Skip to content
2000
Volume 7, Issue 2
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

An abrupt outbreak of “Severe Acute Respiratory Syndrome Coronavirus 2” was first identified in Wuhan City, Hubei Province, China, in December 2019, which was later disseminated globally. Individuals afflicted with this highly transmissible virus contribute to a significant public health crisis. The lack of specific vaccinations and antiviral medications for nCoV-2019, together with the emergence of mutations in the genome of the virus, necessitates a multifaceted approach to drug design and discovery for COVID-19. A comprehensive worldwide supervision plan is essential for the accurate forecast and prevention of viral infections. The SARS-CoV-2 spike (S) protein plays a crucial role in viral binding, fusion, and entrance, hence influencing the generation and evolution of antibodies and vaccines. The receptor binding domain (RBD) of the SARS-CoV-2 spike protein exhibits a significant affinity for human angiotensin-converting enzyme 2 (ACE2) receptors. It encompasses diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, enhancing immunological efficacy. The B.1.617.2 mutant, also known as the Delta variation, is expected to spread more rapidly than earlier versions. Thus, in this study, we have evaluated the structural characteristics of the SARS-CoV-2 spike protein and the human ACE2 protein and their interactions and examined putative SPIKE-ACE2 protein-protein inhibitors derived from the phytocompounds of species. This is the crucial aspect for the advancement of economical clinical trials of individual plant components for the treatment of viral diseases.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975312229240903074835
2024-12-16
2026-01-02
Loading full text...

Full text loading...

References

  1. ZhouP. YangX.L. WangX.G. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature2020579779827027310.1038/s41586‑020‑2012‑732015507
    [Google Scholar]
  2. WuL. ChenQ. LiuK. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2.Cell Discov.2020616810.1038/s41421‑020‑00210‑933020722
    [Google Scholar]
  3. ZhuN. ZhangD. WangW. A novel coronavirus from patients with pneumonia in China 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa200101731978945
    [Google Scholar]
  4. DivyaM. VijayakumarS. ChenJ. VaseeharanB. Durán-LaraE.F. South Indian medicinal plants can combat deadly viruses along with COVID-19? - A review.Microb. Pathog.202014810427710.1016/j.micpath.2020.104277
    [Google Scholar]
  5. DrostenC. GüntherS. PreiserW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome.N. Engl. J. Med.2003348201967197610.1056/NEJMoa03074712690091
    [Google Scholar]
  6. ShapiroM. LondonB. NigriD. ShossA. ZilberE. FogelI. Middle East respiratory syndrome coronavirus: Review of the current situation in the world.Disaster Mil. Med.201621910.1186/s40696‑016‑0019‑228265443
    [Google Scholar]
  7. BoopathiS. PomaA.B. KolandaivelP. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment.J. Biomol. Struct. Dyn.2020202011010.1080/07391102.2020.175878832306836
    [Google Scholar]
  8. DiMaioD. EnquistL.W. DermodyT.S. Introduction: A new coronavirus emerges, this time causing a pandemic.Annu. Rev. Virol.2020202014
    [Google Scholar]
  9. SalettiG. GerlachT. JansenJ.M. Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63.Sci. Rep.20201012144710.1038/s41598‑020‑78506‑933293664
    [Google Scholar]
