Skip to content
2000
Volume 6, Issue 4
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

A serious pandemic has been presented by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a coronavirus that causes the severe acute respiratory infection known as Coronavirus disease 2019 (COVID-19). It has become a major health hazard that affects people all around the world. Although the respiratory symptoms are the main manifestations of COVID-19, several extrapulmonary manifestations have been observed, including cardiovascular, renal, and gastrointestinal symptoms. The digestive system may be an additional or non-traditional pathway for COVID-19 to spread and manifest as Angiotensin-Converting Enzyme 2 (ACE2), the entry point of SARS-CoV-2 into the cells is present in the gastrointestinal tract and liver. Gastrointestinal symptoms, such as vomiting, anorexia, nausea, and diarrhea, are infrequent in COVID-19 patients; however, some of these symptoms may manifest independently of other respiratory symptoms. Also, SARS-CoV-2 virus can cause liver and pancreatic damage. Studying the pathogenic mechanisms of COVID-19 in the digestive system could aid in improving patient diagnosis and treatment. The review aims to provide an overview of the mechanisms, symptoms, and management of SARS-CoV-2's effects on the digestive system. Hence, medical professionals would be aware of the digestive symptoms associated with COVID-19 and would promptly alter treatment regimens for patients exhibiting abnormal hepatic and gastrointestinal manifestations.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975293524240625115448
2024-07-05
2025-10-03
Loading full text...

Full text loading...

References

  1. HuiD.S.I. AzharE. MadaniT.A. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China.Int. J. Infect. Dis.20209126426610.1016/j.ijid.2020.01.009 31953166
    [Google Scholar]
  2. CormanV.M. LandtO. KaiserM. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR.Euro Surveill.2020253200004510.2807/1560‑7917.ES.2020.25.3.2000045 31992387
    [Google Scholar]
  3. FongS.J. LiG. DeyN. CrespoR.G. Herrera-ViedmaE. composite monte carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction.Appl. Soft Comput.202093106282
    [Google Scholar]
  4. ReadJ.M. BridgenJ.R. CummingsD.A. HoA. JewellC.P. Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions.medRxiv202010.1101/2020.01.23.20018549
    [Google Scholar]
  5. CuiJ. LiF. ShiZ.L. Origin and evolution of pathogenic coronaviruses.Nat. Rev. Microbiol.201917318119210.1038/s41579‑018‑0118‑9 30531947
    [Google Scholar]
  6. HiranoT. MurakamiM. COVID-19: A new virus, but a familiar receptor and cytokine release syndrome.Immunity202052573173310.1016/j.immuni.2020.04.003 32325025
    [Google Scholar]
  7. FongS.J. DeyN. ChakiJ. An introduction to COVID-19.Artificial Intelligence for coronavirus Outbreak.SpringerBriefs in Computational Intelligence202112210.1007/978‑981‑15‑5936‑5_1
    [Google Scholar]
  8. GeX.Y. YangW.H. ZhouJ.H. Detection of alpha- and betacoronaviruses in rodents from Yunnan, China.Virol. J.20171419810.1186/s12985‑017‑0766‑9 28549438
    [Google Scholar]
  9. WooP.C.Y. LauS.K.P. LamC.S.F. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus.J. Virol.20128673995400810.1128/JVI.06540‑11 22278237
    [Google Scholar]
  10. MorgelloS. Coronaviruses and the central nervous system.J. Neurovirol.202026445947310.1007/s13365‑020‑00868‑7 32737861
    [Google Scholar]
  11. HuntR.H. EastJ.E. LanasA. COVID-19 and gastrointestinal disease: Implications for the gastroenterologist.Dig. Dis.202139211913910.1159/000512152 33040064
    [Google Scholar]
  12. HadiJ. DunowskaM. WuS. BrightwellG. Control measures for SARS-CoV-2: A review on light-based inactivation of single-stranded RNA viruses.Pathogens20209973710.3390/pathogens9090737 32911671
    [Google Scholar]
  13. MedhiB. SarmaP. PrajapatM. AvtiP. KaurH. KumarS. Therapeutic options for the treatment of 2019-novel coronavirus: An evidence-based approach.Indian J. Pharmacol.20205211510.4103/ijp.IJP_119_20 32201439
    [Google Scholar]
  14. GargM. AngusP.W. BurrellL.M. HerathC. GibsonP.R. LubelJ.S. Review article: The pathophysiological roles of the renin–angiotensin system in the gastrointestinal tract.Aliment. Pharmacol. Ther.201235441442810.1111/j.1365‑2036.2011.04971.x 22221317
