Skip to content
2000
Volume 6, Issue 3
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

The COVID-19 pandemic is primarily caused by SARS-CoV-2, with significantly higher morbidity and mortality worldwide. More than 3.78 million individuals have been killed, affecting almost all regions worldwide. The SARS-CoV-2 is a positive sense ssRNA, a zoonotic origin virus that commonly habitats in horseshoe bats. Since the advent of this pandemic, the major agencies worldwide have started research for developing therapeutics and medicine against this disease. Many medicines have been repurposed for their effective treatment. However, clinical trials for many drugs are currently being conducted. In this review, we propose the use of RNAi technology to silence the genome of the virus once it gets inside the cells and for its site-specific delivery. Artificial cells and a nanotechnology technique to use micelleplexes have been proposed to deliver siRNA to susceptible cells. Site-specific delivery could be achieved by harnessing the antigenic peptide of the viral spike protein. The proposed delivery system may help to elicit an immune response against the virus and provide a protection tool against the COVID-19 infection.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975314555240805115442
2025-08-12
2025-09-27
Loading full text...

Full text loading...

References

  1. PormohammadA. GhorbaniS. KhatamiA. Comparison of influenza type A and B with COVID‐19: A global systematic review and meta‐analysis on clinical, laboratory and radiographic findings.Rev. Med. Virol.2021313e217910.1002/rmv.2179 33035373
    [Google Scholar]
  2. GaneshB. RajakumarT. MalathiM. Epidemiology and pathobiology of SARS-CoV-2 (COVID-19) in comparison with SARS, MERS: An updated overview of current knowledge and future perspectives.Clin. Epidemiol. Glob. Health20211010069410.1016/j.cegh.2020.100694 33462564
    [Google Scholar]
  3. PrakashS. KumarA. Mucormycosis threats: A systemic review.J. Basic Microbiol.202363211912710.1002/jobm.202200334 36333107
    [Google Scholar]
  4. LiQ. GuanX. WuP. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia.N. Engl. J. Med.2020382131199120710.1056/NEJMoa2001316 31995857
    [Google Scholar]
  5. RotheC. SchunkM. SothmannP. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany.N. Engl. J. Med.20203821097097110.1056/NEJMc2001468 32003551
    [Google Scholar]
  6. ZouL. RuanF. HuangM. SARS-CoV-2 viral load in upper respiratory specimens of infected patients.N. Engl. J. Med.2020382121177117910.1056/NEJMc2001737 32074444
    [Google Scholar]
  7. KampfG. TodtD. PfaenderS. SteinmannE. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents.J. Hosp. Infect.2020104324625110.1016/j.jhin.2020.01.022 32035997
    [Google Scholar]
  8. WHOCoronavirus disease 2019 (COVID-19): situation report, 2020.Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public?adgroupsurvey={adgroupsurvey}gad_source=1gclid=CjwKCAjw7s20BhBFEiwABVIMrYXRjuoE1llCPhad1Ykm5_6_1Cao9gS9j1oe1u5Qa0ZM-5vxPoa6sRoCO1QQAvD_BwE(accessed on 15-7-2024)2020
  9. ChenZ.R. ZhouY. LiuJ. Pharmacotherapics advice in guidelines for COVID-19.Front. Pharmacol.20201195010.3389/fphar.2020.00950 32670066
    [Google Scholar]
  10. HuangP. LiuT. HuangL. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion.Radiology20202951222310.1148/radiol.2020200330 32049600
    [Google Scholar]
  11. ShiratoK. KawaseM. MatsuyamaS. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry.Virology201851791510.1016/j.virol.2017.11.012 29217279
    [Google Scholar]
  12. ZhavoronkovA. ZagribelnyyB. ZhebrakA. AladinskiyV. TerentievV. VanhaelenQ. Potential non-covalent SARS-CoV-2 3C-like protease inhibitors designed using generative deep learning approaches and reviewed by human medicinal chemist in virtual reality.2020.chemrxiv.12301457, 2020.