  10. FungT.S. LiuD.X. Human Coronavirus: Host-pathogen interaction.Annu. Rev. Microbiol.201973152955710.1146/annurev‑micro‑020518‑11575931226023
    [Google Scholar]
  11. Di PaolaL. Hadi-AlijanvandH. SongX. HuG. GiulianiA. The discovery of a putative allosteric site in the SARS-CoV-2 spike protein using an integrated structural/dynamic approach.J. Proteome Res.202019114576458610.1021/acs.jproteome.0c0027332551648
    [Google Scholar]
  12. V’kovskiP. KratzelA. SteinerS. Coronavirus biology and replication: Implications for SARS-CoV-2.Nat. Rev. Microbiol.202033116300
    [Google Scholar]
  13. JiangS. ZhangX. YangY. HotezP.J. DuL. Neutralizing antibodies for the treatment of COVID-19.Nat. Biomed. Eng.20204121134113910.1038/s41551‑020‑00660‑233293725
    [Google Scholar]
  14. PaulesC.I. MarstonH.D. FauciA.S. Coronavirus infections—More than just the common cold.JAMA2020323870770810.1001/jama.2020.075731971553
    [Google Scholar]
  15. HussainI. PervaizN. KhanA. Evolutionary and structural analysis of SARS-CoV-2 specific evasion of host immunity.Genes Immun.2020216-840941910.1038/s41435‑020‑00120‑633273723
    [Google Scholar]
  16. LukH.K.H. LiX. FungJ. LauS.K.P. WooP.C.Y. Molecular epidemiology, evolution and phylogeny of SARS coronavirus.Infect. Genet. Evol.201971213010.1016/j.meegid.2019.03.00130844511
    [Google Scholar]
  17. BanerjeeA. KulcsarK. MisraV. FriemanM. MossmanK. Bats and coronaviruses.Viruses20191114110.3390/v1101004130634396
    [Google Scholar]
  18. TalleiT.E. TumilaarS.G. NiodeN.J. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: A molecular docking study.Preprints2020
    [Google Scholar]
  19. SongY. SongJ. WeiX. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein.Anal. Chem.202092149895990010.1021/acs.analchem.0c01394
    [Google Scholar]
  20. ZhengM. SongL. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV.Cell. Mol. Immunol.202017553653810.1038/s41423‑020‑0385‑z32132669
    [Google Scholar]
  21. OthmanH. BouslamaZ. BrandenburgJ.T. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism.Biochem. Biophys. Res. Commun.2020527370270810.1016/j.bbrc.2020.05.02832410735
    [Google Scholar]
  22. LanJ. GeJ. YuJ. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.Nature2020581780721522010.1038/s41586‑020‑2180‑532225176
    [Google Scholar]
  23. LanJ GeJ YuJ Crystal structure of the 2019-ncov spike receptor-binding domain bound with the ace2 receptor.Bio Rxiv202010.1101/2020.02.19.956235
    [Google Scholar]
  24. YanR. ZhangY. GuoY. XiaL. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.Science202036764851444144810.1126/science.abb276232132184
    [Google Scholar]
  25. SelvarajC. DineshD.C. PanwarU. AbhiramiR. BouraE. SinghS.K. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19.J. Biomol. Struct. Dyn.2021391345824593
    [Google Scholar]
  26. MedhiB. PrajapatM. SarmaP. Drug targets for corona virus: A systematic review.Indian J. Pharmacol.2020521566510.4103/ijp.IJP_115_2032201449
    [Google Scholar]
  27. WhisenantJ. BurgessK. Blocking coronavirus 19 infection via the SARS-CoV-2 spike protein: Initial steps.ACS Med. Chem. Lett.20201161076107810.1021/acsmedchemlett.0c0023332547694
    [Google Scholar]
  28. VerkhivkerG.M. Molecular simulations and network modeling reveal an allosteric signaling in the SARS-CoV-2 spike proteins.J. Proteome Res.202019114587460810.1021/acs.jproteome.0c0065433006900
    [Google Scholar]
  29. GrubaughN.D. HanageW.P. RasmussenA.L. Making sense of mutation: What D614G means for the COVID-19 pandemic remains unclear.Cell2020182479479510.1016/j.cell.2020.06.04032697970
