Skip to content
2000
Volume 6, Issue 4
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

The crisis of COVID-19 pandemic, has shaken up the whole world with its power of transmission and unknown treatment strategy. A disease that starts with fever, cold, and cough leads to extreme fatigue, loss in breathing capacity, alveolar damage, and eventual death. The disease forced human beings to stay at home to protect humankind. Due to the serious nature of this COVID-19 pandemic, humankind was forced to understand the plausible cause and methods to reduce the spread and find out the best possible therapeutic regimen. Thus, the present review provided new insight into the history, symptoms, pathogenesis, diagnosis, clinical research, and follow-up treatment strategies of COVID-19. Further, In order to deal with such a pandemic situation, we have even introduced a novel concept of natural therapy based on medicinal plants for repurposing it as potential as a therapeutic warrior against COVID-19.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975308765240710080655
2024-07-18
2025-10-03
Loading full text...

Full text loading...

References

  1. ShiJ. WenZ. ZhongG. Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-coronavirus-2.bioRxiv202010.1101/2020.03.30.015347
    [Google Scholar]
  2. YeZ.W. YuanS. YuenK.S. FungS.Y. ChanC.P. JinD.Y. Zoonotic origins of human coronaviruses.Int. J. Biol. Sci.202016101686169710.7150/ijbs.45472 32226286
    [Google Scholar]
  3. ChenL. XiongJ. BaoL. ShiY. Convalescent plasma as a potential therapy for COVID-19.Lancet Infect. Dis.202020439840010.1016/S1473‑3099(20)30141‑9 32113510
    [Google Scholar]
  4. BasuA. SarkarA. MaulikU. Strategies for Vaccine Design for Corona Virus Using Immunoinformatics Techniques.bioRxiv202010.1101/2020.02.27.967422
    [Google Scholar]
  5. PradhanM. ShahK. AlexanderA. COVID-19: Clinical presentation and detection methods.J. Immunoassay Immunochem.2022431195129110.1080/15321819.2021.1951291
    [Google Scholar]
  6. BackerJ.A. KlinkenbergD. WallingaJ. The incubation period of 2019-nCoV infections among travellers from Wuhan, China.medRxiv201910.1101/2020.01.27.20018986
    [Google Scholar]
  7. FengW. ZongW. WangF. JuS. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A review.Mol. Cancer202019110010.1186/s12943‑020‑01218‑1 32487159
    [Google Scholar]
  8. WHOWHO COVID-19 dashboard.2020Available From: https://covid19.who.int/
    [Google Scholar]
  9. RothanH.A. ByrareddyS.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak.J. Autoimmun.202010910243310.1016/j.jaut.2020.102433 32113704
    [Google Scholar]
  10. WeissS.R. Navas-MartinS. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus.Microbiol. Mol. Biol. Rev.200569463566410.1128/MMBR.69.4.635‑664.2005 16339739
    [Google Scholar]
  11. WeissS.R. LeibowitzJ.L. Coronavirus Pathogenesis.Adv. Virus Res.2011818516410.1016/B978‑0‑12‑385885‑6.00009‑2 22094080
    [Google Scholar]
  12. GorbalenyaA.E. BakerS.C. BaricR.S. Severe acute respiratory syndrome-related coronavirus: The species and its viruses a statement of the Coronavirus Study Group.bioRxiv202010.1101/2020.02.07.937862
    [Google Scholar]
  13. WuY. HoW. HuangY. SARS-CoV-2 is an appropriate name for the new coronavirus.Lancet20203951022894995010.1016/S0140‑6736(20)30557‑2 32151324
    [Google Scholar]
  14. WHOMiddle East respiratory syndrome coronavirus (MERS-CoV).2022Available From: https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)
    [Google Scholar]
  15. LamT.T.Y. ShumM.H.H. ZhuH.C. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China.bioRxiv201910.1101/2020.02.13.945485
