Skip to content
2000
Volume 6, Issue 4
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

The emergence of COVID-19 caused by SARS-CoV-2 has transformed our understanding of the disease, transcending its initial characterization as a respiratory ailment. Acknowledged now as a multisystem dysfunctional disorder, COVID-19 exhibits a diverse range of symptoms, notably affecting the Gastrointestinal (GI) system. This article delves into the evolving comprehension of COVID-19 as a multisystem disease, emphasizing its GI complications, including diarrhea, anorexia, nausea, vomiting, and stomach discomfort. The exploration encompasses clinical features, diagnostic methods, and research advancements related to COVID-19's impact on the GI system. It accentuates the intricate link between gut and lung health, advocating a multidisciplinary approach for patients with GI involvement. The review addresses innovative diagnostic techniques tailored for GI symptoms and discusses emerging trends and breakthroughs in clinical research. Moreover, it analyzes the mechanisms underpinning COVID-associated GI damage, emphasizing the interplay between gut and lung pathophysiology, thereby deepening our understanding of the disease process. The article proposes a comprehensive approach to managing COVID-19 patients with GI complications, advocating stringent hygiene, detailed patient history analysis, consideration of preexisting conditions, and exploration of various treatments, such as microbiome-targeted therapeutics, ACE2 inhibitors, antibiotics, plasma therapy, and vaccines. Additionally, it highlights the role of nutritional supplements and vitamins in supporting GI health during COVID-19. This content offers valuable insights for clinicians, researchers, and policymakers, providing a roadmap for effective multidisciplinary management tailored to GI manifestations in the COVID-19 pandemic. Through a thorough examination of clinical aspects, diagnostics, mechanisms, and management strategies, this review contributes significantly to the collective knowledge, enhancing our ability to combat COVID-19 comprehensively.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975304070240607051710
2024-06-20
2025-10-03
Loading full text...

Full text loading...

References

  1. WuF. ZhaoS. YuB. Author correction: A new coronavirus associated with human respiratory disease in China.Nature20205807803E710.1038/s41586‑020‑2202‑3 32296181
    [Google Scholar]
  2. GralinskiL.E. MenacheryV.D. Return of the coronavirus: 2019-nCoV.Viruses202012213510.3390/v12020135 31991541
    [Google Scholar]
  3. MunsterV.J. KoopmansM. van DoremalenN. van RielD. de WitE. A novel coronavirus emerging in China — Key questions for impact assessment.N. Engl. J. Med.2020382869269410.1056/NEJMp2000929 31978293
    [Google Scholar]
  4. WeiX. LiX. CuiJ. Evolutionary perspectives on novel coronaviruses identified in pneumonia cases in China.Natl. Sci. Rev.20207223924210.1093/nsr/nwaa009 32288962
    [Google Scholar]
  5. ZhuN. ZhangD. WangW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa2001017 31978945
    [Google Scholar]
  6. ChaM.H. RegueiroM. SandhuD.S. Gastrointestinal and hepatic manifestations of COVID-19: A comprehensive review.World J. Gastroenterol.202026192323233110.3748/wjg.v26.i19.2323 32476796
    [Google Scholar]
  7. KonturekPC HarschIA NeurathMF ZopfY COVID-19 - more than respiratory disease: A gastroenterologist's perspective.J Physiol Pharmacol20207122.0210.26402/jpp.2020.2.02
    [Google Scholar]
  8. SahuT. MehtaA. RatreY.K. Current understanding of the impact of COVID-19 on gastrointestinal disease: Challenges and openings.World J. Gastroenterol.202127644946910.3748/wjg.v27.i6.449 33642821
    [Google Scholar]
