Skip to content
2000
Volume 6, Issue 3
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Background

The cellular response to hypoxia is characterized by the stabilization of the HIF-1α protein, which will form a transcription factor that activates genes for low oxygen adaptation. Positive cases of COVID-19 are often characterized by hypoxia, especially in patients with comorbidities. This hypoxic condition will mediate drug resistance or weaken the patient's condition, resulting in lengthening treatment time and even causing death. This study aims to analyze the cellular expression of the HIF-1α gene in patients confirmed positive for COVID-19 with the alpha, beta, delta, and omicron variants.

Methods

The research design used was observational, with parameters measuring HIF-1 mRNA expression (RT-PCR, protein (ELISA), and its correlation. The samples used were nose-throat swabs from COVID-19 patients.

Results

The expression of HIF-1α mRNA and protein levels produced in variants of COVID-19 patients was compared with controls (times; ng/mL): alpha (0.53; 18.08), beta (0.92; 19.98), delta (0.65; 25.83), and omicron (0.73; 19.85) (Kruskal-Wallis test, < 0.01). The correlation between mRNA expression of HIF-1α and HIF-1α proteins was found to be significantly negative (Pearson Correlation test R = -0.589).

Conclusion

In this study, it was found that a decrease in HIF-1α mRNA expression (the result of transcription) increased the levels of HIF-1α protein (the result of translation) and stable HIF-1α expression. Moreover, cellular hypoxia occurred in patients with confirmed positive for COVID-19, with the alpha, beta, delta, and omicron variants. This study can be used as a basis for therapy to control viruses that cause hypoxia in the future.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975278373240516152940
2024-05-27
2025-09-27
Loading full text...

Full text loading...