    [Google Scholar]
  30. HuJ. HeC.L. GaoQ.Z. The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity and decreases neutralization sensitivity to individual convalescent sera.Bio Rxiv2020161323
    [Google Scholar]
  31. Lorenzo-RedondoR. NamH.H. RobertsS.C. A unique clade of SARS-CoV-2 viruses is associated with lower viral loads in patient upper airways.Med Rxiv202010.1101/2020.05.19.20107144
    [Google Scholar]
  32. OzonoS. ZhangY. OdeH. Naturally mutated spike proteins of SARS-CoV-2 variants show differential levels of cell entry.Bio Rxiv202010.1101/2020.06.15.151779
    [Google Scholar]
  33. WagnerC. RoychoudhuryP. HadfieldJ. Comparing viral load and clinical outcomes in Washington State across D614G mutation in spike protein of SARS-CoV-2.2020Available from: https://www.scirp.org/reference/referencespapers?referenceid=2886197
  34. KorberB. FischerW.M. GnanakaranS. Tracking changes in SARS-CoV-2 Spike: Evidence that D614G increases infectivity of the COVID-19 virus.Cell20201824812827.e1910.1016/j.cell.2020.06.04332697968
    [Google Scholar]
  35. GlasgowA. GlasgowJ. LimontaD. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2.Proc. Natl. Acad. Sci. USA202011745280462805510.1073/pnas.201609311733093202
    [Google Scholar]
  36. PlanteJ.A. LiuY. LiuJ. Spike mutation D614G alters SARS-CoV-2 fitness.Nature2020592785211612133106671
    [Google Scholar]
  37. SachanK.R.A. KumarS. KumariK. SinghD. Medicinal uses of our spices used in our traditional culture.J Med Plant Stud201863116122
    [Google Scholar]
  38. UmeshK.D. KunduD. SelvarajC. SinghS.K. DubeyV.K. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target.J. Biomol. Struct. Dyn.20201910.1080/07391102.2020.1763202
    [Google Scholar]
  39. BagalkotkarG. SagineeduS.R. SaadM.S. StanslasJ. Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: A review.J. Pharm. Pharmacol.200658121559157010.1211/jpp.58.12.000117331318
    [Google Scholar]
  40. MaoX. WuL.F. GuoH.L. The genus Phyllanthus: An Ethnopharmacological, Phytochemical, and Pharmacological Review.Evid. Based Complementary Altern. Med.20162016136
    [Google Scholar]
  41. HuangR.L. HuangY.L. OuJ.C. ChenC.C. HsuF.L. ChangC. Screening of 25 compounds isolated from Phyllanthus species for anti‐human hepatitis B virus in vitro.Phytother. Res.200317544945310.1002/ptr.116712748977
    [Google Scholar]
  42. HuangY. YangC. XuX. XuW. LiuS. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19.Acta Pharmacol. Sin.202041911411149
    [Google Scholar]
  43. AanouzI. BelhassanA. KhatabiE.K. LakhlifiT. IdrissiM.E. BouachrineM. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations.J. Biomol. Struct. Dyn.202139829712979
    [Google Scholar]
  44. GuptaM. VemulaS. DondeR. GoudaG. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel.J. Biomol. Struct. Dyn.202032238078
    [Google Scholar]
  45. JoshiR.S. JagdaleS.S. BansodeS.B. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease.J. Biomol. Struct. Dyn.202011610.1080/07391102.2020.176013732329408
    [Google Scholar]
  46. MuralidharanM. SakthivelR. VelmuruganD. GromihaM.M. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir andritonavir binding with SARS-CoV-2 Protease against COVID-19.J. Biomol. Struct. Dyn.202032248766
    [Google Scholar]
  47. SarmaP. SekharN. PrajapatM. AvtiP. In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain).J. Biomol. Struct. Dyn.202032266867
    [Google Scholar]