  9. LeungW.K. ToK. ChanP.K.S. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection.Gastroenterology200312541011101710.1016/j.gastro.2003.08.001 14517783
    [Google Scholar]
  10. XiaoF. TangM. ZhengX. LiuY. LiX. ShanH. Evidence for gastrointestinal infection of SARS-CoV-2.Gastroenterology2020158618311833.e310.1053/j.gastro.2020.02.055 32142773
    [Google Scholar]
  11. PanL. MuM. YangP. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study.Am. J. Gastroenterol.2020115576677310.14309/ajg.0000000000000620 32287140
    [Google Scholar]
  12. FangD. Manifestations of digestive system in hospitalized patients with novel coronavirus pneumonia in Wuhan, China: A single-center, descriptive study.Chinese J Dig202012151156
    [Google Scholar]
  13. ZarifianA. Zamiri BidaryM. ArekhiS. Gastrointestinal and hepatic abnormalities in patients with confirmed COVID‐19: A systematic review and meta‐analysis.J. Med. Virol.202193133635010.1002/jmv.26314 32681674
    [Google Scholar]
  14. ElshazliR.M. KlineA. ElgamlA. Gastroenterology manifestations and COVID‐19 outcomes: A meta‐analysis of 25,252 cohorts among the first and second waves.J. Med. Virol.20219352740276810.1002/jmv.26836 33527440
    [Google Scholar]
  15. ShehabM. AlrashedF. ShuaibiS. AlajmiD. BarkunA. Gastroenterological and hepatic manifestations of patients with COVID-19, prevalence, mortality by country, and intensive care admission rate: Systematic review and meta-analysis.BMJ Open Gastroenterol.202181e00057110.1136/bmjgast‑2020‑000571 33664052
    [Google Scholar]
  16. ZhangC. ShiL. WangF.S. Liver injury in COVID-19: Management and challenges.Lancet Gastroenterol. Hepatol.20205542843010.1016/S2468‑1253(20)30057‑1 32145190
    [Google Scholar]
  17. YukiK. FujiogiM. KoutsogiannakiS. COVID-19 pathophysiology: A review.Clin. Immunol.202021510842710.1016/j.clim.2020.108427 32325252
    [Google Scholar]
  18. ZaimS. ChongJ.H. SankaranarayananV. HarkyA. COVID-19 and multiorgan response.Curr. Probl. Cardiol.202045810061810.1016/j.cpcardiol.2020.100618 32439197
    [Google Scholar]
  19. BoeckmansJ. RodriguesR.M. DemuyserT. PiérardD. VanhaeckeT. RogiersV. COVID-19 and drug-induced liver injury: A problem of plenty or a petty point?Arch. Toxicol.20209441367136910.1007/s00204‑020‑02734‑1 32266419
    [Google Scholar]
  20. LiJ. FanJ.G. Characteristics and mechanism of liver injury in 2019 Coronavirus Disease.J. Clin. Transl. Hepatol.2020811510.14218/JCTH.2020.00019 32274341
    [Google Scholar]
  21. FengG. ZhengK.I. YanQ.Q. COVID-19 and liver dysfunction: Current insights and emergent therapeutic strategies.J. Clin. Transl. Hepatol.2020811710.14218/JCTH.2020.00018 32274342
    [Google Scholar]
  22. DaneB. Brusca-AugelloG. KimD. KatzD.S. Unexpected findings of coronavirus disease (COVID-19) at the lung bases on abdominopelvic CT.AJR Am. J. Roentgenol.2020215360360610.2214/AJR.20.23240 32319792
    [Google Scholar]
  23. SendiA.A. SaggatD.F. AlzahraniS.J. Incidental typical COVID-19 appearance on the lung bases, visualized at abdominal CT for a patient that presented with abdominal pain and nausea.Radiol. Case Rep.20201581238124110.1016/j.radcr.2020.05.039 32542102
    [Google Scholar]
  24. XiaoN. AbboudS. McCarthyD.M. ParekhN. Incidentally discovered COVID-19 in low-suspicion patients—a threat to front line health care workers.Emerg. Radiol.202027658959510.1007/s10140‑020‑01792‑3 32449100
    [Google Scholar]
  25. Pazgan-SimonM. RoratM. BuczyńskaI. ZińczukA. SimonK. Gastrointestinal symptoms as the first, atypical indication of severe acute respiratory syndrome coronavirus 2 infection.Polish Arch Intern Med20201304338339 32250094
    [Google Scholar]
  26. VermaH.K. Radiological and clinical spectrum of COVID-19: A major concern for public health.World J. Radiol.2021133536310.4329/wjr.v13.i3.53 33815683
    [Google Scholar]
