Skip to content
2000
Volume 7, Issue 1
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Introduction/Background

The COVID-19 pandemic has severely disrupted global health systems, highlighting the urgent need for effective treatment strategies. This article aims to provide an assessment of the pandemic's current status and examines the effectiveness of traditional treatments against innovative synthetic approaches.

Materials and Methods

The article explores synthetic strategies involving repurposed antiviral drugs, supportive care, and vaccinations. It emphasizes the role of computational modeling and artificial intelligence in engineering molecules with potent antiviral properties. methods were utilized to accelerate chemical library screenings, predict efficacy, and assess interactions between viral proteins and potential treatments.

Results

Studies employing molecular docking analysis have evaluated the efficacy of approved antiviral drugs and natural compounds. Notably, Azithromycin was found to have a potential inhibitory effect with a binding energy of -9.69, while natural compounds like Camphor and Curcumin displayed binding energies of -5.18 and -6.16, respectively.

Discussion

Synthetic treatments showed effectiveness in inhibiting viral proteins and facilitating rapid development, while natural products were more effective in preventing virus entry.

Conclusion

Based on docking studies, it can be concluded that natural products have more therapeutic effects than synthetic drugs.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975310159241008050626
2024-10-16
2026-01-01
Loading full text...

Full text loading...

References

  1. MuralidarS. AmbiS.V. SekaranS. KrishnanU.M. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2.Biochimie20201798510010.1016/j.biochi.2020.09.01832971147
    [Google Scholar]
  2. AtzrodtC.L. MaknojiaI. McCarthyR.D.P. A Guide to COVID‐19: A global pandemic caused by the novel coronavirus SARS‐CoV‐2.FEBS J.2020287173633365010.1111/febs.1537532446285
    [Google Scholar]
  3. Nazi NejatAli JadidiA. HezaveA.K. Pour SMA. Prevention and treatment of COVID-19 Using traditional and folk medicine: A content analysis study.Ethiop. J. Health Sci.20213161089109810.4314/ejhs.v31i6.335392333
    [Google Scholar]
  4. AliabadiA.M.H. Eivazzadeh-KeihanR. Beig ParikhaniA. COVID‐19: A systematic review and update on prevention, diagnosis, and treatment.MedComm202231e11510.1002/mco2.11535281790
    [Google Scholar]
  5. ShakerB. AhmadS. LeeJ. JungC. NaD. In silico methods and tools for drug discovery.Comput. Biol. Med.202113710485110.1016/j.compbiomed.2021.10485134520990
    [Google Scholar]
  6. FokunangC.N. NdikumV. TabiO.Y. Traditional medicine: Past, present and future research and development prospects and integration in the national health system of Cameroon.Afr. J. Tradit. Complement. Altern. Med.20118328429510.4314/ajtcam.v8i3.6527622468007
    [Google Scholar]
  7. LaiY. ChuX. DiL. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development.Acta Pharm. Sin. B20221262751277710.1016/j.apsb.2022.03.00935755285
    [Google Scholar]
  8. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W.Jr Computational methods in drug discovery.Pharmacol. Rev.201466133439510.1124/pr.112.00733624381236
    [Google Scholar]
  9. YildirimF.S. SayanM. SanlidagT. UzunB. OzsahinD.U. OzsahinI. Comparative evaluation of the treatment of COVID-19 with multicriteria decision-making techniques.J. Healthc. Eng.2021202111110.1155/2021/886452233552457
    [Google Scholar]
