06.22.23291702
    [Google Scholar]
  110. KolliA.R. Calvino-MartinF. HoengJ. Translational modeling of chloroquine and hydroxychloroquine dosimetry in human airways for treating viral respiratory infections.Pharm. Res.2022391577310.1007/s11095‑021‑03152‑3 35000036
    [Google Scholar]
  111. Di FenzaR. ShettyN.S. GianniS. High-dose inhaled nitric oxide in acute hypoxemic respiratory failure due to COVID-19: a multicenter phase II trial.Am. J. Respir. Crit. Care Med.2023208121293130410.1164/rccm.202304‑0637OC 37774011
    [Google Scholar]
  112. MedhiB. PrakashA. KaurS. Efficacy and safety of inhaled nitric oxide in the treatment of severe/critical COVID-19 patients: A systematic review.Indian J. Pharmacol.202153323624310.4103/ijp.ijp_382_21 34169911
    [Google Scholar]
  113. FangW. JiangJ. SuL. The role of NO in COVID-19 and potential therapeutic strategies.Free Radic. Biol. Med.202116315316210.1016/j.freeradbiomed.2020.12.008 33347987
    [Google Scholar]
  114. MonkP.D. MarsdenR.J. TearV.J. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial.Lancet Respir. Med.20219219620610.1016/S2213‑2600(20)30511‑7 33189161
    [Google Scholar]
  115. YuJ. LuX. TongL. Interferon‐α‐2b aerosol inhalation is associated with improved clinical outcomes in patients with coronavirus disease‐2019.Br. J. Clin. Pharmacol.202187124737474610.1111/bcp.14898 33982806
    [Google Scholar]
  116. TaoY.C. ChenE.Q. Mesenchymal Stem Cells Therapy for COVID-19: From Basic Research to Clinical Trial.Curr. Stem Cell Res. Ther.2024191556210.2174/1574888X18666230118122256 36654468
    [Google Scholar]
  117. RameshradM. GhafooriM. MohammadpourA.H. NayeriM.J.D. HosseinzadehH. A comprehensive review on drug repositioning against coronavirus disease 2019 (COVID19).Naunyn Schmiedebergs Arch. Pharmacol.202039371137115210.1007/s00210‑020‑01901‑6 32430617
    [Google Scholar]
  118. BarnesH.W. DemirdjianS. HaddockN.L. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection.Matrix Biol.2023116496610.1016/j.matbio.2023.02.001 36750167
    [Google Scholar]
  119. AnzuetoA. BarjaktarevicI.Z. SilerT.M. Ensifentrine, a novel phosphodiesterase 3 and 4 inhibitor for the treatment of chronic obstructive pulmonary disease: Randomized, double-blind, placebo-controlled, multicenter phase III trials (the enhance trials).Am. J. Respir. Crit. Care Med.2023208440641610.1164/rccm.202306‑0944OC 37364283
    [Google Scholar]
  120. ZhengF. ZhouY. ZhouZ. Reply to “Novaferon, treatment in COVID-19 patients”.Int. J. Infect. Dis.202110333633710.1016/j.ijid.2020.11.179 33248243
    [Google Scholar]
  121. DunlapN.E. van BerkelV. CaiL. COVID-19 and low-dose radiation therapy.Radiation Medicine and Protection20212413914510.1016/j.radmp.2021.09.004 34522905
    [Google Scholar]
  122. DesillesJ.P. GregoireC. Le CossecC. Efficacy and safety of aerosolized intra-tracheal dornase alfa administration in patients with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS): a structured summary of a study protocol for a randomised controlled trial.Trials202021154810.1186/s13063‑020‑04488‑8 32560746
    [Google Scholar]
  123. CanoE.J. Fonseca FuentesX. Corsini CampioliC. Impact of corticosteroids in coronavirus disease 2019 outcomes: systematic review and meta-analysis.Chest202115931019104010.1016/j.chest.2020.10.054 33129791
    [Google Scholar]
  124. LevittJ.E. FesticE. DesaiM. The ARREST pneumonia clinical trial. Rationale and design.Ann. Am. Thorac. Soc.202118469870810.1513/AnnalsATS.202009‑1115SD 33493423
    [Google Scholar]
  125. SinghS. WeissA. GoodmanJ. Niclosamide—A promising treatment for COVID‐19.Br. J. Pharmacol.2022179133250326710.1111/bph.15843 35348204
    [Google Scholar]
  126. EvansS.E. TsengC.T.K. ScottB.L. HöökA.M. DickeyB.F. Inducible epithelial resistance against coronavirus pneumonia in mice.Am. J. Respir. Cell Mol. Biol.202063454054110.1165/rcmb.2020‑0247LE 32706609
    [Google Scholar]
  127. SahinG. Akbal-DagistanO. CulhaM. Antivirals and the potential benefits of orally inhaled drug administration in COVID-19 treatment.J. Pharm. Sci.2022111102652266110.1016/j.xphs.2022.06.004 35691607
    [Google Scholar]
  128. ChristieD.B.III NemecH.M. ScottA.M. Early outcomes with utilization of tissue plasminogen activator in COVID-19–associated respiratory distress: A series of five cases.J. Trauma Acute Care Surg.202089344845210.1097/TA.0000000000002787 32427774
    [Google Scholar]
  129. AlipourS. MahmoudiL. AhmadiF. Pulmonary drug delivery: an effective and convenient delivery route to combat COVID-19.Drug Deliv. Transl. Res.202313370571510.1007/s13346‑022‑01251‑1 36260223
    [Google Scholar]
  130. MaliK.R. EerikeM. RajG.M. BisoiD. PriyadarshiniR. RaviG. Efficacy and safety of Molnupiravir in COVID-19 patients: A systematic review.Ir J Med Sci2023192416651678
    [Google Scholar]
/content/journals/covid/10.2174/0126667975319146240809095756
Loading
/content/journals/covid/10.2174/0126667975319146240809095756
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test