  27. AbdelmohsenM.A. AlkandariB.M. GuptaV.K. ElBeheiryA.A. Diagnostic value of abdominal sonography in confirmed COVID-19 intensive care patients.Egypt. J. Radiol. Nucl. Med.202051119810.1186/s43055‑020‑00317‑9
    [Google Scholar]
  28. BhayanaR. SomA. LiM.D. Abdominal imaging findings in COVID-19: Preliminary observations.Radiology20202971E207E21510.1148/radiol.2020201908
    [Google Scholar]
  29. CarvalhoA. AlqusairiR. AdamsA. SARS-CoV-2 gastrointestinal infection causing hemorrhagic colitis: Implications for detection and transmission of COVID-19 disease.Am. J. Gastroenterol.2020115694294610.14309/ajg.0000000000000667 32496741
    [Google Scholar]
  30. LuiK. WilsonM.P. LowG. Abdominal imaging findings in patients with SARS-CoV-2 infection: A scoping review.Abdom. Radiol. (N.Y.)20214631249125510.1007/s00261‑020‑02739‑5 32926211
    [Google Scholar]
  31. SinghP. SinghS.P. VermaA.K. RajuS.N. PariharA. A systematic review of abdominal imaging findings in COVID-19 patients.Visc. Med.202137652153210.1159/000518473 34580634
    [Google Scholar]
  32. FDAClinical trial conduct during the COVID-19 pandemic.2020Available From: https://www.fda.gov/drugs/coronavirus-covid-19-drugs/clinical-trial-conduct-during-covid-19-pandemic
    [Google Scholar]
  33. FDAConduct of clinical trials of medical products during the COVID-19 public health emergency.2021Available From: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/fda-guidance-conduct-clinical-trials-medical-products-during-covid-19-public-health-emergency
    [Google Scholar]
  34. European Medicines AgencyGuidance to sponsors on how to manage clinical trials during the COVID-19 pandemic.2020Available From: https://www.ema.europa.eu/en/documents/press-release/guidance-sponsors-how-manage-clinical-trials-during-covid-19-pandemic_en.pdf
    [Google Scholar]
  35. American Society of Gastrointestinal EndoscopyGastroenterology professional society guidance on endoscopic procedures during the COVID-19 Pandemic.2020Available From: https://gastro.org/practice-resources/practice-tools/covid-19/gastroenterology-professional-society-guidance-on-endoscopic-procedures-during-the-covid-19-pandemic/
    [Google Scholar]
  36. NgS.C. ChanF.K.L. ChanP.K.S. Screening FMT donors during the COVID-19 pandemic: A protocol for stool SARS-CoV-2 viral quantification.Lancet Gastroenterol. Hepatol.20205764264310.1016/S2468‑1253(20)30124‑2 32333844
    [Google Scholar]
  37. D’AntigaL. Coronaviruses and immunosuppressed patients: The facts during the third epidemic.Liver Transpl.202026683283410.1002/lt.25756 32196933
    [Google Scholar]
  38. Technology NetworksThe global impact of COVID-19 on clinical trials and the way forward.2020Available From: https://www.technologynetworks.com/drug-discovery/blog/the-global-impact-of-covid-19-on-clinical-trials-and-the-way-forward-333652
    [Google Scholar]
  39. YeQ. WangB. ZhangT. XuJ. ShangS. The mechanism and treatment of gastrointestinal symptoms in patients with COVID-19.Am. J. Physiol. Gastrointest. Liver Physiol.20203192G245G25210.1152/ajpgi.00148.2020 32639848
    [Google Scholar]
  40. CardinaleV. CapursoG. IaniroG. GasbarriniA. ArcidiaconoP.G. AlvaroD. Intestinal permeability changes with bacterial translocation as key events modulating systemic host immune response to SARS-CoV-2: A working hypothesis.Dig. Liver Dis.202052121383138910.1016/j.dld.2020.09.009 33023827
    [Google Scholar]
  41. MohamedD.Z. GhoneimM.E.S. Abu-RishaS.E.S. AbdelsalamR.A. FaragM.A. Gastrointestinal and hepatic diseases during the COVID-19 pandemic: Manifestations, mechanism and management.World J. Gastroenterol.202127284504453510.3748/wjg.v27.i28.4504 34366621
    [Google Scholar]
  42. HammingI. TimensW. BulthuisM.L.C. LelyA.T. NavisG.J. van GoorH. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.J. Pathol.2004203263163710.1002/path.1570 15141377