    [Google Scholar]
  13. SimmonsG. ZmoraP. GiererS. HeurichA. PöhlmannS. Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research.Antiviral Res.2013100360561410.1016/j.antiviral.2013.09.028 24121034
    [Google Scholar]
  14. BelouzardS. ChuV.C. WhittakerG.R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites.Proc. Natl. Acad. Sci. USA2009106145871587610.1073/pnas.0809524106 19321428
    [Google Scholar]
  15. BertramS. GlowackaI. MüllerM.A. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease.J. Virol.20118524133631337210.1128/JVI.05300‑11 21994442
    [Google Scholar]
  16. FehrA.R. PerlmanS. Coronaviruses: an overview of their replication and pathogenesis.Methods Mol. Biol.2015128212310.1007/978‑1‑4939‑2438‑7_1 25720466
    [Google Scholar]
  17. RajV.S. MouH. SmitsS.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.Nature2013495744025125410.1038/nature12005 23486063
    [Google Scholar]
  18. LiW. MooreM.J. VasilievaN. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.Nature2003426696545045410.1038/nature02145 14647384
    [Google Scholar]
  19. KirchdoerferR.N. CottrellC.A. WangN. Pre-fusion structure of a human coronavirus spike protein.Nature2016531759211812110.1038/nature17200 26935699
    [Google Scholar]
  20. WallsA.C. TortoriciM.A. BoschB.J. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer.Nature2016531759211411710.1038/nature16988 26855426
    [Google Scholar]
  21. BeniacD.R. AndonovA. GrudeskiE. BoothT.F. Architecture of the SARS coronavirus prefusion spike.Nat. Struct. Mol. Biol.200613875175210.1038/nsmb1123 16845391
    [Google Scholar]
  22. LiF. BerardiM. LiW. FarzanM. DormitzerP.R. HarrisonS.C. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain.J. Virol.200680146794680010.1128/JVI.02744‑05 16809285
    [Google Scholar]
  23. SextonN.R. SmithE.C. BlancH. VignuzziM. PeersenO.B. DenisonM.R. Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens.J. Virol.201690167415742810.1128/JVI.00080‑16 27279608
    [Google Scholar]
  24. PayneS. Viruses.MA, USAAcademic Press Cambridge2017
    [Google Scholar]
  25. SuS. WongG. ShiW. Epidemiology, genetic recombination, and pathogenesis of coronaviruses.Trends Microbiol.201624649050210.1016/j.tim.2016.03.003 27012512
    [Google Scholar]
  26. GheblawiM. WangK. ViveirosA. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2.Circ. Res.2020126101456147410.1161/CIRCRESAHA.120.317015 32264791
    [Google Scholar]
  27. JungreisI. SealfonR. KellisM. SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes.Nat. Commun.2021121264210.1038/s41467‑021‑22905‑7 33976134
    [Google Scholar]
  28. ChanA.P. ChoiY. SchorkN.J. Conserved genomic terminals of SARS-CoV-2 as coevolving functional elements and potential therapeutic targets.MSphere202056e00754e2010.1128/mSphere.00754‑20 33239366
    [Google Scholar]
  29. KumarA. KumarA. IngleH. MicroRNA hsa-miR-324-5p suppresses H5N1 virus replication by targeting the viral PB1 and host CUEDC2.J. Virol.20189219e01057e1810.1128/JVI.01057‑18 30045983
    [Google Scholar]
  30. AshaK. KumarP. SanicasM. MesekoC.A. KhannaM. KumarB. Advancements in nucleic acid based therapeutics against respiratory viral infections.J. Clin. Med.201881610.3390/jcm8010006 30577479
    [Google Scholar]
  31. PengS. WangJ. WeiS. Endogenous cellular microRNAs mediate antiviral defense against influenza A virus.Mol. Ther. Nucleic Acids20181036137510.1016/j.omtn.2017.12.016 29499948
    [Google Scholar]
  32. HameedA. TahirM.N. AsadS. RNAi-mediated simultaneous resistance against three RNA viruses in potato.Mol. Biotechnol.2017592-3738310.1007/s12033‑017‑9995‑9 28194691
    [Google Scholar]