  48. RobsonB. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus.Comput. Biol. Med.202011910367010.1016/j.compbiomed.2020.10367032209231
    [Google Scholar]
  49. RobsonB. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles’ heel conserved region to minimize probability of escape mutations and drug resistance.Comput. Biol. Med.202012110374910.1016/j.compbiomed.2020.10374932568687
    [Google Scholar]
  50. GuiM. SongW. ZhouH. Entity 1 containing Chain A, B, C SARS-CoV spike glycoprotein.Cell Res.2017201711912910.1038/cr.2016.15228008928
    [Google Scholar]
  51. SalvatoriG. LubertoL. MaffeiM. SARS-CoV-2 SPIKE PROTEIN: An optimal immunological target for vaccines.J. Transl. Med.202018122210.1186/s12967‑020‑02392‑y32493510
    [Google Scholar]
  52. WallsA.C. ParkY.J. TortoriciM.A. WallA. McGuireA.T. VeeslerD. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein.Cell20201812281292.e610.1016/j.cell.2020.02.05832155444
    [Google Scholar]
  53. WangQ. ZhangY. WuL. Structural and functional basis of SARS-CoV-2 entry by using human ACE2.Cell20201814894904.e910.1016/j.cell.2020.03.04532275855
    [Google Scholar]
  54. CuiJ. LiF. ShiZ.L. Origin and evolution of pathogenic coronaviruses.Nat. Rev. Microbiol.201917318119210.1038/s41579‑018‑0118‑930531947
    [Google Scholar]
  55. DamasJ. HughesG.M. KeoughK.C. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates.Proc. Natl. Acad. Sci. USA202011736223112232210.1073/pnas.2010146117
    [Google Scholar]
  56. CasalinoL. GaiebZ. GoldsmithJ.A. Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein.ACS Cent. Sci.20206101722173410.1021/acscentsci.0c0105633140034
    [Google Scholar]
  57. WrappD. WangN. CorbettK.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.Science202036764831260126310.1126/science.abb250732075877
    [Google Scholar]
  58. LiF. Receptor recognition mechanisms of coronaviruses: A decade of structural studies.J. Virol.20158941954196410.1128/JVI.02615‑1425428871
    [Google Scholar]
  59. ChengY.W. ChaoT.L. LiC.L. Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects.Cell Rep.202033210825410.1016/j.celrep.2020.10825433007239
    [Google Scholar]
  60. SternbergA. NaujokatC. Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination.Life Sci.202025711805610.1016/j.lfs.2020.11805632645344
    [Google Scholar]
  61. QiaoB. Olvera de la CruzM. Enhanced binding of SARS-CoV-2 spike protein to receptor by distal polybasic cleavage sites.ACS Nano2020148106161062310.1021/acsnano.0c0479832806067
    [Google Scholar]
  62. WeissmanD. AlamehM.G. de SilvaT. D614G spike mutation increases SARS-CoV-2 susceptibility to neutralization.Cell Host Microbe202033306985
    [Google Scholar]
  63. WallsA.C. XiongX. ParkY.J. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion.Cell2019176510261039.e1510.1016/j.cell.2018.12.02830712865
    [Google Scholar]
  64. HoffmannM. Kleine-WeberH. PöhlmannS. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells.Mol. Cell2020784779784.e510.1016/j.molcel.2020.04.02232362314
    [Google Scholar]
  65. YurkovetskiyL. WangX. PascalK.E. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant.Cell20201833739751.e810.1016/j.cell.2020.09.03232991842
    [Google Scholar]
  66. JuB. ZhangQ. GeJ. Human neutralizing antibodies elicited by SARS-CoV-2 infection.Nature2020584781911511910.1038/s41586‑020‑2380‑z32454513
    [Google Scholar]
  67. HyeonukW. Sang JunP. YeolK.C. Developing a fully-glycosylated full-length SARS-CoV-2 spike protein model in a viral membrane.J. Phys. Chem.2020
    [Google Scholar]