  10. LiscoG. GiagulliV.A. De PergolaG. De TullioA. GuastamacchiaE. TriggianiV. COVID-19 in Man: A very dangerous affair.Endocr. Metab. Immune Disord. Drug Targets20212191544155410.2174/187153032166621010112380133388025
    [Google Scholar]
  11. WhiteA. Men and COVID-19: The aftermath.Postgrad Med2020132sup4182710.1080/00325481.2020.182376032921214
    [Google Scholar]
  12. LipskyM.S. HungM. Men and COVID-19: A pathophysiologic review.Am. J. Men Health202014510.1177/155798832095402132936693
    [Google Scholar]
  13. PijlsB.G. JolaniS. AtherleyA. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: A meta-analysis of 59 studies.BMJ Open2021111e04464010.1136/bmjopen‑2020‑04464033431495
    [Google Scholar]
  14. SansoneA. MollaioliD. CioccaG. Addressing male sexual and reproductive health in the wake of COVID-19 outbreak.J. Endocrinol. Invest.202144222323110.1007/s40618‑020‑01350‑132661947
    [Google Scholar]
  15. PetersM.D.J. GodfreyC.M. KhalilH. McInerneyP. ParkerD. SoaresC.B. Guidance for conducting systematic scoping reviews.Int. J. Evid.-Based Healthc.201513314114610.1097/XEB.000000000000005026134548
    [Google Scholar]
  16. MunnZ. PetersM.D.J. SternC. TufanaruC. McArthurA. AromatarisE. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach.BMC Med. Res. Methodol.201818114310.1186/s12874‑018‑0611‑x30453902
    [Google Scholar]
  17. PhamM.T. RajićA. GreigJ.D. SargeantJ.M. PapadopoulosA. McEwenS.A. A scoping review of scoping reviews: Advancing the approach and enhancing the consistency.Res. Synth. Methods20145437138510.1002/jrsm.112326052958
    [Google Scholar]
  18. DemekeC.A. WoldeyohaninsA.E. KifleZ.D. Herbal medicine use for the management of COVID-19: A review article.Metab. Open20211210014110.1016/j.metop.2021.10014134693242
    [Google Scholar]
  19. KhanT.A. Camphor and respiratory epidemics: The promise of a divine remedy.2020Available from: https://www.alhakam.org/camphor-and-respiratory-epidemics-the-promise-of-a-divine-remedy/
  20. BabaeiF. Nassiri-AslM. HosseinzadehH. Curcumin (a constituent of turmeric): New treatment option against COVID‐19.Food Sci. Nutr.20208105215522710.1002/fsn3.185833133525
    [Google Scholar]
  21. KhanT. KhanM.A. MashwaniZ.R. UllahN. NadhmanA. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites.Biocatal. Agric. Biotechnol.20213110189010.1016/j.bcab.2020.10189033520034
    [Google Scholar]
  22. WuH. JiC. DaiR. Traditional Chinese medicine treatment for COVID-19: An overview of systematic reviews and meta-analyses.J. Integr. Med.202220541642610.1016/j.joim.2022.06.00635811240
    [Google Scholar]
  23. WangQ. ZhuH. LiM. Efficacy and safety of qingfei paidu decoction for treating COVID-19: A systematic review and meta-analysis.Front. Pharmacol.20211268885710.3389/fphar.2021.68885734456720
    [Google Scholar]
  24. LuY. ZhangM. YangQ. Effectiveness and safety of Lianhua Qingwen capsules for COVID‐19: A propensity‐score matched cohort study.Evid. Based Complement. Alternat. Med.202320231602855410.1155/2023/602855436846053
    [Google Scholar]
  25. LiY. XiaoP. LiuN. ZhangZ. Efficacy and safety of Chinese medicine lianhua qingwen for treating COVID-19: An updated meta-analysis.Front. Pharmacol.20221388882010.3389/fphar.2022.88882035721166
    [Google Scholar]
  26. PanyodS. HoC.T. SheenL.Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective.J. Tradit. Complement. Med.202010442042710.1016/j.jtcme.2020.05.00432691006
    [Google Scholar]
  27. HadniH. FitriA. BenjellounA.T. BenzakourM. McharfiM. Evaluation of flavonoids as potential inhibitors of the SARS-CoV-2 main protease and spike RBD: Molecular docking, ADMET evaluation and molecular dynamics simulations.J. Indian Chem. Soc.2022991010069710.1016/j.jics.2022.100697