    [Google Scholar]
  43. ZhangH. KangZ. GongH. Digestive system is a potential route of COVID-19: An analysis of single-cell coexpression pattern of key proteins in viral entry process.Gut20206961010101810.1136/gutjnl‑2020‑320953
    [Google Scholar]
  44. YanR. ZhangY. LiY. XiaL. GuoY. ZhouQ. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.Science202036764851444144810.1126/science.abb2762
    [Google Scholar]
  45. VerniaF. AshktorabH. CesaroN. COVID-19 and gastrointestinal tract: From pathophysiology to clinical manifestations.Medicina (Kaunas)20235910170910.3390/medicina59101709 37893427
    [Google Scholar]
  46. WangW. XuY. GaoR. Detection of SARS-CoV-2 in different types of clinical specimens.JAMA2020323181843184410.1001/jama.2020.3786 32159775
    [Google Scholar]
  47. EffenbergerM. GrabherrF. MayrL. Faecal calprotectin indicates intestinal inflammation in COVID-19.Gut20206981543154410.1136/gutjnl‑2020‑321388 32312790
    [Google Scholar]
  48. D’AmicoF. BaumgartD.C. DaneseS. Peyrin-BirouletL. Diarrhea during COVID-19 infection: Pathogenesis, epidemiology, prevention, and management.Clin. Gastroenterol. Hepatol.20201881663167210.1016/j.cgh.2020.04.001 32278065
    [Google Scholar]
  49. MarascoG. MaidaM. MorrealeG.C. Gastrointestinal bleeding in COVID-19 patients: A systematic review with meta-analysis.Can. J. Gastroenterol. Hepatol.202120211910.1155/2021/2534975 34513750
    [Google Scholar]
  50. CroweC.R. ChenK. PociaskD.A. Critical role of IL-17RA in immunopathology of influenza infection.J. Immunol.200918385301531010.4049/jimmunol.0900995 19783685
    [Google Scholar]
  51. StenstadH. EricssonA. Johansson-LindbomB. Gut-associated lymphoid tissue–primed CD4+ T cells display CCR9-dependent and -independent homing to the small intestine.Blood200610793447345410.1182/blood‑2005‑07‑2860 16391017
    [Google Scholar]
  52. HeL. DingY. ZhangQ. Expression of elevated levels of pro‐inflammatory cytokines in SARS‐CoV‐infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS.J. Pathol.2006210328829710.1002/path.2067 17031779
    [Google Scholar]
  53. ChengX. ZhangY. LiY. Meta-analysis of 16S rRNA microbial data identified alterations of the gut microbiota in COVID-19 patients during the acute and recovery phases.BMC Microbiol.202222127410.1186/s12866‑022‑02686‑9 36376804
    [Google Scholar]
  54. HelalM.A. ShoumanS. AbdelwalyA. Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia.J. Biomol. Struct. Dyn.20224031109111910.1080/07391102.2020.1822208 32936048
    [Google Scholar]
  55. BischoffS.C. BarbaraG. BuurmanW. Intestinal permeability – a new target for disease prevention and therapy.BMC Gastroenterol.201414118910.1186/s12876‑014‑0189‑7 25407511
    [Google Scholar]
  56. NeurathM.F. COVID-19 and immunomodulation in IBD.Gut20206971335134210.1136/gutjnl‑2020‑321269 32303609
    [Google Scholar]
  57. XuJ. YangM. LiuZ. [Clinical analysis of patients with severe acute respiratory syndrome in Beijing area].Zhonghua Jie He He Hu Xi Za Zhi20032611683685 14703443
    [Google Scholar]
  58. RatreY.K. VishvakarmaN.K. BhaskarL.V.K.S. VermaH.K. Dynamic propagation and impact of Pandemic Influenza A (2009 H1N1) in children: A detailed review.Curr. Microbiol.202077123809382010.1007/s00284‑020‑02213‑x
    [Google Scholar]
  59. PerisettiA. GajendranM. GoyalH. Putative mechanisms of diarrhea in COVID-19.Clin. Gastroenterol. Hepatol.202018133054305510.1016/j.cgh.2020.06.008 32535231
    [Google Scholar]
  60. HolshueM.L. DeBoltC. LindquistS. First case of 2019 novel coronavirus in the United States.N. Engl. J. Med.20203821092993610.1056/NEJMoa2001191 32004427
    [Google Scholar]
  61. ChenN. ZhouM. DongX. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study.Lancet20203951022350751310.1016/S0140‑6736(20)30211‑7 32007143
    [Google Scholar]