  68. LiF. Structure, function, and evolution of coronavirus spike proteins.Annu. Rev. Virol.20163123726110.1146/annurev‑virology‑110615‑04230127578435
    [Google Scholar]
  69. PerlmanS. NetlandJ. Coronaviruses post-SARS: Update on replication and pathogenesis.Nat. Rev. Microbiol.20097643945010.1038/nrmicro214719430490
    [Google Scholar]
  70. AliA. VijayanR. Dynamics of the ACE2–SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms.Sci. Rep.20201011421410.1038/s41598‑020‑71188‑332848162
    [Google Scholar]
  71. TianX. LiC. HuangA. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody.Emerg. Microbes Infect.20209138238510.1080/22221751.2020.172906932065055
    [Google Scholar]
  72. WanY. ShangJ. GrahamR. BaricR.S. LiF. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus.J. Virol.2020947e00127e2010.1128/JVI.00127‑2031996437
    [Google Scholar]
  73. SuzukiY.J. NikolaienkoS.I. DibrovaV.A. SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells.Vascul. Pharmacol.202113710682310.1016/j.vph.2020.10682333232769
    [Google Scholar]
  74. BentonD.J. WrobelA.G. XuP. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion.Nature2020588783732733010.1038/s41586‑020‑2772‑032942285
    [Google Scholar]
  75. CaiY. ZhangJ. XiaoT. Distinct conformational states of SARS-CoV-2 spike protein.Science202036965111586159210.1126/science.abd425132694201
    [Google Scholar]
  76. HendersonR. EdwardsR.J. MansouriK. Controlling the SARS-CoV-2 spike glycoprotein conformation.Nat. Struct. Mol. Biol.2020271092593310.1038/s41594‑020‑0479‑432699321
    [Google Scholar]
  77. HsiehC.L. GoldsmithJ.A. SchaubJ.M. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes.Science202036965101501150510.1126/science.abd082632703906
    [Google Scholar]
  78. KeZ. OtonJ. QuK. Structures and distributions of SARS-CoV-2 spike proteins on intact virions.Nature2020588783849850210.1038/s41586‑020‑2665‑232805734
    [Google Scholar]
  79. McCallumM. WallsA.C. BowenJ.E. CortiD. VeeslerD. Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation.Nat. Struct. Mol. Biol.2020271094294910.1038/s41594‑020‑0483‑832753755
    [Google Scholar]
  80. ShangJ. YeG. ShiK. Structural basis of receptor recognition by SARS-CoV-2.Nature2020581780722122410.1038/s41586‑020‑2179‑y32225175
    [Google Scholar]
  81. WangG. YangM.L. DunZ.L. Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models.Cell Res.202033262453
    [Google Scholar]
  82. WrobelA.G. BentonD.J. XuP. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects.Nat. Struct. Mol. Biol.202027876376710.1038/s41594‑020‑0468‑732647346
    [Google Scholar]
  83. YaoH. SongY. ChenY. Molecular architecture of the SARS-CoV-2 virus.Cell20201833730738.e1310.1016/j.cell.2020.09.01832979942
    [Google Scholar]
  84. WangK. ChenW. ZhangZ. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells.Signal Transduct. Target. Ther.202051283
    [Google Scholar]
  85. WangY. LiuM. GaoJ. Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions.Proc. Natl. Acad. Sci. USA202011725139671397410.1073/pnas.2008209117
    [Google Scholar]
  86. EjemelM. LiQ. HouS. A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction.Nat. Commun.2020111419810.1038/s41467‑020‑18058‑832826914
    [Google Scholar]
  87. LuG. WangQ. GaoG.F. Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond.Trends Microbiol.201523846847810.1016/j.tim.2015.06.00326206723
    [Google Scholar]
  88. AsandeiA. MereutaL. SchiopuI. Non-receptor-mediated lipid membrane permeabilization by the SARS-CoV-2 spike protein S1 subunit.ACS Appl. Mater. Interfaces20201250556495565810.1021/acsami.0c1704433270413