    [Google Scholar]
  28. WangZ. SongX. XuW. LeiS. ZhangH. YangL. Stand up to stand out: Natural dietary polyphenols curcumin, resveratrol, and gossypol as potential therapeutic candidates against severe acute respiratory syndrome coronavirus 2 infection.Nutrients20231518388510.3390/nu1518388537764669
    [Google Scholar]
  29. ChaoW.W. LinB.F. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian).Chin. Med.2010511710.1186/1749‑8546‑5‑1720465823
    [Google Scholar]
  30. BishtD. RashidM. AryaR.K.K. Revisiting liquorice (Glycyrrhiza glabra L.) as anti-inflammatory, antivirals and immunomodulators: Potential pharmacological applications with mechanistic insight.Phytomed. Plus20222110020610.1016/j.phyplu.2021.10020635403088
    [Google Scholar]
  31. ZhaoT. LiC. WangS. SongX. Green Tea (Camellia sinensis): a review of its phytochemistry, pharmacology, and toxicology.Molecules20222712390910.3390/molecules2712390935745040
    [Google Scholar]
  32. ChienT.J. LiuC.Y. ChangY.I. Therapeutic effects of herbal-medicine combined therapy for COVID-19: A systematic review and meta-analysis of randomized controlled trials.Front. Pharmacol.20221395001210.3389/fphar.2022.95001236120361
    [Google Scholar]
  33. LaiC.C. WangY.H. ChenK.H. ChenC.H. WangC.Y. The clinical efficacy and safety of anti-viral agents for non-hospitalized patients with COVID-19: A systematic review and network meta-analysis of randomized controlled trials.Viruses2022148170610.3390/v1408170636016328
    [Google Scholar]
  34. SohailM.I. SiddiquiA. ErumN. KamranM. Phytomedicine and the COVID-19 pandemic.phytomedicine: A treasure of pharmacologically active products from plants.Academic Press202169370810.1016/B978‑0‑12‑824109‑7.00005‑4
    [Google Scholar]
  35. VellingiriB. JayaramayyaK. IyerM. COVID-19: A promising cure for the global panic.Sci. Total Environ.202072513827710.1016/j.scitotenv.2020.13827732278175
    [Google Scholar]
  36. KumarA. RaiA. KhanM.S. Role of herbal medicines in the management of patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials.J. Tradit. Complement. Med.202212110011310.1016/j.jtcme.2022.01.00235036347
    [Google Scholar]
  37. VegivintiC.T.R. EvansonK.W. LyonsH. Efficacy of antiviral therapies for COVID-19: A systematic review of randomized controlled trials.BMC Infect. Dis.202222110710.1186/s12879‑022‑07068‑035100985
    [Google Scholar]
  38. GholamhoseiniT.M. Yazdi-FeyzabadiV. GoudarziR. MehrolhassaniM.H. Safety and efficacy of remdesivir for the treatment of COVID-19: A systematic review and meta-analysis.J. Pharm. Pharm. Sci.20212423724510.18433/jpps3187034048669
    [Google Scholar]
  39. AkinosoglouK. SchinasG. GogosC. Oral antiviral treatment for COVID-19: A comprehensive review on nirmatrelvir/ritonavir.Viruses20221411254010.3390/v1411254036423149
    [Google Scholar]
  40. ZeitlingerM. KochB.C.P. BruggemannR. Pharmacokinetics/pharmacodynamics of antiviral agents used to treat SARS-CoV-2 and their potential interaction with drugs and other supportive measures: A Comprehensive review by the pk/pd of anti-infectives study group of the European Society of Antimicrobial Agents.Clin. Pharmacokinet.202059101195121610.1007/s40262‑020‑00924‑932725382
    [Google Scholar]
  41. DuanY. ZhouH. LiuX. Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir.Nature2023622798237638210.1038/s41586‑023‑06609‑037696289
    [Google Scholar]
  42. FrediansyahA. TiwariR. SharunK. DhamaK. HarapanH. Antivirals for COVID-19: A critical review.Clin. Epidemiol. Glob. Health20219909810.1016/j.cegh.2020.07.00633521390