    [Google Scholar]
  15. DavidsonA.M. WysockiJ. BatlleD. Interaction of SARS-CoV-2 and other coronavirus with ACE (angiotensin-converting enzyme)-2 as their main receptor.Hypertension20207651339134910.1161/HYPERTENSIONAHA.120.15256 32851855
    [Google Scholar]
  16. SweedD. AbdelsameeaE. KhalifaE.A. SARS-CoV-2-associated gastrointestinal and liver diseases: what is known and what is needed to explore.Egypt. Liver J.20211116410.1186/s43066‑021‑00123‑6 34777871
    [Google Scholar]
  17. LotfiM. HamblinM.R. RezaeiN. COVID-19: Transmission, prevention, and potential therapeutic opportunities.Clin. Chim. Acta202050825426610.1016/j.cca.2020.05.044 32474009
    [Google Scholar]
  18. WangD. HuB. HuC. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China.JAMA2020323111061106910.1001/jama.2020.1585 32031570
    [Google Scholar]
  19. PamplonaJ. SolanoR. SolerC. SabatM. Epidemiological approximation of the enteric manifestation and possible fecal–oral transmission in COVID-19: A preliminary systematic review.Eur. J. Gastroenterol. Hepatol.20213312e21e2910.1097/MEG.0000000000001934 32956179
    [Google Scholar]
  20. LiY. RenB. PengX. Saliva is a non‐negligible factor in the spread of COVID‐19.Mol. Oral Microbiol.202035414114510.1111/omi.12289 32367576
    [Google Scholar]
  21. JonesD.L. BalujaM.Q. GrahamD.W. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19.Sci. Total Environ.202074914136410.1016/j.scitotenv.2020.141364 32836117
    [Google Scholar]
  22. VabretN. BrittonG.J. GruberC. Immunology of COVID-19: Current state of the science.Immunity202052691094110.1016/j.immuni.2020.05.002 32505227
    [Google Scholar]
  23. NicolaiL. LeunigA. BrambsS. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy.Circulation2020142121176118910.1161/CIRCULATIONAHA.120.048488 32755393
    [Google Scholar]
  24. LiaoM. LiuY. YuanJ. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19.Nat. Med.202026684284410.1038/s41591‑020‑0901‑9 32398875
    [Google Scholar]
  25. BraunJ. LoyalL. FrentschM. SARS-CoV-2-reactive T-cells in healthy donors and patients with COVID-19.Nature2020587783327027410.1038/s41586‑020‑2598‑9 32726801
    [Google Scholar]
  26. GrifoniA. WeiskopfD. RamirezS.I. Targets of T-cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals.Cell2020181714891501.e1510.1016/j.cell.2020.05.015 32473127
    [Google Scholar]
  27. PengY. MentzerA.J. LiuG. Broad and strong memory CD4+ and CD8+ T-cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19.Nat. Immunol.202021111336134510.1038/s41590‑020‑0782‑6 32887977
    [Google Scholar]
  28. CoxR.J. BrokstadK.A. Not just antibodies: B-cells and T-cells mediate immunity to COVID-19.Nat. Rev. Immunol.2020201058158210.1038/s41577‑020‑00436‑4 32839569
    [Google Scholar]
  29. JunoJ.A. TanH.X. LeeW.S. Humoral and circulating follicular helper T-cell responses in recovered patients with COVID-19.Nat. Med.20202691428143410.1038/s41591‑020‑0995‑0 32661393
    [Google Scholar]
  30. ArunachalamP.S. WimmersF. MokC.K.P. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans.Science202036965081210122010.1126/science.abc6261 32788292
    [Google Scholar]
  31. LiuY. ZhangC. HuangF. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury.Natl. Sci. Rev.2020761003101110.1093/nsr/nwaa037 34676126
    [Google Scholar]
  32. HuangC. WangY. LiX. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  33. di FloraD.C. DionizioA. PereiraH.A.B.S. Analysis of plasma proteins involved in inflammation, immune response/complement system, and blood coagulation upon admission of covid-19 patients to hospital may help to predict the prognosis of the disease.Cells20231212160110.3390/cells12121601 37371071
    [Google Scholar]
  34. ChenN. ZhouM. DongX. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study.Lancet20203951022350751310.1016/S0140‑6736(20)30211‑7 32007143
    [Google Scholar]
  35. AliM.A.M. SpinlerS.A. COVID-19 and thrombosis: From bench to bedside.Trends Cardiovasc. Med.202131314316010.1016/j.tcm.2020.12.004 33338635
    [Google Scholar]
  36. SharmaS. MishraA. AshrafZ. COVID-19 induced coagulopathy (CIC): Thrombotic manifestations of viral infection.TH Open202261e70e7910.1055/s‑0042‑1744185 35280973