    [Google Scholar]
  16. ZuZ.Y. JiangM.D. XuP.P. Coronavirus Disease 2019 (COVID-19): A perspective from China.Radiology20202962E15E2510.1148/radiol.2020200490 32083985
    [Google Scholar]
  17. XuX. ChenP. WangJ. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission.Sci. China Life Sci.202063345746010.1007/s11427‑020‑1637‑5 32009228
    [Google Scholar]
  18. KirchdoerferR.N. CottrellC.A. WangN. Pre-fusion structure of a human coronavirus spike protein.Nature2016531759211812110.1038/nature17200 26935699
    [Google Scholar]
  19. WHOWHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020.2020Available From: https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020
    [Google Scholar]
  20. WHONaming the coronavirus disease (COVID-19) and the virus that causes it.2020Available From: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
    [Google Scholar]
  21. SaeedS. O’BrienS.F. AbeK. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence: Navigating the absence of a gold standard.PLoS One2021169e025774310.1371/journal.pone.0257743 34555095
    [Google Scholar]
  22. WangL. C-reactive protein levels in the early stage of COVID-19.Med. Mal. Infect.202050433233410.1016/j.medmal.2020.03.007 32243911
    [Google Scholar]
  23. AdhikariS.P. MengS. WuY.J. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review.Infect. Dis. Poverty2020912910.1186/s40249‑020‑00646‑x 32183901
    [Google Scholar]
  24. Sarzi-PuttiniP. GiorgiV. SirottiS. COVID-19, cytokines and immunosuppression: What can we learn from severe acute respiratory syndrome?Clin. Exp. Rheumatol.202038233734210.55563/clinexprheumatol/xcdary 32202240
    [Google Scholar]
  25. TianS. HuN. LouJ. Characteristics of COVID-19 infection in Beijing.J. Infect.202080440140610.1016/j.jinf.2020.02.018 32112886
    [Google Scholar]
  26. BaiY. YaoL. WeiT. Presumed asymptomatic carrier transmission of COVID-19.JAMA2020323141406140710.1001/jama.2020.2565 32083643
    [Google Scholar]
  27. PaulesC.I. MarstonH.D. FauciA.S. Coronavirus infections—more than just the common cold.JAMA2020323870770810.1001/jama.2020.0757 31971553
    [Google Scholar]
  28. ChenH. GuoJ. WangC. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of medical records.Lancet20203951022680981510.1016/S0140‑6736(20)30360‑3 32151335
    [Google Scholar]
  29. QiaoJ. What are the risks of COVID-19 infection in pregnant women?Obstet. Anesthes. Dig.2021411810.1097/01.aoa.0000732352.27631.f3
    [Google Scholar]
  30. LeeS.H. The SARS epidemic in Hong Kong.J. Epidemiol. Community Health200357965265410.1136/jech.57.9.652 12933765
    [Google Scholar]
  31. HeymannD.L. ShindoN. COVID-19: What is next for public health?Lancet20203951022454254510.1016/S0140‑6736(20)30374‑3 32061313
    [Google Scholar]
  32. LimJ. JeonS. ShinH.Y. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR.J. Korean Med. Sci.2020356e7910.3346/jkms.2020.35.e79 32056407
    [Google Scholar]
  33. LipsitchM. SwerdlowD.L. FinelliL. Defining the epidemiology of COVID-19 — studies needed.N. Engl. J. Med.2020382131194119610.1056/NEJMp2002125 32074416
    [Google Scholar]
  34. HellewellJ. AbbottS. GimmaA. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts.Lancet Glob. Health202084e488e49610.1016/S2214‑109X(20)30074‑7 32119825
    [Google Scholar]
  35. AsgharK. Abu BakarM. AkramM.J. Clinical characteristics of COVID-19-infected cancer patients in Pakistan: Differences between survivors and non-survivors.Front. Oncol.20211165563410.3389/fonc.2021.655634 34094950
    [Google Scholar]