    [Google Scholar]
  43. MikulskaM. SepulcriC. DentoneC. Triple combination therapy with 2 antivirals and monoclonal antibodies for persistent or relapsed severe acute respiratory syndrome coronavirus 2 infection in immunocompromised patients.Clin. Infect. Dis.202377228028610.1093/cid/ciad18136976301
    [Google Scholar]
  44. TakahashiT. LuzumJ.A. NicolM.R. JacobsonP.A. Pharmacogenomics of COVID-19 therapies.NPJ Genom. Med.2020513510.1038/s41525‑020‑00143‑y32864162
    [Google Scholar]
  45. SmithL.E. D’AntoniD. JainV. PearceJ.M. WeinmanJ. RubinG.J. A systematic review of factors affecting intended and actual adherence with antiviral medication as treatment or prophylaxis in seasonal and pandemic flu.Influenza Other Respir. Viruses201610646247810.1111/irv.1240627397480
    [Google Scholar]
  46. DawoudD.M. SolimanK.Y. Cost-effectiveness of antiviral treatments for pandemics and outbreaks of respiratory illnesses, including COVID-19: a systematic review of published economic evaluations.Value Health202023111409142210.1016/j.jval.2020.07.00233127010
    [Google Scholar]
  47. RezaeeH. PourkarimF. Pourtaghi-AnvarianS. Entezari-MalekiT. Asvadi-KermaniT. Nouri-VaskehM. Drug‐drug interactions with candidate medications used for COVID‐19 treatment: An overview.Pharmacol. Res. Perspect.202191e0070510.1002/prp2.70533421347
    [Google Scholar]
  48. ChiotosK. HayesM. KimberlinD.W. Multicenter interim guidance on use of antivirals for children with coronavirus disease 2019/severe acute respiratory syndrome coronavirus 2.J. Pediatric Infect. Dis. Soc.2021101344810.1093/jpids/piaa11532918548
    [Google Scholar]
  49. GerhartJ. CoxD.S. SinghR.S.P. A comprehensive review of the clinical pharmacokinetics, pharmacodynamics, and drug interactions of Nirmatrelvir/Ritonavir.Clin. Pharmacokinet.2024631274210.1007/s40262‑023‑01339‑y38177893
    [Google Scholar]
  50. MuhammedY. Molecular targets for COVID-19 drug development: Enlightening Nigerians about the pandemic and future treatment.Biosafety Health20202421021610.1016/j.bsheal.2020.07.00232838282
    [Google Scholar]
  51. HorbyP. MafhamM. LinsellL. Effect of hydroxychloroquine in hospitalized patients with COVID-19.N. Engl. J. Med.2020383212030204010.1056/NEJMoa202292633031652
    [Google Scholar]
  52. CaoB. WangY. WenD. A Trial of Lopinavir–Ritonavir in adults hospitalized with Severe COVID-19.N. Engl. J. Med.2020382191787179910.1056/NEJMoa200128232187464
    [Google Scholar]
  53. HillA. GarrattA. LeviJ. Retracted: Meta-analysis of randomized trials of ivermectin to treat SARS-CoV-2 infection.Open Forum Infect. Dis.2021811ofab35810.1093/ofid/ofab35834410284
    [Google Scholar]
  54. BeigelJ.H. TomashekK.M. DoddL.E. Remdesivir for the Treatment of COVID-19 — Final Report.N. Engl. J. Med.2020383191813182610.1056/NEJMoa200776432445440
    [Google Scholar]
  55. MangalmurtiN. HunterC.A. Cytokine Storms: Understanding COVID-19.Immunity2020531192510.1016/j.immuni.2020.06.01732610079
    [Google Scholar]
  56. ZhangL. LinD. SunX. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors.Science2020368648940941210.1126/science.abb3405
    [Google Scholar]
  57. BaumA. AjithdossD. CopinR. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters.Science202037065201110111510.1126/science.abe2402
    [Google Scholar]
  58. ZhouY. FuB. ZhengX. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients.Natl. Sci. Rev.202076998100210.1093/nsr/nwaa04134676125
    [Google Scholar]