    [Google Scholar]
  37. ConwayE.M. MackmanN. WarrenR.Q. Understanding COVID-19-associated coagulopathy.Nat. Rev. Immunol.2022221063964910.1038/s41577‑022‑00762‑9 35931818
    [Google Scholar]
  38. SieglerJ.E. DasguptaS. AbdalkaderM. PenckoferM. YaghiS. NguyenT.N. Cerebrovascular disease in COVID-19.Viruses2023157159810.3390/v15071598 37515284
    [Google Scholar]
  39. Center for disease control and prevention. Symptoms of COVID-19.2022Available from: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
  40. DongZ. XiangB.J. JiangM. SunM. DaiC. The prevalence of gastrointestinal symptoms, abnormal liver function, digestive system disease and liver disease in COV- ID-19 infection: A systematic review and meta-analysis.J. Clin. Gastroenterol.2021551677610.1097/MCG.0000000000001424 33116063
    [Google Scholar]
  41. BilalM. SawhneyM.S. FeuersteinJ.D. Coronavirus disease-2019: Implications for the gastroenterologist.Curr. Opin. Gastroenterol.2021371232910.1097/MOG.0000000000000694 33074995
    [Google Scholar]
  42. CaoW. What do we know so far about gastrointestinal and liver injuries induced by SARS-CoV-2 virus?Gastroenterol. Res.202013622522610.14740/gr1350 33447300
    [Google Scholar]
  43. LevyE. StintziA. CohenA. DesjardinsY. MaretteA. SpahisS. Critical appraisal of the mechanisms of gastrointestinal and hepatobiliary infection by COVID-19.Am. J. Physiol. Gastrointest. Liver Physiol.20213212G99G11210.1152/ajpgi.00106.2021 34009033
    [Google Scholar]
  44. CarvalhoA. AlqusairiR. AdamsA. SARS-CoV-2 gastrointestinal infection causing hemorrhagic colitis: Implications for detection and transmission of COVID-19 disease.Am. J. Gastroenterol.2020115694294610.14309/ajg.0000000000000667 32496741
    [Google Scholar]
  45. AgarwalA. ChenA. RavindranN. ToC. ThuluvathP.J. Gastrointestinal and liver manifestations of COVID-19.J. Clin. Exp. Hepatol.202010326326510.1016/j.jceh.2020.03.001 32405183
    [Google Scholar]
  46. ChenL. MarishtaA. EllisonC.E. VerziM.P. Identification of transcription factors regulating SARS-CoV-2 entry genes in the intestine.Cell. Mol. Gastroenterol. Hepatol.202111118118410.1016/j.jcmgh.2020.08.005 32810597
    [Google Scholar]
  47. DosSantosM.F. DevalleS. AranV. Neuromechanisms of SARS-CoV-2: A Review.Front. Neuroanat.2020143710.3389/fnana.2020.00037 32612515
    [Google Scholar]
  48. HarmerD. GilbertM. BormanR. ClarkK.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme.FEBS Lett.20025321-210711010.1016/S0014‑5793(02)03640‑2 12459472
    [Google Scholar]
  49. ZangR. CastroM.F.G. McCuneB.T. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes.Sci. Immunol.2020547eabc3582
    [Google Scholar]
  50. LamersM.M. BeumerJ. van der VaartJ. SARS-CoV-2 productively infects human gut enterocytes.Science20203696499505410.1126/science.abc1669 32358202
    [Google Scholar]
  51. MohamedD.Z. GhoneimM.E.S. Abu-RishaS.E.S. AbdelsalamR.A. FaragM.A. Gastrointestinal and hepatic diseases during the COVID-19 pandemic: Manifestations, mechanism and management.World J. Gastroenterol.202127284504453510.3748/wjg.v27.i28.4504 34366621
    [Google Scholar]
  52. GaoJ. XuK. LiuH. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism.Front. Cell. Infect. Microbiol.201881310.3389/fcimb.2018.00013 29468141
    [Google Scholar]
  53. BuddenK.F. GellatlyS.L. WoodD.L.A. Emerging pathogenic links between microbiota and the gut–lung axis.Nat. Rev. Microbiol.2017151556310.1038/nrmicro.2016.142 27694885
    [Google Scholar]
  54. Domínguez-DíazC. García-OrozcoA. Riera-LealA. Padilla-ArellanoJ.R. Fafutis-MorrisM. Microbiota and its role on viral evasion: is it with us or against us?Front. Cell. Infect. Microbiol.2019925610.3389/fcimb.2019.00256 31380299
    [Google Scholar]
  55. AhlawatS. AshaS.K.K. SharmaK.K. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection.Virus Res.2020286198103310.1016/j.virusres.2020.198103 32717345
    [Google Scholar]
  56. PanchalP. BudreeS. ScheelerA. Scaling safe access to fecal microbiota transplantation: Past, present, and future.Curr. Gastroenterol. Rep.20182041410.1007/s11894‑018‑0619‑8 29594746
    [Google Scholar]
  57. DibnerJ.J. Direct COVID-19 infection of enterocytes: The role of hypochlorhydria.Am. J. Infect. Control202149338538610.1016/j.ajic.2020.08.002 32791258