  33. ShaputkinE.D. Nifant’evI.E. BagrovV.V. Lipophilic poly(glycolide) blocks in morpholin-2-one-based CARTs for plasmid DNA delivery: Polymer regioregularity, sequence of lipophilic/polyamine blocks, and nanoparticle stability as factors of transfection efficiency.Eur. Polym. J.202218111164410.1016/j.eurpolymj.2022.111644
    [Google Scholar]
  34. ChenX. MangalaL.S. Rodriguez-AguayoC. KongX. Lopez-BeresteinG. SoodA.K. RNA interference-based therapy and its delivery systems.Cancer Metastasis Rev.201837110712410.1007/s10555‑017‑9717‑6 29243000
    [Google Scholar]
  35. PaunovskaK. LoughreyD. DahlmanJ.E. Drug delivery systems for RNA therapeutics.Nat. Rev. Genet.202223526528010.1038/s41576‑021‑00439‑4 34983972
    [Google Scholar]
  36. LinL. SuK. ChengQ. LiuS. Targeting materials and strategies for RNA delivery.Theranostics202313134667469310.7150/thno.87316 37649616
    [Google Scholar]
  37. AiY. XieR. XiongJ. LiangQ. Microfluidics for biosynthesizing: from droplets and vesicles to artificial cells.Small2020169190394010.1002/smll.201903940 31603270
    [Google Scholar]
  38. ChangT.M.S. Therapeutic applications of polymeric artificial cells.Nat. Rev. Drug Discov.20054322123510.1038/nrd1659 15738978
    [Google Scholar]
  39. Wösten-van AsperenR.M. LutterR. SpechtP.A. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin‐(1–7) or an angiotensin II receptor antagonist.J. Pathol.2011225461862710.1002/path.2987 22009550
    [Google Scholar]
  40. LiuJ. SweversL. KolliopoulouA. SmaggheG. Arboviruses and the challenge to establish systemic and persistent infections in competent mosquito vectors: the interaction with the RNAi mechanism.Front. Physiol.20191089010.3389/fphys.2019.00890 31354527
    [Google Scholar]
  41. BitkoV. MusiyenkoA. ShulyayevaO. BarikS. Inhibition of respiratory viruses by nasally administered siRNA.Nat. Med.2005111505510.1038/nm1164 15619632
    [Google Scholar]
  42. FrangeulL. BlancH. SalehM.C. SuzukiY. Differential small RNA responses against co-infecting insect-specific viruses in Aedes albopictus mosquitoes.Viruses202012446810.3390/v12040468 32326240
    [Google Scholar]
  43. JhaveriA.M. TorchilinV.P. Multifunctional polymeric micelles for delivery of drugs and siRNA.Front. Pharmacol.201457710.3389/fphar.2014.00077 24795633
    [Google Scholar]
  44. AmjadM.W. KesharwaniP. Mohd AminM.C.I. IyerA.K. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy.Prog. Polym. Sci.20176415418110.1016/j.progpolymsci.2016.09.008
    [Google Scholar]
  45. SaraswathyM. GongS. Recent developments in the co-delivery of siRNA and small molecule anticancer drugs for cancer treatment.Mater. Today201417629830610.1016/j.mattod.2014.05.002
    [Google Scholar]
  46. NavarroG. PanJ. TorchilinV.P. Micelle-like nanoparticles as carriers for DNA and siRNA.Mol. Pharm.201512230131310.1021/mp5007213 25557580
    [Google Scholar]
  47. CabralH. MiyataK. OsadaK. KataokaK. Block copolymer micelles in nanomedicine applications.Chem. Rev.2018118146844689210.1021/acs.chemrev.8b00199 29957926
    [Google Scholar]
  48. SunT.M. DuJ.Z. YaoY.D. Simultaneous delivery of siRNA and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression.ACS Nano2011521483149410.1021/nn103349h 21204585
    [Google Scholar]
  49. HaoF. DongS. YangC. Targeted and efficient delivery of siRNA using tunable polymeric hybrid micelles for tumor therapy.Anticancer Res.20193931169117810.21873/anticanres.13226 30842146
    [Google Scholar]
  50. MedvedevaD.A. MaslovM.A. SerikovR.N. Novel cholesterol-based cationic lipids for gene delivery.J. Med. Chem.200952216558656810.1021/jm901022t 19824650
    [Google Scholar]
  51. LiS.D. HuangL. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells.Mol. Pharm.20063557958810.1021/mp060039w 17009857