  59. ChengT. LiQ. ZhouZ. WangY. BryantS.H. Structure-based virtual screening for drug discovery: A problem-centric review.AAPS J.201214113314110.1208/s12248‑012‑9322‑022281989
    [Google Scholar]
  60. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd154915520816
    [Google Scholar]
  61. KarplusM. McCammonJ.A. Molecular dynamics simulations of biomolecules.Nat. Struct. Biol.20029964665210.1038/nsb0902‑64612198485
    [Google Scholar]
  62. HughesJ.D. BlaggJ. PriceD.A. Physiochemical drug properties associated with in vivo toxicological outcomes.Bioorg. Med. Chem. Lett.200818174872487510.1016/j.bmcl.2008.07.07118691886
    [Google Scholar]
  63. HajdukP.J. GreerJ. A decade of fragment-based drug design: Strategic advances and lessons learned.Nat. Rev. Drug Discov.20076321121910.1038/nrd222017290284
    [Google Scholar]
  64. HorbyP. LimW.S. EmbersonJ.R. Dexamethasone in Hospitalized Patients with COVID-19.N. Engl. J. Med.2021384869370410.1056/NEJMoa2021436
    [Google Scholar]
  65. GottliebR.L. NirulaA. ChenP. Effect of Bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19.JAMA2021325763264410.1001/jama.2021.020233475701
    [Google Scholar]
  66. von DelftA. HallM.D. KwongA.D. Accelerating antiviral drug discovery: Lessons from COVID-19.Nat. Rev. Drug Discov.202322758560310.1038/s41573‑023‑00692‑837173515
    [Google Scholar]
  67. SchoofM. FaustB. SaundersR.A. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike.Science202037065231473147910.1126/science.abe3255
    [Google Scholar]
  68. Del ValleD.M. Kim-SchulzeS. HuangH.H. An inflammatory cytokine signature predicts COVID-19 severity and survival.Nat. Med.202026101636164310.1038/s41591‑020‑1051‑932839624
    [Google Scholar]
  69. IbrahimM.A.A. AbdelrahmanA.H.M. AllemailemK.S. AlmatroudiA. MoustafaM.F. HegazyM.E.F. In Silico evaluation of prospective anti-COVID-19 drug candidates as potential SARS-CoV-2 main protease inhibitors.Protein J.202140329630910.1007/s10930‑020‑09945‑633387249
    [Google Scholar]
  70. ChekeR.S. The molecular docking study of potential drug candidates showing anti-COVID-19 activity by exploring of therapeutic targets of SARS-CoV-2.Eurasian J. Med. Oncol.20204318519510.14744/ejmo.2020.31503
    [Google Scholar]
  71. KemisettiD. AminR. AlamF. Novel benzothiazole derivatives synthesis and its analysis as diuretic agents.Evid. Based Complement. Alternat. Med.202320231546056310.1155/2023/5460563
    [Google Scholar]
  72. BadikelaR. Krishna Rathnakar Ch, Durgaprasad K, Vijayaraj Surendran, and Parameshwar R. Synthesis, Molecular docking, Molecular properties estimations and Anti-inflammatory activity of 5,7-dihydroxy-3′ prenyl flavone.Heterocyclic Lett.202212979804
    [Google Scholar]
  73. PackialakshmiP. GobinathP. VijayakumarK. Synthesis of isatin derivatives using silver nanoparticles as green catalyst: Study of molecular docking interactions in SARS-CoV-2 3c-like protease and determination of cytotoxic activities of the compounds.J. Nanomater.2021202111710.1155/2021/7241699
    [Google Scholar]
  74. FarukA. DurgaprasadK. Kumar DeyB. Quinazoline-purine derivatives as antidiabetics: Synthesis, in- silico and in-vitro evaluation.Heterocycl Lett.2023131185203
    [Google Scholar]
  75. NarasimhaK. KumarJ. KumarD.B. Synthesis, docking and biological evaluation of N- [4-(1H- Benzimidazole- 2- Yl)- Phenyl]-3-(substituted)-acrylamide derivatives as antimicrobial, anthelmintic and antioxidant agents.Heterocyclic Lett.202212653658
    [Google Scholar]
/content/journals/covid/10.2174/0126667975310159241008050626
Loading
/content/journals/covid/10.2174/0126667975310159241008050626
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test