    [Google Scholar]
  58. KopelJ. PerisettiA. GajendranM. BoregowdaU. GoyalH. Clinical insights into the gastrointestinal manifestations of COVID-19.Dig. Dis. Sci.20206571932193910.1007/s10620‑020‑06362‑8 32447742
    [Google Scholar]
  59. ChinA.W.H. ChuJ.T.S. PereraM.R.A. Stability of SARS-CoV-2 in different environmental conditions.Lancet Microbe202011e1010.1016/S2666‑5247(20)30003‑3 32835322
    [Google Scholar]
  60. PriceE. Could the severity of COVID-19 be increased by low gastric acidity?Crit. Care202024145610.1186/s13054‑020‑03182‑0 32698857
    [Google Scholar]
  61. ZhongP. XuJ. YangD. COVID-19-associated gastrointestinal and liver injury: Clinical features and potential mechanisms.Signal Transduct. Target. Ther.20205125610.1038/s41392‑020‑00373‑7 33139693
    [Google Scholar]
  62. CastelliV. CiminiA. FerriC. Cytokine storm in COVID-19: “When you come out of the storm, you won’t be the same person who walked in”.Front. Immunol.2020112132-210.3389/fimmu.2020.02132 32983172
    [Google Scholar]
  63. SandersJ.M. MonogueM.L. JodlowskiT.Z. CutrellJ.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review.JAMA2020323181824183610.1001/jama.2020.6019 32282022
    [Google Scholar]
  64. ZhangH. LiaoY.S. GongJ. LiuJ. XiaX. ZhangH. Clinical characteristics of coronavirus disease (COVID-19) patients with gastrointestinal symptoms: A report of 164 cases.Dig. Liver Dis.202052101076107910.1016/j.dld.2020.04.034 32507692
    [Google Scholar]
  65. XuZ. ShiL. WangY. Pathological findings of COVID-19 associated with acute respiratory distress syndrome.Lancet Respir. Med.20208442042210.1016/S2213‑2600(20)30076‑X 32085846
    [Google Scholar]
  66. YanYan JiangX. WangX. CCL28 mucosal expression in SARS-CoV-2-infected patients with diarrhea in relation to disease severity.J. Infect.2021821e19e2110.1016/j.jinf.2020.08.042 32871180
    [Google Scholar]
  67. EffenbergerM. GrabherrF. MayrL. Faecal calprotectin indicates intestinal inflammation in COVID-19.Gut20206981543154410.1136/gutjnl‑2020‑321388 32312790
    [Google Scholar]
  68. YangJ. ZhengY. GouX. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis.Int. J. Infect. Dis.202094919510.1016/j.ijid.2020.03.017 32173574
    [Google Scholar]
  69. MaoR. LiangJ. ShenJ. Implications of COVID-19 for patients with pre-existing digestive diseases.Lancet Gastroenterol. Hepatol.20205542542710.1016/S2468‑1253(20)30076‑5 32171057
    [Google Scholar]
  70. AnP. JiM. RenH. Prevention of COVID-19 in patients with inflammatory bowel disease in Wuhan, China.Lancet Gastroenterol. Hepatol.20205652552710.1016/S2468‑1253(20)30121‑7 32311321
    [Google Scholar]
  71. DaneseS. CecconiM. SpinelliA. Management of IBD during the COVID-19 outbreak: Resetting clinical priorities.Nat. Rev. Gastroenterol. Hepatol.202017525325510.1038/s41575‑020‑0294‑8 32214232
    [Google Scholar]
  72. LiC. LiuP. GuoS.S. ZhaoZ.G. Study on the mechanism and treatment of COVID-19, SARS and MERS with gastrointestinal symptoms.Z HonghuaξAuhua za value20204010.3760/cma.j.issn.0254‑1432.2020.0009
    [Google Scholar]
  73. WilkinsT. SequoiaJ. Probiotics for gastrointestinal conditions: A summary of the evidence.Am. Fam. Physician201796317017810.1016/j.tgie.2017.03.008 28762696
    [Google Scholar]
  74. HashimotoT. PerlotT. RehmanA. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation.Nature2012487740847748110.1038/nature11228 22837003
    [Google Scholar]
  75. ChenY. GuoY. PanY. ZhaoZ.J. Structure analysis of the receptor binding of 2019-nCoV.Biochem. Biophys. Res. Commun.20205251135140
    [Google Scholar]
  76. HersbergerL. BargetziL. BargetziA. Nutritional risk screening (NRS 2002) is a strong and modifiable predictor risk score for short-term and long-term clinical outcomes: Secondary analysis of a prospective randomised trial.Clin. Nutr.20203927202729
    [Google Scholar]
  77. LeeN. HuiD. WuA. A major outbreak of severe acute respiratory syndrome in Hong Kong.N. Engl. J. Med.2003348201986199410.1056/NEJMoa030685 12682352
    [Google Scholar]
  78. PeirisJ.S.M. LaiS.T. PoonL.L.M. Coronavirus as a possible cause of severe acute respiratory syndrome.Lancet200336193661319132510.1016/S0140‑6736(03)13077‑2 12711465
    [Google Scholar]
