Skip to content
2000
Volume 7, Issue 1
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Objective

This study aimed to identify scientific evidence on the zoonotic transmission of SARS-CoV-2 in domestic felines in order to observe the relationship between the susceptibility of cats to SARS-CoV-2, the infection of humans to cats regarding the virus, and the relationship between cat-to-human transmission of SARS-CoV-2.

Methods

A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. Four scientific databases (Google Scholar, PubMed, Scielo, and Web of Science) were used for article search, and the review was limited until July 1, 2023.

Results

A total of 2327 articles were identified from the four databases, of which 16 were finally included in the review. Eight articles provided information on the high susceptibility of cats to SARS-CoV-2, 7 articles described the characteristics of clinical signs presented in both humans and cats, and only 1 article discussed the infection from a cat to a human.

Conclusion

It is important to consider isolating pets during the latency period of the disease within medical recommendations, reinforce the use of eye protection, and adopt the concept of “One Health” to prevent public health problems.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975303458240923044506
2024-10-07
2026-01-02
Loading full text...

Full text loading...

References

  1. ElrobaaI.H. NewK.J. COVID-19: Pulmonary and extra pulmonary manifestations.Front. Public Health2021971161610.3389/fpubh.2021.71161634650947
    [Google Scholar]
  2. World Health Organization Data. WHO COVID-19 dashboard.2024Available From: https://data.who.int/dashboards/covid19/deaths
  3. AndersonB.D. BarnesA.N. UmarS. GuoX. ThongthumT. GrayG.C. Reverse zoonotic transmission (Zooanthroponosis): An increasing threat to animal health. Zoonoses: Infections affecting humans and animals.ChamSpringer International Publishing2022163
    [Google Scholar]
  4. SpenceK. Negative and positive mental health characteristics of affected family members: Findings from a cross-sectional Australian general population gambling study.Addict. Behav.202415510799810.1016/j.addbeh.2024.107998
    [Google Scholar]
  5. Food and Agricultural of the United Nations. Taking a multisectoral, one health approach: A tripartite guide to addressing zoonotic diseases in countries.2022Available From: https://www.woah.org/app/uploads/2021/03/en-tripartitezoonosesguide-webversion.pdf
  6. World Health Organization. Managing epidemics: Key facts about major deadly diseases.2022Available From: https://apps.who.int/iris/handle/10665/272442
  7. BloomD.E. CadaretteD. Infectious disease threats in the twenty-first century: Strengthening the global response.Front. Immunol.20191054910.3389/fimmu.2019.0054930984169
    [Google Scholar]
  8. ZhuN. ZhangD. WangW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa200101731978945
    [Google Scholar]
  9. World Organization for Animal Health. SARS-COV-2 IN ANIMALS – SITUATION REPORT 2.2021Available From: https://www.oie.int/app/uploads/2021/09/sars-cov-2-situation-report-4.pdf
  10. DengW. BaoL. LiuJ. Primary exposure to SARS-CoV-2 protects against reinfection in Rhesus macaques.Science2020369650581882310.1126/science.abc534332616673
    [Google Scholar]
  11. HobbsE.C. ReidT.J. Animals and SARS‐CoV‐2: Species susceptibility and viral transmission in experimental and natural conditions, and the potential implications for community transmission.Transbound. Emerg. Dis.20216841850186710.1111/tbed.1388533091230
    [Google Scholar]
  12. CormanV.M. MuthD. NiemeyerD. DrostenC. Hosts and Sources of Endemic human coronaviruses.Adv. Virus Res.201810016318810.1016/bs.aivir.2018.01.00129551135
    [Google Scholar]
  13. LanJ. GeJ. YuJ. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.Nature2020581780721522010.1038/s41586‑020‑2180‑532225176
    [Google Scholar]
  14. YuF. YanL. WangN. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients.Clin. Infect. Dis.2020711579379810.1093/cid/ciaa34532221523
    [Google Scholar]
  15. Oude MunninkB.B. SikkemaR.S. NieuwenhuijseD.F. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans.Science2021371652517217710.1126/science.abe590133172935
    [Google Scholar]
  16. Rodriguez-MoralesA.J. Bonilla-AldanaD.K. Balbin-RamonG.J. History is repeating itself: Probable zoonotic spillover as the cause of the 2019 novel Coronavirus Epidemic.Infez. Med.202028135[PMID: 32009128
    [Google Scholar]
  17. ZouL. RuanF. HuangM. SARS-CoV-2 viral load in upper respiratory specimens of infected patients.N. Engl. J. Med.2020382121177117910.1056/NEJMc200173732074444
    [Google Scholar]
  18. SitT.H.C. BrackmanC.J. IpS.M. Infection of dogs with SARS-CoV-2.Nature2020586783177677810.1038/s41586‑020‑2334‑532408337
    [Google Scholar]
  19. Instituto Nacional de Estadística y Geografía. Consulta de indicadores sociodemográficos y económicos por área geográfica: Seleccionar un estado.2020Available From: https://www.inegi.org.mx/