    [Google Scholar]
  52. JiangX.C. GaoJ.Q. Exosomes as novel bio-carriers for gene and drug delivery.Int. J. Pharm.20175211-216717510.1016/j.ijpharm.2017.02.038 28216464
    [Google Scholar]
  53. LehnerR. LiuK. WangX. HunzikerP. Efficient receptor mediated siRNA delivery in vitro by folic acid targeted pentablock copolymer-based micelleplexes.Biomacromolecules20171882654266210.1021/acs.biomac.7b00851 28675926
    [Google Scholar]
  54. ZhouJ. LiuJ. ChengC.J. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery.Nat. Mater.2012111829010.1038/nmat3187 22138789
    [Google Scholar]
  55. KimK. ChenW.C.W. HeoY. WangY. Polycations and their biomedical applications.Prog. Polym. Sci.201660185010.1016/j.progpolymsci.2016.05.004
    [Google Scholar]
  56. XiaoW. GaoH. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system.Int. J. Pharm.20185521-232833910.1016/j.ijpharm.2018.10.011 30308270
    [Google Scholar]
  57. BerrecosoG. Crecente-CampoJ. AlonsoM.J. Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers.Drug Deliv. Transl. Res.202010373075010.1007/s13346‑020‑00745‑0 32152965
    [Google Scholar]
  58. GandhiN.S. TekadeR.K. ChouguleM.B. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances.J. Control. Release201419423825610.1016/j.jconrel.2014.09.001 25204288
    [Google Scholar]
  59. RettigG.R. BehlkeM.A. Progress toward in vivo use of siRNAs-II.Mol. Ther.201220348351210.1038/mt.2011.263 22186795
    [Google Scholar]
  60. ArnoldA.E. CzupielP. ShoichetM. Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids.J. Control. Release201725931510.1016/j.jconrel.2017.02.019 28232223
    [Google Scholar]
  61. O’Keeffe AhernJ. SigenA. ZhouD. Brushlike cationic polymers with low charge density for gene delivery.Biomacromolecules20181951410141510.1021/acs.biomac.7b01267 29125281
    [Google Scholar]
  62. ZhaoJ. WengG. LiJ. ZhuJ. ZhaoJ. Polyester-based nanoparticles for nucleic acid delivery.Mater. Sci. Eng. C20189298399410.1016/j.msec.2018.07.027 30184828
    [Google Scholar]
  63. NicholsJ.W. BaeY.H. EPR: Evidence and fallacy.J. Control. Release201419045146410.1016/j.jconrel.2014.03.057 24794900
    [Google Scholar]
  64. PereiraP. BarreiraM. QueirozJ.A. VeigaF. SousaF. FigueirasA. Smart micelleplexes as a new therapeutic approach for RNA delivery.Expert Opin. Drug Deliv.201714335337110.1080/17425247.2016.1214567 27434618
    [Google Scholar]
  65. TekadeR.K. TekadeM. KesharwaniP. D’EmanueleA. RNAi-combined nano-chemotherapeutics to tackle resistant tumors.Drug Discov. Today201621111761177410.1016/j.drudis.2016.06.029 27380716
    [Google Scholar]
  66. PatelN.R. PattniB.S. AbouzeidA.H. TorchilinV.P. Nanopreparations to overcome multidrug resistance in cancer.Adv. Drug Deliv. Rev.20136513-141748176210.1016/j.addr.2013.08.004 23973912
    [Google Scholar]
  67. SunT.M. DuJ.Z. YanL.F. MaoH.Q. WangJ. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery.Biomaterials200829324348435510.1016/j.biomaterials.2008.07.036 18715636
    [Google Scholar]
  68. SalzanoG. RiehleR. NavarroG. PercheF. De RosaG. TorchilinV.P. Polymeric micelles containing reversibly phospholipid-modified anti-survivin siRNA: A promising strategy to overcome drug resistance in cancer.Cancer Lett.2014343222423110.1016/j.canlet.2013.09.037 24099916
    [Google Scholar]
  69. ChengD. CaoN. ChenJ. YuX. ShuaiX. Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat.Biomaterials20123341170117910.1016/j.biomaterials.2011.10.057 22061491
    [Google Scholar]
  70. PanH. LiuL. CaiL. Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor therapy.Gene Delivery.Springer202111510.1007/978‑981‑33‑6198‑0_18‑1