    [Google Scholar]
  89. PengY. SunL. JiaZ. LiL. AlexovE. Predicting protein–DNA binding free energy change upon missense mutations using modified MM/PBSA approach: SAMPDI webserver.Bioinformatics201834577978610.1093/bioinformatics/btx69829091991
    [Google Scholar]
  90. ZangR. CaseJ.B. YutucE. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion.Proc. Natl. Acad. Sci. USA202011750321053211310.1073/pnas.2012197117
    [Google Scholar]
  91. SouzaP.F.N. LopesF.E.S. AmaralJ.L. FreitasC.D.T. OliveiraJ.T.A. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor.Int. J. Biol. Macromol.2020164667610.1016/j.ijbiomac.2020.07.17432693122
    [Google Scholar]
  92. CalcagnileM. ForgezP. IannelliA. BucciC. AlifanoM. AlifanoP. Molecular docking simulation reveals ACE2 polymorphisms that may increase the affinity of ACE2 with the SARS-CoV-2 Spike protein.Biochimie202118014314810.1016/j.biochi.2020.11.00433181224
    [Google Scholar]
  93. KoiralaR P ThapaB KhanalS P PowrelJ AdhikariR P AdhikariN P Binding mechanism of SARS-CoV-2 spike protein with human ACE2 receptor.202010.21203/rs.3.rs‑71923/v1
    [Google Scholar]
  94. LeeJ.H. ChoiM. JungY. A novel rapid detection for SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2).Biosens. Bioelectron.202017111271533099241
    [Google Scholar]
  95. TaiW. HeL. ZhangX. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine.Cell. Mol. Immunol.202017661362010.1038/s41423‑020‑0400‑432203189
    [Google Scholar]
  96. YuF. XiangR. DengX. Receptor-binding domain-specific human neutralizing monoclonal antibodies against SARS-CoV and SARS-CoV-2.Signal Transduct. Target. Ther.20205121210.1038/s41392‑020‑00318‑032963228
    [Google Scholar]
  97. ShangJ. WanY. LuoC. Cell entry mechanisms of SARS-CoV-2.Proceedings of the National Academy of Sciences1172734
    [Google Scholar]
  98. SerH.L. TanL.T. LawJ.F.M. Genomic analysis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) strains isolated in Malaysia. Prog icrobes.Mol. Biol.202031a000093
    [Google Scholar]
  99. ChongY.M. SamI.C. PonnampalavanarS. Complete genome sequences of SARS-CoV-2 strains detected in Malaysia.Microbiol. Resour. Announc.2020920e00383e2010.1128/MRA.00383‑2032409547
    [Google Scholar]
  100. GongY.N. TsaoK.C. HsiaoM.J. SARS-CoV-2 genomic surveillance in Taiwan revealed novel ORF8-deletion mutant and clade possibly associated with infections in Middle East.Emerg. Microbes Infect.2020911457146610.1080/22221751.2020.178227132543353
    [Google Scholar]
  101. EdenJ.S. RockettR. CarterI. An emergent clade of SARS-CoV-2 linked to returned travellers from Iran.Virus Evol.202061veaa02710.1093/ve/veaa02732296544
    [Google Scholar]
  102. XiJ. XuK. JiangP. Virus strain from a mild COVID-19 patient in Hangzhou represents a new trend in SARS-CoV-2 evolution potentially related to Furin cleavage site.Emerg. Microbes Infect.20209114741488
    [Google Scholar]
  103. TangXiaolu. On the origin and continuing evolution of SARS-CoV-2.Natl. Sci. Rev.20207610121023
    [Google Scholar]
  104. HoqueM.N. ChaudhuryA. AkandaM.A.M. HossainM.A. IslamM.T. Genomic diversity and evolution, diagnosis, prevention, and therapeutics of the pandemic COVID-19 disease.PeerJ20208e968910.7717/peerj.9689
    [Google Scholar]
  105. RahmanM.S. IslamM.R. AlamA.R. Evolutionary dynamics of SARS‐CoV‐2 nucleocapsid protein and its consequences.J. Med. Virol.20209342177219533095454
    [Google Scholar]