  79. TsangK.W. HoP.L. OoiG.C. A cluster of cases of severe acute respiratory syndrome in Hong Kong.N. Engl. J. Med.2003348201977198510.1056/NEJMoa030666 12671062
    [Google Scholar]
  80. JiangF. DengL. ZhangL. CaiY. CheungC.W. XiaZ. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19).J. Gen. Intern. Med.20203551545154910.1007/s11606‑020‑05762‑w 32133578
    [Google Scholar]
  81. GuanW. NiZ. HuY. Clinical characteristics of coronavirus disease 2019 in China.N. Engl. J. Med.2020382181708172010.1056/NEJMoa2002032 32109013
    [Google Scholar]
  82. IppolitoD. MainoC. VernuccioF. Liver involvement in patients with COVID-19 infection: A comprehensive overview of diagnostic imaging features.World J. Gastroenterol.202329583485010.3748/wjg.v29.i5.834 36816623
    [Google Scholar]
  83. WuJ. SongS. CaoH.C. LiL.J. Liver diseases in COVID-19: Etiology, treatment and prognosis.World J. Gastroenterol.202026192286229310.3748/wjg.v26.i19.2286 32476793
    [Google Scholar]
  84. AbdelmohsenM.A. AlkandariB.M. GuptaV.K. ElBeheiryA.A. Diagnostic value of abdominal sonography in confirmed COVID-19 intensive care patients.Egypt. J. Radiol. Nucl. Med.202051119810.1186/s43055‑020‑00317‑9
    [Google Scholar]
  85. SpogisJ. HagenF. ThaissW.M. Sonographic findings in coronavirus disease-19 associated liver damage.PLoS One2021162e024478110.1371/journal.pone.0244781 33606703
    [Google Scholar]
  86. RadzinaM. PutrinsD.S. MicenaA. Post‐COVID ‐19 liver injury: Comprehensive imaging with multiparametric ultrasound.J. Ultrasound Med.202241493594910.1002/jum.15778 34241914
    [Google Scholar]
  87. Yürük AtasoyP. BeydoğanE. Liver damage and hepatomegaly in COVID-19 patients.J. Infect. Dev. Ctries.20231791237124510.3855/jidc.17469 37824359
    [Google Scholar]
  88. XuX. ChenP. WangJ. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission.Sci. China Life Sci.202063345746010.1007/s11427‑020‑1637‑5 32009228
    [Google Scholar]
  89. LetkoM. MarziA. MunsterV. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses.Nat. Microbiol.20205456256910.1038/s41564‑020‑0688‑y 32094589
    [Google Scholar]
  90. ChaiX. HuL. ZhangY. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection.bioRxiv202010.1101/2020.02.03.931766
    [Google Scholar]
  91. ZhangY. ZhengL. LiuL. ZhaoM. XiaoJ. ZhaoQ. Liver impairment in COVID‐19 patients: A retrospective analysis of 115 cases from a single centre in Wuhan city, China.Liver Int.20204092095210310.1111/liv.14455 32239796
    [Google Scholar]
  92. TiradoS.M.C. YoonK.J. Antibody-dependent enhancement of virus infection and disease.Viral Immunol.2003161698610.1089/088282403763635465 12725690
    [Google Scholar]
  93. WangS.F. TsengS.P. YenC.H. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins.Biochem. Biophys. Res. Commun.2014451220821410.1016/j.bbrc.2014.07.090 25073113
    [Google Scholar]
  94. WongC.K. LamC.W.K. WuA.K.L. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome.Clin. Exp. Immunol.200413619510310.1111/j.1365‑2249.2004.02415.x 15030519
    [Google Scholar]
  95. ChannappanavarR. PerlmanS. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology.Semin. Immunopathol.201739552953910.1007/s00281‑017‑0629‑x 28466096
    [Google Scholar]
  96. MahallawiW.H. KhabourO.F. ZhangQ. MakhdoumH.M. SulimanB.A. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile.Cytokine201810481310.1016/j.cyto.2018.01.025 29414327
    [Google Scholar]
  97. YangX. YuY. XuJ. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study.Lancet Respir. Med.20208547548110.1016/S2213‑2600(20)30079‑5 32105632
    [Google Scholar]
  98. KariyawasamJ.C. JayarajahU. AbeysuriyaV. RizaR. SeneviratneS.L. Involvement of the liver in COVID-19: A systematic review.Am. J. Trop. Med. Hyg.202210641026104110.4269/ajtmh.21‑1240 35203056
    [Google Scholar]
  99. TianD. YeQ. Hepatic complications of COVID‐19 and its treatment.J. Med. Virol.202092101818182410.1002/jmv.26036 32437004
    [Google Scholar]
  100. IorgaA. DaraL. Cell death in drug-induced liver injury.Adv. Pharmacol.201985317410.1016/bs.apha.2019.01.006 31307591
    [Google Scholar]
  101. PanX. ZhouJ. ChenY. Classification, hepatotoxic mechanisms, and targets of the risk ingredients in traditional Chinese medicine-induced liver injury.Toxicol. Lett.2020323485610.1016/j.toxlet.2020.01.026 32017980
    [Google Scholar]