    [Google Scholar]
  71. ZhuC. JungS. LuoS. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA–PCL–PDMAEMA triblock copolymers.Biomaterials20103182408241610.1016/j.biomaterials.2009.11.077 19963269
    [Google Scholar]
  72. ZhangeC. ZhuW. LiuY. YuanZ. YangS. ChenW. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy.Sci. Rep.201661112
    [Google Scholar]
  73. SuoA. QianJ. ZhangY. LiuR. XuW. WangH. Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells.Mater. Sci. Eng. C20166256457310.1016/j.msec.2016.02.007 26952460
    [Google Scholar]
  74. ShenJ. SunH. XuP. Simultaneous inhibition of metastasis and growth of breast cancer by co-delivery of twist shRNA and paclitaxel using pluronic P85-PEI/TPGS complex nanoparticles.Biomaterials20133451581159010.1016/j.biomaterials.2012.10.057 23146437
    [Google Scholar]
  75. YuH. GuoC. FengB. Triple-layered pH-responsive micelleplexes loaded with siRNA and cisplatin prodrug for NF-Kappa B targeted treatment of metastatic breast cancer.Theranostics201661142710.7150/thno.13515 26722370
    [Google Scholar]
  76. YiH. LiuL. ShengN. Synergistic therapy of doxorubicin and miR-129-5p with self-cross-linked bioreducible polypeptide nanoparticles reverses multidrug resistance in cancer cells.Biomacromolecules20161751737174710.1021/acs.biomac.6b00141 27029378
    [Google Scholar]
  77. Cifuentes-RiusA. BoaseN.R.B. FontI. In vivo fate of carbon nanotubes with different physicochemical properties for gene delivery applications.ACS Appl. Mater. Interfaces2017913114611147110.1021/acsami.7b00677 28299925
    [Google Scholar]
  78. HanX. LuY. XuZ. ChuY. MaX. WuH. Anionic liposomes prepared without organic solvents for effective siRNA delivery.IET nanobiotechnol.202317326928010.1049/nbt2.12117
    [Google Scholar]
  79. ClarkeD. IdrisA. McMillanN.A.J. Development of novel lipidic particles for siRNA delivery that are highly effective after 12 months storage.PLoS One2019142e021195410.1371/journal.pone.0211954 30735545
    [Google Scholar]
  80. AhmedS. SalmonH. DistasioN. Viscous core liposomes increase siRNA encapsulation and provides gene inhibition when slightly positively charged.Pharmaceutics202113447910.3390/pharmaceutics13040479 33916066
    [Google Scholar]
  81. LiM. LiS. LiY. Cationic liposomes co-deliver chemotherapeutics and siRNA for the treatment of breast cancer.Eur. J. Med. Chem.202223311419810.1016/j.ejmech.2022.114198 35245829
    [Google Scholar]
  82. HaghiralsadatF. AmoabedinyG. NaderinezhadS. ForouzanfarT. HelderM.N. Zandieh-DoulabiB. Preparation of PEGylated cationic nanoliposome-siRNA complexes for cancer therapy.Artif. Cells Nanomed. Biotechnol.201846S168469210.1080/21691401.2018.1434533
    [Google Scholar]
  83. TuretskiyE.A. KoloskovaO.O. NosovaA.S. ShilovskiyI.P. SebyakinY.L. KhaitovM.R. Physicochemical properties of lipopeptide-based liposomes and their complexes with siRNA.Biomed. Khim.201763547247510.18097/PBMC20176305472 29080884
    [Google Scholar]
  84. DakwarG.R. BraeckmansK. CeelenW. De SmedtS.C. RemautK. Exploring the HYDRAtion method for loading siRNA on liposomes: the interplay between stability and biological activity in human undiluted ascites fluid.Drug Deliv. Transl. Res.20177224125110.1007/s13346‑016‑0329‑4 27631392
    [Google Scholar]
  85. SmithB.R. NguyenT.A. PangK.C. Bulky chemical modifications of siRNAs impair interaction with the SIDT2 endosomal RNA transporter.Matters (Zur.)202067
    [Google Scholar]
  86. IrieA. SatoK. HaraR.I. WadaT. ShibasakiF. An artificial cationic oligosaccharide combined with phosphorothioate linkages strongly improves siRNA stability.Sci. Rep.20201011484510.1038/s41598‑020‑71896‑w 32908235