References

  1. RabieA.M. Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): Successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs.New J. Chem.202145276177110.1039/D0NJ03708G
    [Google Scholar]
  2. RabieA.M. Teriflunomide: A possible effective drug for the comprehensive treatment of COVID-19.Curr. Res. Pharmacol. Drug Discov.2021210005510.1016/j.crphar.2021.100055 34870153
    [Google Scholar]
  3. EltaybW.A. AbdallaM. RabieA.M. Novel investigational anti-SARS-CoV-2 Agent Ensitrelvir “S-217622”: A very promising potential universal broad-spectrum antiviral at the therapeutic frontline of coronavirus species.ACS Omega2023865234524610.1021/acsomega.2c03881 36798145
    [Google Scholar]
  4. RabieA.M. Efficacious preclinical repurposing of the nucleoside analogue didanosine against COVID-19 polymerase and exonuclease.ACS Omega2022725213852139610.1021/acsomega.1c07095 35785294
    [Google Scholar]
  5. RabieA.M. Potent inhibitory activities of the adenosine analogue cordycepin on SARS-CoV-2 replication.ACS Omega2022732960296910.1021/acsomega.1c05998 35071937
    [Google Scholar]
  6. RabieA.M. AbdallaM. Forodesine and riboprine exhibit strong Anti-SARS-CoV-2 repurposing potential: In Silico and In Vitro Studies.ACS Bio Med Chem Au20222656558510.1021/acsbiomedchemau.2c00039 37582236
    [Google Scholar]
  7. RabieA.M. Abdel-DayemM.A. AbdallaM. Promising experimental Anti-SARS-CoV-2 Agent “SLL-0197800”: The prospective universal inhibitory properties against the coming versions of the coronavirus.ACS Omega2023839355383555410.1021/acsomega.2c08073 37810715
    [Google Scholar]
  8. RabieA.M. AbdallaM. Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study.Med. Chem. Res.202332232634110.1007/s00044‑022‑02970‑3 36593869
    [Google Scholar]
  9. RabieA.M. EltaybW.A. Potent dual polymerase/exonuclease inhibitory activities of antioxidant aminothiadiazoles against the COVID-19 omicron virus: A promising In Silico/In Vitro repositioning research study.Mol. Biotechnol.202312010.1007/s12033‑022‑00551‑8 36690820
    [Google Scholar]
  10. YukiK. FujiogiM. KoutsogiannakiS. COVID-19 pathophysiology: A review.Clin. Immunol.202021510842710.1016/j.clim.2020.108427 32325252
    [Google Scholar]
  11. FuruseY. SandoE. TsuchiyaN. Clusters of coronavirus disease in communities japan.Emerg. Infect. Dis.20202692176217910.3201/eid2609.202272 32521222
    [Google Scholar]
  12. González-DuarteA. Norcliffe-KaufmannL. Is ‘happy hypoxia’ in COVID-19 a disorder of autonomic interoception? A hypothesis.Clin. Auton. Res.202030433133310.1007/s10286‑020‑00715‑z 32671502
    [Google Scholar]
  13. WilkersonR.G. AdlerJ.D. ShahN.G. Silent hypoxia: A harbinger of clinical deterioration in patients with COVID-19.Am. J. Emerg. Med.2020382243e5610.1016/j.ajem.2020.05.044
    [Google Scholar]
  14. IftimieS. López-AzconaA.F. Vicente-MirallesM. Risk factors associated with mortality in hospitalized patients with SARS-CoV-2 infection. A prospective, longitudinal, unicenter study in Reus, Spain.PLoS One2020159e023445210.1371/journal.pone.0234452 32881860
    [Google Scholar]
  15. DhontS. DeromE. Van BraeckelE. DepuydtP. LambrechtB.N. The pathophysiology of ‘happy’ hypoxemia in COVID-19.Respir. Res.202021119810.1186/s12931‑020‑01462‑5 32723327
    [Google Scholar]
  16. BalamuruganK. HIF ‐1 at the crossroads of hypoxia, inflammation, and cancer.Int. J. Cancer201613851058106610.1002/ijc.29519 25784597
    [Google Scholar]
  17. SanyaoluA. OkorieC. MarinkovicA. Comorbidity and its impact on patients with COVID-19.SN Compr. Clin. Med.2020281069107610.1007/s42399‑020‑00363‑4 32838147
    [Google Scholar]
  18. FojtíkP. BeckerováD. HolomkováK. ŠenflukM. RotreklV. Both hypoxia-inducible factor 1 and MAPK signaling pathway attennuate PI3K/AKT VI suppression of reactive oxygen species in human pluripotent stem cells.Front. Cell Dev. Biol.2021860744410.3389/fcell.2020.607444 33553145
    [Google Scholar]
  19. KobayashiY. OguroA. HirataY. ImaokaS. The regulation of hypoxia-inducible factor-1 (hif-1alpha) expression by protein disulfide isomerase (PDI).PLoS One2021162e024653110.1371/journal.pone.0246531 33539422
    [Google Scholar]
  20. WulandariE. HapsariR.A.F. TjakradidjajaF.A. Alfiah SuriA.A. The cytoglobin expression under hypoxic conditions in Covid-19 cases.Open Biomark. J.2023131e18753183230412010.2174/18753183‑v13‑230427‑2023‑2
    [Google Scholar]
  21. PengT. DuS.Y. SonM. DiamondB. HIF-1α is a negative regulator of interferon regulatory factors: Implications for interferon production by hypoxic monocytes.Proc. Natl. Acad. Sci. USA202111826e210601711810.1073/pnas.2106017118 34108245
    [Google Scholar]