  102. CaoR. HuY. WangY. Prevention of HIV protease inhibitor-induced dysregulation of hepatic lipid metabolism by raltegravir via endoplasmic reticulum stress signaling pathways.J. Pharmacol. Exp. Ther.2010334253053910.1124/jpet.110.168484 20472667
    [Google Scholar]
  103. ZhaB.S. WanX. ZhangX. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.PLoS One201383e5951410.1371/journal.pone.0059514 23533630
    [Google Scholar]
  104. ShenT. LiuY. ShangJ. Incidence and etiology of drug-induced liver injury in mainland China.Gastroenterology2019156822302241.e1110.1053/j.gastro.2019.02.002 30742832
    [Google Scholar]
  105. JothimaniD. VenugopalR. AbedinM.F. KaliamoorthyI. RelaM. COVID-19 and the liver.J. Hepatol.20207351231124010.1016/j.jhep.2020.06.006 32553666
    [Google Scholar]
  106. ZhangC. ShiL. WangF.S. Liver injury in COVID-19: Management and challenges.Lancet Gastroenterol. Hepatol.20205542843010.1016/S2468‑1253(20)30057‑1 32145190
    [Google Scholar]
  107. Kumar-MP. MishraS. JhaD.K. Coronavirus disease (COVID-19) and the liver: A comprehensive systematic review and meta-analysis.Hepatol. Int.202014571172210.1007/s12072‑020‑10071‑9 32623633
    [Google Scholar]
  108. NardoA.D. Schneeweiss-GleixnerM. BakailM. DixonE.D. LaxS.F. TraunerM. Pathophysiological mechanisms of liver injury in COVID‐19.Liver Int.2021411203210.1111/liv.14730 33190346
    [Google Scholar]
  109. RoedlK. JarczakD. DrolzA. Severe liver dysfunction complicating course of COVID-19 in the critically ill: Multifactorial cause or direct viral effect?Ann. Intensive Care20211114410.1186/s13613‑021‑00835‑3 33721137
    [Google Scholar]
  110. YangS. WangS. DuM. LiuM. LiuY. HeY. Patients with COVID-19 and HBV coinfection are at risk of poor prognosis.Infect. Dis. Ther.20221131229124210.1007/s40121‑022‑00638‑4 35471766
    [Google Scholar]
  111. LiuJ. WangT. CaiQ. Longitudinal changes of liver function and hepatitis B reactivation in COVID‐19 patients with pre‐existing chronic hepatitis B virus infection.Hepatol. Res.202050111211122110.1111/hepr.13553 32761993
    [Google Scholar]
  112. WaliaD. SarayaA. GunjanD. COVID-19 in patients with pre-existing chronic liver disease – predictors of outcomes.World J. Virol.2023121304310.5501/wjv.v12.i1.30 36743659
    [Google Scholar]
  113. RonderosD. OmarA.M.S. AbbasH. Chronic hepatitis-C infection in COVID-19 patients is associated with in-hospital mortality.World J. Clin. Cases20219298749876210.12998/wjcc.v9.i29.8749 34734053
    [Google Scholar]
  114. The hepatitis foundation of New Zealand. Hepatitis B and COVID-19.2023Available from: https://www.hepatitisfoundation.org.nz/news-events/latest-news/hepatitis-b-and-covid-19
  115. NowrooziA. MomtazmaneshS. RezaeiN. COVID-19 and MAFLD/NAFLD: An updated review.Front. Med.202310112649110.3389/fmed.2023.1126491 37035343
    [Google Scholar]
  116. Clinical spectrum of SARS-CoV-2 infection.2023Available from: https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/
  117. Gonzáles YoveraJ.G. Concepción-ZavaletaM.J. Coronado ArroyoJ. Moreno MarrerosD. Confluence of obesity and MAFLD during Covid‐19 pandemic in a developing country.Endocrinol. Diabetes Metab.202142e0018910.1002/edm2.189 33173833
    [Google Scholar]
  118. O’GormanP. NorrisS. Exercising in the COVID-19 era: Implications in non-alcoholic fatty liver disease (NAFLD).BMJ Open Gastroenterol.202181e00056810.1136/bmjgast‑2020‑000568 34168043
    [Google Scholar]
  119. ZhouY.J. ZhengK.I. WangX.B. Metabolic‐associated fatty liver disease is associated with severity of COVID‐19.Liver Int.20204092160216310.1111/liv.14575 32573883
    [Google Scholar]
  120. ÇoraplıM. ÇilE. OktayC. KaçmazH. ÇoraplıG. BulutH.T. Role of hepatosteatosis in the prognosis of COVID 19 disease.Clin. Imaging2021801510.1016/j.clinimag.2021.06.034 34214871
    [Google Scholar]
  121. SharmaP. KumarA. AnikhindiS. Effect of COVID-19 on pre-existing liver disease: what hepatologist should know?J. Clin. Exp. Hepatol.202111448449310.1016/j.jceh.2020.12.006 33398223
    [Google Scholar]
  122. LefereS. TackeF. Macrophages in obesity and non-alcoholic fatty liver disease: Crosstalk with metabolism.JHEP Reports201911304310.1016/j.jhepr.2019.02.004 32149275
    [Google Scholar]