    [Google Scholar]
  87. GillenwaterS. RahaghiF. HadehA. Remdesivir for the treatment of COVID-19-preliminary report.N. Engl. J. Med.20203831099299410.1056/NEJMc2022236 32649074
    [Google Scholar]
  88. NicastriE. PetrosilloN. Ascoli BartoliT. National institute for the infectious diseases “L. Spallanzani”, IRCCS. Recommendations for COVID-19 clinical management.Infect. Dis. Rep.2020121854310.4081/idr.2020.8543 32218915
    [Google Scholar]
  89. ElfikyA.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19.Life Sci.202024811747710.1016/j.lfs.2020.117477 32119961
    [Google Scholar]
  90. WangJ. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study.J. Chem. Inf. Model.20206063277328610.1021/acs.jcim.0c00179 32315171
    [Google Scholar]
  91. DongL. HuS. GaoJ. Discovering drugs to treat coronavirus disease 2019 (COVID-19).Drug Discov. Ther.2020141586010.5582/ddt.2020.01012 32147628
    [Google Scholar]
  92. CaiQ. YangM. LiuD. Experimental treatment with favipiravir for COVID-19: an open-label control study.Engineering (Beijing)20206101192119810.1016/j.eng.2020.03.007 32346491
    [Google Scholar]
  93. ChenC. ZhangY. HuangJ. YinP. ChengZ. WuJ. Favipiravir versus arbidol for COVID-19: a randomized clinical trial.MedRxiv202010.1101/2020.03.17.20037432
    [Google Scholar]
  94. GraciJ.D. CameronC.E. Mechanisms of action of ribavirin against distinct viruses.Rev. Med. Virol.2006161374810.1002/rmv.483 16287208
    [Google Scholar]
  95. HungI.F.N. LungK.C. TsoE.Y.K. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial.Lancet2020395102381695170410.1016/S0140‑6736(20)31042‑4 32401715
    [Google Scholar]
  96. BalasubramaniamM. ReisR.J.S. Computational target-based drug repurposing of elbasvir, an antiviral drug predicted to bind multiple SARS-CoV-2 proteins.ChemRxiv2020
    [Google Scholar]
  97. FanH.H. WangL.Q. LiuW.L. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model.Chin. Med. J. (Engl.)202013391051105610.1097/CM9.0000000000000797 32149769
    [Google Scholar]
  98. RuanZ. LiuC. GuoY. SARS‐CoV‐2 and SARS‐CoV: Virtual screening of potential inhibitors targeting RNA‐dependent RNA polymerase activity (NSP12).J. Med. Virol.202193138940010.1002/jmv.26222 32579254
    [Google Scholar]
  99. OhashiH. WatashiK. SasoW. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment.iScience202124410236710.1016/j.isci.2021.102367 33817567
    [Google Scholar]
  100. ZhuZ. LuZ. XuT. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19.J. Infect.2020811e21e2310.1016/j.jinf.2020.03.060 32283143
    [Google Scholar]
  101. RosaS.G.V. SantosW.C. Clinical trials on drug repositioning for COVID-19 treatment.Rev. Panam. Salud Publica202044110.26633/RPSP.2020.40 32256547
    [Google Scholar]
  102. WanY. ShangJ. GrahamR. BaricR.S. LiF. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus.J. Virol.2020947e00127e2010.1128/JVI.00127‑20 31996437
    [Google Scholar]
  103. HoffmannM. SchroederS. Kleine-WeberH. MüllerM.A. DrostenC. PöhlmannS. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19.Antimicrob. Agents Chemother.2020646e00754e2010.1128/AAC.00754‑20 32312781
    [Google Scholar]
  104. JangS. RheeJ.Y. Three cases of treatment with nafamostat in elderly patients with COVID-19 pneumonia who need oxygen therapy.Int. J. Infect. Dis.20209650050210.1016/j.ijid.2020.05.072 32470602
    [Google Scholar]
  105. VincentM.J. BergeronE. BenjannetS. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread.Virol. J.2005216910.1186/1743‑422X‑2‑69 16115318
    [Google Scholar]
  106. YaoX. YeF. ZhangM. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Clin. Infect. Dis.2020711573273910.1093/cid/ciaa237 32150618