  36. WangL. JiangM. QuJ. ZhouN. ZhangX. Clinical management of lung cancer patients during the outbreak of COVID-19 epidemic.Infect. Agent. Cancer20201515610.1186/s13027‑020‑00322‑7 32983254
    [Google Scholar]
  37. HanH. LuoQ. MoF. LongL. ZhengW. SARS-CoV-2 RNA more readily detected in induced sputum than in throat swabs of convalescent COVID-19 patients.Lancet Infect. Dis.202020665565610.1016/S1473‑3099(20)30174‑2 32171389
    [Google Scholar]
  38. JiaX. ZhangP. TianY. Clinical significance of IgM and IgG test for diagnosis of highly suspected COVID-19 infection.medRxiv202010.1101/2020.02.28.20029025
    [Google Scholar]
  39. WHOAdvice on the use of point-of-care immunodiagnostic tests for COVID-19.2020Available From: https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19
    [Google Scholar]
  40. IqbalM.S. NaqviR.A. AlizadehsaniR. HussainS. MoqurrabS.A. LeeS.W. An adaptive ensemble deep learning framework for reliable detection of pandemic patients.Comput. Biol. Med.202416810783610.1016/j.compbiomed.2023.107836 38086139
    [Google Scholar]
  41. DongL. HuS. GaoJ. Discovering drugs to treat coronavirus disease 2019 (COVID-19).Drug Discov. Ther.2020141586010.5582/ddt.2020.01012 32147628
    [Google Scholar]
  42. XuX. HanM. LiT. Effective treatment of severe COVID-19 patients with tocilizumab.Proc. Natl. Acad. Sci. USA202011720109701097510.1073/pnas.2005615117 32350134
    [Google Scholar]
  43. GautretP. LagierJ.C. ParolaP. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial.Int. J. Antimicrob. Agents202056110594910.1016/j.ijantimicag.2020.105949 32205204
    [Google Scholar]
  44. HoffmannM. Kleine-WeberH. SchroederS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280.e810.1016/j.cell.2020.02.052 32142651
    [Google Scholar]
  45. WangT. DuZ. ZhuF. Comorbidities and multi-organ injuries in the treatment of COVID-19.Lancet202039510228e5210.1016/S0140‑6736(20)30558‑4 32171074
    [Google Scholar]
  46. ZhengY.Y. MaY.T. ZhangJ.Y. XieX. COVID-19 and the cardiovascular system.Nat. Rev. Cardiol.202017525926010.1038/s41569‑020‑0360‑5 32139904
    [Google Scholar]
  47. FangL. KarakiulakisG. RothM. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?Lancet Respir. Med.202084e2110.1016/S2213‑2600(20)30116‑8 32171062
    [Google Scholar]
  48. LiuD. LiL. WuX. Pregnancy and perinatal outcomes of women with Coronavirus Disease (COVID-19) Pneumonia: A preliminary analysis.AJR Am. J. Roentgenol.2020215112713210.2214/AJR.20.23072 32186894
    [Google Scholar]
  49. YuanJ. ZouR. ZengL. The correlation between viral clearance and biochemical outcomes of 94 COVID-19 infected discharged patients.Inflamm. Res.202069659960610.1007/s00011‑020‑01342‑0 32227274
    [Google Scholar]
  50. FinkS.L. VojtechL. WagonerJ. The antiviral drug arbidol inhibits zika virus.Sci. Rep.201881898910.1038/s41598‑018‑27224‑4 29895962
    [Google Scholar]
  51. DengL. LiC. ZengQ. Arbidol combined with LPV/r versus LPV/r alone against Coronavirus Disease 2019: A retrospective cohort study.J. Infect.2020811e1e510.1016/j.jinf.2020.03.002 32171872
    [Google Scholar]
  52. CaoB. WangY. WenD. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19.N. Engl. J. Med.2020382191787179910.1056/NEJMoa2001282 32187464
    [Google Scholar]
  53. KimE. ErdosG. HuangS. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development.EBioMedicine20205510274310.1016/j.ebiom.2020.102743 32249203
    [Google Scholar]
  54. ParasuramanS. ThingG. DhanarajS. Polyherbal formulation: Concept of ayurveda.Pharmacogn. Rev.2014816738010.4103/0973‑7847.134229 25125878
    [Google Scholar]
  55. ChikezieP.C. IbegbulemC.O. MbagwuF.N. Bioactive principles from medicinal plants.Res. J. Phytochem.2015938811510.3923/rjphyto.2015.88.115