  22. Prieto-FernándezE. Egia-MendikuteL. Vila-VecillaL. Hypoxia reduces cell attachment of SARS-CoV-2 spike protein by modulating the expression of ACE2, neuropilin-1, syndecan-1 and cellular heparan sulfate.Emerg. Microbes Infect.20211011065107610.1080/22221751.2021.1932607 34013835
    [Google Scholar]
  23. SerebrovskaZ.O. ChongE.Y. SerebrovskaT.V. TumanovskaL.V. XiL. Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets.Acta Pharmacol. Sin.202041121539154610.1038/s41401‑020‑00554‑8 33110240
    [Google Scholar]
  24. AlayashA.I. The Impact of COVID-19 infection on oxygen homeostasis: A molecular perspective.Front. Physiol.20211271197610.3389/fphys.2021.711976 34690793
    [Google Scholar]
  25. ShenoyN. LuchtelR. GulaniP. Considerations for target oxygen saturation in COVID-19 patients: Are we under-shooting?BMC Med.202018126010.1186/s12916‑020‑01735‑2 32814566
    [Google Scholar]
  26. AfsarB. KanbayM. AfsarR.E. Hypoxia inducible factor-1 protects against COVID-19: A hypothesis.Med. Hypotheses202014310985710.1016/j.mehy.2020.109857 32464493
    [Google Scholar]
  27. BourgonjeA.R. AbdulleA.E. TimensW. Angiotensin‐converting enzyme 2 (ACE2), SARS‐CoV ‐2 and the pathophysiology of coronavirus disease 2019 (COVID ‐19).J. Pathol.2020251322824810.1002/path.5471 32418199
    [Google Scholar]
  28. KumarS. ThambirajaT.S. KaruppananK. SubramaniamG. Omicron and Delta variant of SARS‐CoV‐2: A comparative computational study of spike protein.J. Med. Virol.20229441641164910.1002/jmv.27526 34914115
    [Google Scholar]
  29. ChernyakB.V. PopovaE.N. PrikhodkoA.S. GrebenchikovO.A. ZinovkinaL.A. ZinovkinR.A. COVID-19 and oxidative stress.Biochemistry20208512-131543155310.1134/S0006297920120068 33705292
    [Google Scholar]
  30. WingP.A.C. KeeleyT.P. ZhuangX. Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells.Cell Rep.202135310902010.1016/j.celrep.2021.109020 33852916
    [Google Scholar]
  31. ZhangJ. EjikemeuwaA. GerzanichV. Understanding the role of SARS-CoV-2 ORF3a in viral pathogenesis and COVID-19.Front. Microbiol.20221385456710.3389/fmicb.2022.854567 35356515
    [Google Scholar]
  32. TianM. LiuW. LiX. HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19.Signal Transduct. Target. Ther.20216130810.1038/s41392‑021‑00726‑w 34408131
    [Google Scholar]
  33. GaoZ.J. WangY. YuanW. YuanJ. YuanK. HIF-2α not HIF-1α overexpression confers poor prognosis in non–small cell lung cancer.Tumour Biol.201739610.1177/1010428317709637 28653893
    [Google Scholar]
  34. CodoA.C. DavanzoG.G. MonteiroL.B. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis.Cell Metab.2020323437446.e510.1016/j.cmet.2020.07.007 32697943
    [Google Scholar]
  35. LongL. WuL. ChenL. Effect of early oxygen therapy and antiviral treatment on disease progression in patients with COVID-19: A retrospective study of medical charts in China.PLoS Negl. Trop. Dis.2021151e000905110.1371/journal.pntd.0009051 33406076
    [Google Scholar]
  36. Datta ChaudhuriR. BanikA. MandalB. SarkarS. Cardiac-specific overexpression of HIF-1α during acute myocardial infarction ameliorates cardiomyocyte apoptosis via differential regulation of hypoxia-inducible pro-apoptotic and anti-oxidative genes.Biochem. Biophys. Res. Commun.202153710010810.1016/j.bbrc.2020.12.084 33388412
    [Google Scholar]
  37. RutkaiI. MayerM.G. HellmersL.M. Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates.Nat. Commun.2022131174510.1038/s41467‑022‑29440‑z 35365631
    [Google Scholar]
  38. ZalpoorH. AkbariA. Nabi-AfjadiM. Hypoxia‐inducible factor 1 alpha (HIF‐1α) stimulated and P2X7 receptor activated by COVID-19, as a potential therapeutic target and risk factor for epilepsy.Hum. Cell20223551338134510.1007/s13577‑022‑00747‑9 35831562
    [Google Scholar]
  39. MpekoulisG. FrakolakiE. TakaS. Alteration of L-Dopa decarboxylase expression in SARS-CoV-2 infection and its association with the interferon-inducible ACE2 isoform.PLoS One2021166e025345810.1371/journal.pone.0253458 34185793
    [Google Scholar]
  40. LiZ.L. JiJ.L. WenY. HIF-1α is transcriptionally regulated by NF-κB in acute kidney injury.Am. J. Physiol. Renal Physiol.20213212F225F23510.1152/ajprenal.00119.2021 34229478
    [Google Scholar]
  41. RabieA.M. Future of the current anticoronaviral agents: A viewpoint on the validation for the next COVIDs and pandemics.Biocell202347102133213910.32604/biocell.2023.030057
    [Google Scholar]
/content/journals/covid/10.2174/0126667975278373240516152940
Loading
/content/journals/covid/10.2174/0126667975278373240516152940
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): COVID-19; HIF-1α; hypoxia; oxygen; therapeutic target; transcription factors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test