  62. CerielloA. StandlE. CatrinoiuD. Issues of cardiovascular risk management in people with diabetes in the COVID-19 Era.Diabetes Care20204371427143210.2337/dc20‑0941 32409501
    [Google Scholar]
  63. MaoR. LiangJ. ShenJ. Implications of COVID-19 for patients with pre-existing digestive diseases.Lancet Gastroenterol. Hepatol.20205542542710.1016/S2468‑1253(20)30076‑5 32171057
    [Google Scholar]
  64. CammarotaG. IaniroG. BibbòS. GasbarriniA. Fecal microbiota transplantation: A new old kid on the block for the management of gut microbiota-related disease.J. Clin. Gastroenterol.201448Suppl. 1S80S8410.1097/MCG.0000000000000244 25291136
    [Google Scholar]
  65. WangY. MoonA. HuangJ. SunY. QiuH.J. Antiviral effects and underlying mechanisms of probiotics as promising antivirals.Front. Cell. Infect. Microbiol.20221292805010.3389/fcimb.2022.928050 35734576
    [Google Scholar]
  66. Plaza-DiazJ. Gomez-LlorenteC. FontanaL. GilA. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics.World J. Gastroenterol.20142042156321564910.3748/wjg.v20.i42.15632 25400447
    [Google Scholar]
  67. BilińskiJ. WinterK. JasińskiM. Rapid resolution of COVID-19 after faecal microbiota transplantation.Gut202271123023210.1136/gutjnl‑2021‑325010 34230217
    [Google Scholar]
  68. HashimotoT. PerlotT. RehmanA. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation.Nature2012487740847748110.1038/nature11228 22837003
    [Google Scholar]
  69. GaoJ. TianZ. YangX. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies.Biosci. Trends2020141727310.5582/bst.2020.01047 32074550
    [Google Scholar]
  70. GautretP. LagierJ.C. ParolaP. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial.Int. J. Antimicrob. Agents202056110594910.1016/j.ijantimicag.2020.105949 32205204
    [Google Scholar]
  71. GreinJ. OhmagariN. ShinD. Compassionate use of remdesivir for patients with Severe Covid-19.N. Engl. J. Med.2020382242327233610.1056/NEJMoa2007016 32275812
    [Google Scholar]
  72. ZhangJ. GarrettS. SunJ. Gastrointestinal symptoms, pathophysiology, and treatment in COVID-19.Genes Dis.20218438540010.1016/j.gendis.2020.08.013 33521210
    [Google Scholar]
  73. OwenD.R. AllertonC.M.N. AndersonA.S. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19.Science202137465751586159310.1126/science.abl4784 34726479
    [Google Scholar]
  74. ShahM.M. JoyceB. PlumbI.D. Paxlovid associated with decreased hospitalization rate among adults with COVID-19 — United States, April–September 2022.MMWR Morb. Mortal. Wkly. Rep.202271481531153710.15585/mmwr.mm7148e2 36454693
    [Google Scholar]
  75. PAXLOVIDPAXLOVIDTM (nirmatrelvir tablets; ritonavir tablets), co-packaged for oral use.2019Available From: https://labeling.pfizer.com/ShowLabeling.aspx?id=19599&Section=PPI
    [Google Scholar]
  76. ZaidiS.M.H. IskanderP.A. AhmedK. A rare case of paxlovid-induced pancreatitis.Cureus2023153e36528 37090326
    [Google Scholar]
  77. LiangY. MaL. WangY. ZhengJ. SuL. LyuJ. Adverse events associated with molnupiravir: A real-world disproportionality analysis in food and drug administration adverse event reporting system.Front. Pharmacol.202314125379910.3389/fphar.2023.1253799 38026949
    [Google Scholar]
  78. PainterW.P. HolmanW. BushJ.A. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2.Antimicrob. Agents Chemother.2021655e02428e2010.1128/AAC.02428‑20 33649113
    [Google Scholar]
  79. SinhaS.N.K. SuramV.K. Efficacy and safety of molnupiravir in mild COVID-19 patients in India.Cureus20221411e3150810.7759/cureus.31508 36532902
    [Google Scholar]
  80. DuanK. LiuB. LiC. Effectiveness of convalescent plasma therapy in severe COVID-19 patients.Proc. Natl. Acad. Sci. USA2020117179490949610.1073/pnas.2004168117 32253318
    [Google Scholar]