    [Google Scholar]
  56. JiangX. KandaT. NakamotoS. The JAK2 inhibitor AZD1480 inhibits hepatitis A virus replication in Huh7 cells.Biochem. Biophys. Res. Commun.2015458490891210.1016/j.bbrc.2015.02.058 25704089
    [Google Scholar]
  57. AkramM. TahirI.M. ShahS.M.A. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review.Phytother. Res.201832581182210.1002/ptr.6024 29356205
    [Google Scholar]
  58. KhannaK. KohliS. KaurR. Herbal immune-boosters: Substantial warriors of pandemic COVID-19 battle.Phytomedicine20208515336110.1016/j.phymed.2020.153361 33485605
    [Google Scholar]
  59. LinS.C. HoC.T. ChuoW.H. LiS. WangT.T. LinC.C. Effective inhibition of MERS-CoV infection by resveratrol.BMC Infect. Dis.201717114410.1186/s12879‑017‑2253‑8 28193191
    [Google Scholar]
  60. MangalaS.D. LathaC. Antiviral and antioxidant activities of two medicinal plants.Seman Scholar2012
    [Google Scholar]
  61. ScheickC. SpitellerG. Formation of enol ether epoxides by reaction of (9S,10E,12Z)- Hydroperoxyoctadecadienoic acid with plasmalogens.ChemInform201010.1002/chin.199410076
    [Google Scholar]
  62. IqbalH. WrightC.L. JonesS. Extracts of Sida cordifolia contain polysaccharides possessing immunomodulatory activity and rosmarinic acid compounds with antibacterial activity.BMC Complementary Medicine and Therapies20222212710.1186/s12906‑022‑03502‑7 35086541
    [Google Scholar]
  63. OladeleJ.O. AjayiE.I. OyelekeO.M. A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants.Heliyon202069e0489710.1016/j.heliyon.2020.e04897 32929412
    [Google Scholar]
  64. AhmadS. MaqboolA. SrivastavaA. GogoiS. Biological detail and therapeutic effect of Azadirachta indica (neem tree) products-a review.J Evid Based Med Healthcare20196221607161210.18410/jebmh/2019/324
    [Google Scholar]
  65. YadavK. ChauhanN.S. SarafS. SinghD. SinghM.R. Challenges and need of delivery carriers for bioactives and biological agents: An introduction. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents.AmsterdamElsevier202013610.1016/B978‑0‑12‑819666‑3.00001‑8
    [Google Scholar]
  66. GhasemiyehP. Mohammadi-SamaniS. COVID-19 outbreak: Challenges in pharmacotherapy based on pharmacokinetic and pharmacodynamic aspects of drug therapy in patients with moderate to severe infection.Heart Lung2020496763773
    [Google Scholar]
  67. RehmanS.U. RehmanS.U. YooH.H. COVID-19 challenges and its therapeutics.Biomed. Pharmacother.202114211201510.1016/j.biopha.2021.112015 34388532
    [Google Scholar]
  68. GaoJ. TianZ. YangX. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies.Biosci. Trends2020141727310.5582/bst.2020.01047 32074550
    [Google Scholar]
  69. SahraeiZ. ShabaniM. ShokouhiS. SaffaeiA. Aminoquinolines against coronavirus disease 2019 (COVID-19): Chloroquine or hydroxychloroquine.Int. J. Antimicrob. Agents202055410594510.1016/j.ijantimicag.2020.105945 32194152
    [Google Scholar]
  70. YaoX. YeF. ZhangM. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).Clin. Infect. Dis.2020711573273910.1093/cid/ciaa237
    [Google Scholar]
  71. ZhangC. WuZ. LiJ.W. ZhaoH. WangG.Q. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality.Int. J. Antimicrob. Agents202055510595410.1016/j.ijantimicag.2020.105954 32234467
    [Google Scholar]
  72. ZhengC. WangJ. GuoH. Risk-adapted treatment strategy For COVID-19 patients.Int. J. Infect. Dis.202094747710.1016/j.ijid.2020.03.047 32229257
    [Google Scholar]
  73. CasadevallA. PirofskiL. The convalescent sera option for containing COVID-19.J. Clin. Invest.202013041545154810.1172/JCI138003 32167489