  106. YeQ. WestA.M.V. SillettiS. CorbettK.D. Architecture and self‐assembly of the SARS‐CoV‐2 nucleocapsid protein.Protein Sci.20202991890190110.1002/pro.390932654247
    [Google Scholar]
  107. MercatelliD. GiorgiF.M. Geographic and genomic distribution of SARS‐CoV‐2 mutations.Front. Microbiol.202011180010.3389/fmicb.2020.0180032793182
    [Google Scholar]
  108. AlamA.R.U. IslamO.K. HasanM.S. Al‐EmranH.M. JahidM.I.K. HossainM.A. Evolving infection paradox of SARS‐CoV‐2: Fitness costs.Virulence2020
    [Google Scholar]
  109. ECallaway. The coronavirus is mutating - Does it matter?Nature20205857824174177
    [Google Scholar]
  110. ZhaoZ. LiH. WuX. Moderate mutation rate in the SARS coronavirus genome and its implications.BMC Evol. Biol.2004412110.1186/1471‑2148‑4‑2115222897
    [Google Scholar]
  111. ZhangZ. ShenL. GuX. Evolutionary dynamics of MERS‐CoV: Potential recombination, positive selection and transmission.Sci. Rep.2016612504910.1038/srep2504927142087
    [Google Scholar]
  112. KoyamaT. PlattD. ParidaL. Variant analysis of SARS-CoV-2 genomes.Bull. World Health Organ.202098749550410.2471/BLT.20.25359132742035
    [Google Scholar]
  113. JiangL. WangN. ZuoT. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein.Sci. Transl. Med.20146234234ra5910.1126/scitranslmed.300814024778414
    [Google Scholar]
  114. JiangS. HillyerC. DuL. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses.Trends Immunol.202041535535910.1016/j.it.2020.03.00732249063
    [Google Scholar]
  115. PapageorgiouA.C. MohsinI. The SARS-CoV-2 spike glycoprotein as a drug and vaccine target: Structural insights into its complexes with ACE2 and antibodies.Cells2020911234310.3390/cells911234333105869
    [Google Scholar]
  116. DhamaK. SharunK. TiwariR. COVID-19, an emerging coronavirus infection: Advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics.Hum. Vaccin. Immunother.20201661232123810.1080/21645515.2020.173522732186952
    [Google Scholar]
  117. GaoQ. BaoL. MaoH. Development of an inactivated vaccine candidate for SARS-CoV-2.Science20203696499778110.1126/science.abc193232376603
    [Google Scholar]
  118. VankadariN. Structure of furin protease binding to SARS-CoV-2 spike glycoprotein and implications for potential targets and virulence.J. Phys. Chem. Lett.202011166655666310.1021/acs.jpclett.0c0169832787225
    [Google Scholar]
  119. CoutardB. ValleC. de LamballerieX. CanardB. SeidahN.G. DecrolyE. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade.Antiviral Res.202017610474210.1016/j.antiviral.2020.10474232057769
    [Google Scholar]
  120. OwenC.D. LukacikP. Strain-DamerellC.M. SARS-CoV-2 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, COVID19).2019Available from: https://www.ncbi.nlm.nih.gov/Structure/pdb/6Y84
  121. ZhangL. LinD. SunX. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors.Science2020368648940941210.1126/science.abb340532198291
    [Google Scholar]
  122. CherianS. PotdarV. JadhavS. SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India.Microorganisms2021971542
    [Google Scholar]
  123. KannanS.R. SprattA.N. CohenA.R. Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses.J. Autoimmun.202112410271510.1016/j.jaut.2021.10271534399188
    [Google Scholar]
/content/journals/covid/10.2174/0126667975312229240903074835
Loading
/content/journals/covid/10.2174/0126667975312229240903074835
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): niranthin; Phyllanthus; RBD domain; receptor binding domain; S- protein; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test