  81. CheungK.S. HungI.F.N. ChanP.P.Y. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong Cohort: Systematic review and meta-analysis.Gastroenterology20201591819510.1053/j.gastro.2020.03.065 32251668
    [Google Scholar]
  82. HersbergerL. BargetziL. BargetziA. Nutritional risk screening (NRS 2002) is a strong and modifiable predictor risk score for short-term and long-term clinical outcomes: Secondary analysis of a prospective randomised trial.Clin. Nutr.20203992720272910.1016/j.clnu.2019.11.041 31882232
    [Google Scholar]
  83. MartineauA.R. JolliffeD.A. HooperR.L. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data.BMJ2017356i658310.1136/bmj.i6583 28202713
    [Google Scholar]
  84. DegnanP.H. TagaM.E. GoodmanA.L. Vitamin B12 as a modulator of gut microbial ecology.Cell Metab.201420576977810.1016/j.cmet.2014.10.002 25440056
    [Google Scholar]
  85. AguilaE.J.T. CuaI.H.Y. FontanillaJ.A.C. YabutV.L.M. CausingM.F.P. Gastrointestinal manifestations of COVID‐19: Impact on nutrition practices.Nutr. Clin. Pract.202035580080510.1002/ncp.10554 32668037
    [Google Scholar]
  86. ObaJ. CarvalhoW.B. SilvaC.A. DelgadoA.F. Gastrointestinal manifestations and nutritional therapy during COVID-19 pandemic: A practical guide for pediatricians.Einstein (Sao Paulo)202018eRW577410.31744/einstein_journal/2020RW5774 32667418
    [Google Scholar]
  87. CannatelliR. FerrettiF. CarmagnolaS. Risk of adverse events and reported clinical relapse after COVID-19 vaccination in patients with IBD.Gut20227191926192810.1136/gutjnl‑2021‑326237
    [Google Scholar]
  88. MascellinoM.T. Di TimoteoF. De AngelisM. OlivaA. Overview of the main anti-sars-cov-2 vaccines: Mechanism of action, efficacy and safety.Infect. Drug Resist.2021143459347610.2147/IDR.S315727 34511939
    [Google Scholar]
  89. RadhiA.S. Uncommon presentation of COVID-19 with long incubation period and only gastrointestinal symptoms in a fully vaccinated patient: Is there a relation?Cureus2021202116028
    [Google Scholar]
  90. MooreJ.P. OffitP.A. SARS-CoV-2 Vaccines and the Growing Threat of Viral Variants.JAMA2021325982182210.1001/jama.2021.1114 33507218
    [Google Scholar]
  91. BlackettJ.W. LiJ. JodorkovskyD. FreedbergD.E. Prevalence and risk factors for gastrointestinal symptoms after recovery from COVID-19.Neurogastroenterol. Motil.2021343e14251 34468069
    [Google Scholar]
  92. WengJ. LiY. LiJ. Gastrointestinal sequelae 90 days after discharge for COVID-19.Lancet Gastroenterol. Hepatol.20216534434610.1016/S2468‑1253(21)00076‑5 33711290
    [Google Scholar]
  93. VanuytselT. van WanrooyS. VanheelH. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism.Gut20146381293129910.1136/gutjnl‑2013‑305690 24153250
    [Google Scholar]
  94. BoldJ. HarrisM. FellowsL. ChouchaneM. Nutrition, the digestive system and immunity in COVID-19 infection.Gastroenterol. Hepatol. Bed Bench2020134331340 33244375
    [Google Scholar]
  95. MarjotT. WebbG.J. BarrittA.S.IV COVID-19 and liver disease: Mechanistic and clinical perspectives.Nat. Rev. Gastroenterol. Hepatol.202118534836410.1038/s41575‑021‑00426‑4 33692570
    [Google Scholar]
  96. SinagraE. BusaccaA. GuidaL. Telemedicine is an effective tool to monitor disease activity in IBD patients in the COVID-19 era: A single centre experience based on objective data.Gastroenterol. Insights202213111712610.3390/gastroent13010013
    [Google Scholar]
  97. PerisettiA. GoyalH. Successful distancing: Telemedicine in gastroenterology and hepatology during the COVID-19 pandemic.Dig. Dis. Sci.202166494595310.1007/s10620‑021‑06874‑x 33655456
    [Google Scholar]
/content/journals/covid/10.2174/0126667975304070240607051710
Loading
/content/journals/covid/10.2174/0126667975304070240607051710
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): COVID-19; gastrointestinal disease; GI system; pandemic; SARS-CoV-2; therapeutics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test