    [Google Scholar]
  74. StebbingJ. PhelanA. GriffinI. COVID-19: Combining antiviral and anti-inflammatory treatments.Lancet Infect. Dis.202020440040210.1016/S1473‑3099(20)30132‑8 32113509
    [Google Scholar]
  75. LyuM. FanG. XiaoG. Traditional Chinese medicine in COVID-19.Acta Pharm. Sin. B202111113337336310.1016/j.apsb.2021.09.008 34567957
    [Google Scholar]
  76. ThomasP. BaldwinC. BissettB. Physiotherapy management for COVID-19 in the acute hospital setting: Clinical practice recommendations.J. Physiother.2020662738210.1016/j.jphys.2020.03.011 32312646
    [Google Scholar]
  77. RunfengL. YunlongH. JichengH. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2).Pharmacol. Res.202015610476110.1016/j.phrs.2020.104761 32205232
    [Google Scholar]
  78. LiuK. ChenY. WuD. LinR. WangZ. PanL. Effects of progressive muscle relaxation on anxiety and sleep quality in patients with COVID-19.Complement. Ther. Clin. Pract.20203910113210.1016/j.ctcp.2020.101132 32379667
    [Google Scholar]
  79. GaikwadM. PawarY. DasguptaS. NagleV. Marine red alga Porphyridium Sp. as a source of sulfated polysaccharides (SPs) for combating against COVID-19.Preprint202010.13140/RG.2.2.35640.90883
    [Google Scholar]
  80. SersegT. BenarousK. YousfiM. Hispidin and Lepidine E: Two natural compounds and folic acid as potential inhibitors of 2019-novel Coronavirus main protease (2019-nCoVMpro), molecular docking and sar study.arXiv:200408920202010.2174/1573409916666200422075440 32321407
    [Google Scholar]
  81. ChowdhuryA.R. MandalS. MittraB. SharmaS. MukhopadhyayS. MajumderH.K. Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: Identification of the inhibitory step, the major functional group responsible and development of more potent derivatives.Med. Sci. Monit.200287BR254BR265 12118187
    [Google Scholar]
  82. ShaghaghiN. Molecular docking study of novel COVID-19 Protease with low risk terpenoides compounds of plants.ChemRxiv202010.26434/chemrxiv.11935722.v1
    [Google Scholar]
  83. SuW. WangY. LiP. The potential application of the traditional Chinese herb Exocarpium Citri grandis in the prevention and treatment of COVID-19.Trad Med Res20205316016610.53388/TMR20200406172
    [Google Scholar]
  84. MeneguzzoF. CiriminnaR. ZabiniF. PagliaroM. Hydrodynamic cavitation-based rapid expansion of hesperidin-rich products from waste citrus peel as a potential tool against COVID-19.Preprints202010.20944/preprints202004.0152.v1
    [Google Scholar]
  85. ThuyB.T.P. MyT.T.A. HaiN.T.T. Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil.ACS Omega20205148312832010.1021/acsomega.0c00772 32363255
    [Google Scholar]
  86. KhanM. KhanM. KhanZ. AhamadT. AnsariW. Identification of dietary molecules as therapeutic agents to combat COVID-19 using molecular docking studies.Preprint202010.21203/rs.3.rs‑19560/v1
    [Google Scholar]
  87. KhaerunnisaS. KurniawanH. AwaluddinR. SuhartatiS. SoetjiptoS. Potential inhibitor of COVID-19 Main Protease (Mpro) from several medicinal plant compounds by molecular docking study.Preprint202010.20944/preprints202003.0226.v1
    [Google Scholar]
  88. WalterT.M. JustinrajS. Effect of Nilavembu kudineer in the Prevention and Management of COVID -19 by inhibiting ACE2 Receptor.20201518Preprint 2020.
    [Google Scholar]
/content/journals/covid/10.2174/0126667975308765240710080655
Loading
/content/journals/covid/10.2174/0126667975308765240710080655
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): COVID-19; medicinal plants; pathogenesis; pneumonia; SARS-CoV-2; zoonotic viruses
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test