    [Google Scholar]
  107. CalderónJ.M. ZerónH.M. PadmanabhanS. Treatment with Hydroxychloroquine vs Hydroxychloroquine + Nitazoxanide in COVID-19 patients with risk factors for poor prognosis: A structured summary of a study protocol for a randomised controlled trial.Trials202021150410.1186/s13063‑020‑04448‑2 32513231
    [Google Scholar]
  108. GautretP. LagierJ.C. ParolaP. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study.Travel Med. Infect. Dis.20203410166310.1016/j.tmaid.2020.101663 32289548
    [Google Scholar]
  109. LiY. ZhangJ. WangN. LiH. ShiY. GuoG. Therapeutic drugs targeting 2019-nCoV main protease by high-throughput screening.BioRxiv202010.1101/2020.01.28.922922
    [Google Scholar]
  110. EncinarJ.A. MenendezJ.A. Potential drugs targeting early innate immune evasion of SARS-coronavirus 2 via 2′-O-methylation of viral RNA.Viruses202012552510.3390/v12050525 32397643
    [Google Scholar]
  111. MusarratF. ChouljenkoV. DahalA. The anti‐HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV‐2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID‐19 infections.J. Med. Virol.202092102087209510.1002/jmv.25985 32374457
    [Google Scholar]
  112. KhanS.U. Deciphering the Binding Mechanism of Dexamethasone Against SARS-CoV-2 Main Protease: Computational Molecular Modelling Approach.ChemRxiv,2020
    [Google Scholar]
  113. SargiacomoC. SotgiaF. LisantiM.P. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection?Aging (Albany NY)20201286511651710.18632/aging.103001 32229706
    [Google Scholar]
  114. PoschetJ.F. PerkettE.A. TimminsG.S. DereticV. Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells.BioRxiv202010.1101/2020.03.29.008631
    [Google Scholar]
  115. XuX. HanM. LiT. Effective treatment of severe COVID-19 patients with tocilizumab.Proc. Natl. Acad. Sci. USA202011720109701097510.1073/pnas.2005615117 32350134
    [Google Scholar]
  116. RothanH.A. StoneS. NatekarJ. KumariP. AroraK. KumarM. The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells.Virology202054771110.1016/j.virol.2020.05.002 32442105
    [Google Scholar]
  117. La RoséeF. BremerH.C. GehrkeI. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation.Leukemia20203471805181510.1038/s41375‑020‑0891‑0 32518419
    [Google Scholar]
  118. CantiniF. NiccoliL. NanniniC. Beneficial impact of Baricitinib in COVID-19 moderate pneumonia; multicentre study.J. Infect.202081464767910.1016/j.jinf.2020.06.052 32592703
    [Google Scholar]
  119. KhaterS DasG. Repurposing Ivermectin to inhibit the activity of SARS CoV2 helicase: possible implications for COVID 19 therapeutics.OSF preprint202010.31219/osf.io/8dseq
    [Google Scholar]
  120. ThomasH. FosterG. PlatisD. Mechanisms of action of interferon and nucleoside analogues.J. Hepatol.200339Suppl. 1939810.1016/S0168‑8278(03)00207‑1 14708685
    [Google Scholar]
  121. FedsonD.S. OpalS.M. RordamO.M. Hiding in plain sight: an approach to treating patients with severe COVID-19 infection.MBio2020112e00398e2010.1128/mBio.00398‑20 32198163
    [Google Scholar]
  122. TikooK. PatelG. KumarS. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: Role of epigenetic histone modifications.Biochem. Pharmacol.201593334335110.1016/j.bcp.2014.11.013 25482567
    [Google Scholar]
  123. AnastasiouI. EleftheriadouI. TentolourisA. TsilingirisD. TentolourisN. In vitro data of current therapies for SARS-CoV-2.Curr. Med. Chem.202027274542454810.2174/1875533XMTA2jNTcby 32400323
    [Google Scholar]
/content/journals/covid/10.2174/0126667975314555240805115442
Loading
/content/journals/covid/10.2174/0126667975314555240805115442
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test