  123. GerussiA. RigamontiC. EliaC. Coronavirus Disease 2019 (COVID-19) in autoimmune hepatitis: A lesson from immunosuppressed patients.Hepatol. Commun.2020491257126210.1002/hep4.1557 32838102
    [Google Scholar]
  124. FixO.K. HameedB. FontanaR.J. Clinical best practice advice for hepatology and liver transplant providers during the covid‐19 pandemic: AASLD expert panel consensus statement.Hepatology202072128730410.1002/hep.31281 32298473
    [Google Scholar]
  125. SchulzP. ShabbirR. RamakrishnanS. AsraniS.K. Acute alcohol-associated hepatitis in the covid-19 pandemic — A structured review.Curr. Transplant. Rep.20229422723910.1007/s40472‑022‑00387‑w 36466960
    [Google Scholar]
  126. MoonA.M. WebbG.J. AlomanC. High mortality rates for SARS-CoV-2 infection in patients with pre-existing chronic liver disease and cirrhosis: Preliminary results from an international registry.J. Hepatol.202073370570810.1016/j.jhep.2020.05.013 32446714
    [Google Scholar]
  127. SarinS.K. ChoudhuryA. LauG.K. Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; The APCOLIS Study (APASL COVID-19 Liver Injury Spectrum Study).Hepatol. Int.202014569070010.1007/s12072‑020‑10072‑8 32623632
    [Google Scholar]
  128. IavaroneM. D’AmbrosioR. SoriaA. High rates of 30-day mortality in patients with cirrhosis and COVID-19.J. Hepatol.20207351063107110.1016/j.jhep.2020.06.001 32526252
    [Google Scholar]
  129. KushnerT. CafardiJ. Chronic liver disease and COVID-19: Alcohol use disorder/alcohol-associated liver disease, nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, autoimmune liver disease, and compensated cirrhosis.Clin. Liver Dis.202015519519910.1002/cld.974 32537135
    [Google Scholar]
  130. RezasoltaniS. HatamiB. YadegarA. Asadzadeh AghdaeiH. ZaliM.R. How patients with chronic liver diseases succeed to deal with covid-19?Front. Med.2020739810.3389/fmed.2020.00398
    [Google Scholar]
  131. VujčićI. Outcomes of COVID-19 among patients with liver disease.World J. Gastroenterol.202329581582410.3748/wjg.v29.i5.815 36816621
    [Google Scholar]
  132. GroßeK. KramerM. TrautweinC. BrunsT. SARS‐CoV‐2 as an extrahepatic precipitator of acute‐on‐chronic liver failure.Liver Int.20204071792179310.1111/liv.14540 32436600
    [Google Scholar]
  133. XiaoY. PanH. SheQ. WangF. ChenM. Prevention of SARS-CoV-2 infection in patients with decompensated cirrhosis.Lancet Gastroenterol. Hepatol.20205652852910.1016/S2468‑1253(20)30080‑7 32197093
    [Google Scholar]
  134. LiangW. GuanW. ChenR. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China.Lancet Oncol.202021333533710.1016/S1470‑2045(20)30096‑6 32066541
    [Google Scholar]
  135. GarridoI. LiberalR. MacedoG. Review article: COVID‐19 and liver disease—what we know on 1st May 2020.Aliment. Pharmacol. Ther.202052226727510.1111/apt.15813 32402090
    [Google Scholar]
  136. Muñoz-MartínezS. SapenaV. FornerA. Outcome of liver cancer patients with SARS‐CoV‐2 infection: An International, Multicentre, Cohort Study.Liver Int.20224281891190110.1111/liv.15320 35608939
    [Google Scholar]
  137. TrikiH. JeddouH. BoudjemaK. Surgical resection for liver cancer during the COVID-19 outbreak.Updates Surg.202072230530710.1007/s13304‑020‑00799‑2 32436017
    [Google Scholar]
  138. MuhovićD. BojovićJ. BulatovićA. First case of drug‐induced liver injury associated with the use of tocilizumab in a patient with COVID‐19.Liver Int.20204081901190510.1111/liv.14516 32478465
    [Google Scholar]
  139. L SeneviratneS NiloofaR De ZoysaI de MelS AbeysuriyaV. Remdesivir and COVID-19.Int. J. Adv. Res. (Indore)20208456556710.21474/IJAR01/10811
    [Google Scholar]
  140. GreinJ. OhmagariN. ShinD. Compassionate use of remdesivir for patients with severe Covid-19.N. Engl. J. Med.2020382242327233610.1056/NEJMoa2007016 32275812
    [Google Scholar]
  141. SingalA.G. MittalS. YerokunO.A. Hepatocellular carcinoma screening associated with early tumor detection and improved survival among patients with cirrhosis in the US.Am. J. Med.2017130910991106.e110.1016/j.amjmed.2017.01.021 28213044
    [Google Scholar]
  142. TripathiA.K. RayA.K. MishraS.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: Evidence from clinical trials.Beni. Suef Univ. J. Basic Appl. Sci.20221111610.1186/s43088‑022‑00196‑1 35127957
    [Google Scholar]
  143. PolackF.P. ThomasS.J. KitchinN. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine.N. Engl. J. Med.2020383272603261510.1056/NEJMoa2034577 33301246
    [Google Scholar]
  144. VoyseyM. ClemensS.A.C. MadhiS.A. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.Lancet2021397102699911110.1016/S0140‑6736(20)32661‑1 33306989
    [Google Scholar]
  145. BadenL.R. El SahlyH.M. EssinkB. Efficacy and safety of the mRNA- 1273 SARS-CoV-2 vaccine.N. Engl. J. Med.2021384540341610.1056/NEJMoa2035389 33378609
    [Google Scholar]
  146. LogunovD.Y. DolzhikovaI.V. ShcheblyakovD.V. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia.Lancet20213971027567168110.1016/S0140‑6736(21)00234‑8 33545094
    [Google Scholar]
  147. ParkJ.W. LagnitonP.N.P. LiuY. XuR.H. mRNA vaccines for COVID-19: What, why and how.Int. J. Biol. Sci.20211761446146010.7150/ijbs.59233 33907508
    [Google Scholar]
  148. PalmA.K.E. HenryC. Remembrance of things past: Long-term B-cell memory after infection and vaccination.Front. Immunol.201910178710.3389/fimmu.2019.01787 31417562
    [Google Scholar]
  149. YoshidaT. MeiH. DörnerT. Memory B and memory plasma cells.Immunol. Rev.2010237111713910.1111/j.1600‑065X.2010.00938.x 20727033
    [Google Scholar]
  150. WeiselF. ShlomchikM. MemoryB. Memory B-cells of mice and humans.Annu. Rev. Immunol.201735125528410.1146/annurev‑immunol‑041015‑055531 28142324
    [Google Scholar]
  151. SoheiliM. KhateriS. MoradpourF. The efficacy and effectiveness of COVID-19 vaccines around the world: A mini-review and meta-analysis.Ann. Clin. Microbiol. Antimicrob.20232214210.1186/s12941‑023‑00594‑y 37208749
    [Google Scholar]
  152. LamprinouM. SachinidisA. StamoulaE. VavilisT. PapazisisG. COVID-19 vaccines adverse events: Potential molecular mechanisms.Immunol. Res.202371335637210.1007/s12026‑023‑09357‑5 36607502
    [Google Scholar]
  153. CornbergM. ButiM. EberhardtC.S. GrossiP.A. ShouvalD. EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients.J. Hepatol.202174494495110.1016/j.jhep.2021.01.032 33563499
    [Google Scholar]
  154. MarjotT. WebbG.J. BarrittA.S. SARS-CoV-2 vaccination in patients with liver disease: Responding to the next big question.Lancet Gastroenterol. Hepatol.20216315615810.1016/S2468‑1253(21)00008‑X 33444545
    [Google Scholar]
  155. HoffmannM. Kleine-WeberH. SchroederS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280.e810.1016/j.cell.2020.02.052 32142651
    [Google Scholar]
  156. MuusC. LueckenM.D. EraslanG. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of media- tors of SARS-CoV-2 viral entry and highlights inflammatory programs in puta- tive target cells.bioRxiv2020419049254
    [Google Scholar]
  157. AloysiusM.M. ThattiA. GuptaA. SharmaN. BansalP. GoyalH. COVID-19 presenting as acute pancreatitis.Pancreatology20202051026102710.1016/j.pan.2020.05.003 32444169
    [Google Scholar]
  158. WangF. WangH. FanJ. ZhangY. WangH. ZhaoQ. Pancreatic injury patterns in patients with COVID-19 pneumonia.Gastroenterology2020159136737010.1053/j.gastro.2020.03.055 32247022
    [Google Scholar]
  159. AbramczykU. NowaczyńskiM. SłomczyńskiA. WojniczP. ZatykaP. KuzanA. Consequences of COVID-19 for the pancreas.Int. J. Mol. Sci.202223286410.3390/ijms23020864
    [Google Scholar]
  160. WangM.K. YueH.Y. CaiJ. COVID-19 and the digestive system: A comprehensive review.World J. Clin. Cases20219163796381310.12998/wjcc.v9.i16.3796 34141737
    [Google Scholar]
  161. AkarsuC. KarabulutM. AydinH. Association between acute pancreatitis and COVID-19: Could pancreatitis be the missing piece of the puzzle about increased mortality rates?J. Invest. Surg.20201710.1080/08941939.2020.1833263 33138658
    [Google Scholar]
  162. LerchM.M. SalujaA.K. DawraR. SalujaM. SteerM.L. The effect of chloroquine administration on two experimental models of acute pancreatitis.Gastroenterology199310461768177910.1016/0016‑5085(93)90658‑Y 8500736
    [Google Scholar]
  163. PoetaM. NunziataF. Del BeneM. Diarrhea is a hallmark of inflammation in pediatric COVID-19.Viruses20221412272310.3390/v14122723 36560726
    [Google Scholar]
/content/journals/covid/10.2174/0126667975293524240625115448
Loading
/content/journals/covid/10.2174/0126667975293524240625115448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test