  20. KibengeF.S.B. A One Health approach to mitigate the impact of influenza A virus (IAV) reverse zoonosis is by vaccinating humans and susceptible farmed and pet animals.Am. J. Vet. Res.20238461910.2460/ajvr.23.03.005337068760
    [Google Scholar]
  21. Fernández-BastitL. Vergara-AlertJ. SegalésJ. Transmission of severe acute respiratory syndrome coronavirus 2 from humans to animals: Is there a risk of novel reservoirs?Curr. Opin. Virol.20236310136510.1016/j.coviro.2023.10136537793299
    [Google Scholar]
  22. PalombieriA. Di ProfioF. FruciP. Emerging respiratory viruses of cats.Viruses202214466310.3390/v1404066335458393
    [Google Scholar]
  23. CupertinoM.C. FreitasA.N.D. MeiraG.S.B. COVID-19 and One Health: Potential role of human and animals in SARS-CoV-2 life cycle.Science in One Health2023210001710.1016/j.soh.2023.10001739077046
    [Google Scholar]
  24. WoodsM. McDonaldR.A. HarrisS. Predation of wildlife by domestic cats Felis catus in Great Britain.Mammal Rev.200333217418810.1046/j.1365‑2907.2003.00017.x
    [Google Scholar]
  25. FritzM. NesiN. DenollyS. Detection of SARS‐CoV‐2 in two cats during the second wave of the COVID‐19 pandemic in France.Vet. Med. Sci.202281142010.1002/vms3.63834704394
    [Google Scholar]
  26. CarlosR.S.A. MarianoA.P.M. MacielB.M. First genome sequencing of SARS‐CoV‐2 recovered from an infected cat and its owner in Latin America.Transbound. Emerg. Dis.20216863070307410.1111/tbed.1398433421326
    [Google Scholar]
  27. KellerM. HagagI.T. BalzerJ. Detection of SARS-CoV-2 variant B.1.1.7 in a cat in Germany.Res. Vet. Sci.202114022923210.1016/j.rvsc.2021.09.00834534904
    [Google Scholar]
  28. LenzO.C. MarquesA.D. KellyB.J. SARS-CoV-2 delta variant (AY.3) in the feces of a domestic cat.Viruses202214242110.3390/v1402042135216014
    [Google Scholar]
  29. MussoN. CostantinoA. La SpinaS. New SARS-CoV-2 infection detected in an Italian pet cat by RT-qPCR from deep pharyngeal swab.Pathogens20209974610.3390/pathogens909074632932800
    [Google Scholar]
  30. De Oliveira-FilhoE.F. de CarvalhoO.V. CarneiroI.O. FernandesF.D. VazS.N. PedrosoC. Frequent infection of cats with SARS-CoV-2 during the second wave of the pandemic in Brazil.Vet. Sci.202292115
    [Google Scholar]
  31. KuhlmeierE. ChanT. KlausJ. A pre- and within-pandemic survey of SARS-CoV-2 RNA in saliva swabs from stray cats in Switzerland.Viruses202214468110.3390/v1404068135458411
    [Google Scholar]
  32. Villanueva-SazS. GinerJ. TobajasA.P. Serological evidence of SARS‐CoV‐2 and co‐infections in stray cats in Spain.Transbound. Emerg. Dis.20226931056106410.1111/tbed.1406233686768
    [Google Scholar]
  33. CurukogluA. ErgorenM.C. OzgencilF.E. SayinerS. InceM.E. SanlidagT. First direct human‐to‐cat transmission of the SARS‐CoV ‐2 B.1.1.7 variant.Aust. Vet. J.2021991148248810.1111/avj.1310934322866
    [Google Scholar]
  34. KarikalanM. ChanderV. MahajanS. Natural infection of Delta mutant of SARS‐CoV‐2 in Asiatic lions of India.Transbound. Emerg. Dis.20226953047305510.1111/tbed.1429034404118
    [Google Scholar]
  35. TewariD. BogerL. BradyS. Transmission of SARS‐CoV‐2 from humans to a 16‐year‐old domestic cat with comorbidities in Pennsylvania, USA.Vet. Med. Sci.20228289990610.1002/vms3.69534910368
    [Google Scholar]
  36. NeiraV. BritoB. AgüeroB. A household case evidences shorter shedding of SARS-CoV-2 in naturally infected cats compared to their human owners.Emerg. Microbes Infect.202110137638310.1080/22221751.2020.186313233317424
    [Google Scholar]
  37. PecoraA. MalacariD.A. MozgovojM.V. Anthropogenic infection of domestic cats with SARS-CoV-2 alpha variant B.1.1.7 lineage in Buenos Aires.Front. Vet. Sci.2022979005810.3389/fvets.2022.79005835310416
    [Google Scholar]
  38. ChaintoutisS.C. SiarkouV.I. MylonakisM.E. Limited cross‐species transmission and absence of mutations associated with SARS‐CoV‐2 adaptation in cats: A case study of infection in a small household setting.Transbound. Emerg. Dis.20226931606161610.1111/tbed.1413233908152
    [Google Scholar]
  39. BessièreP. Fusade-BoyerM. WalchM. Household cases suggest that cats belonging to owners with COVID-19 have a limited role in virus transmission.Viruses202113467310.3390/v1304067333919936
    [Google Scholar]
  40. SilaT. SunghanJ. LaochareonsukW. Suspected cat-to-human transmission of SARS-CoV-2, Thailand, 2021.Emerg. Infect. Dis.20222871485148810.3201/eid2807.21260535666777
    [Google Scholar]
  41. WeiW.E. LiZ. ChiewC.J. YongS.E. TohM.P. LeeV.J. Presymptomatic transmission of SARS-CoV-2 — Singapore.MMWR Morb. Mortal. Wkly. Rep.2020691441141510.15585/mmwr.mm6914e132271722
    [Google Scholar]
  42. WendyK.J. Potential zoonotic sources of SARS-CoV-2 infections.Transbound. Emerg. Dis.202000111
    [Google Scholar]
  43. WiersingaW.J. RhodesA. ChengA.C. PeacockS.J. PrescottH.C. Pathophysiology, transmission, diagnosis, and treatment of Coronavirus Disease 2019 (COVID-19): A review.JAMA2020324878279310.1001/jama.2020.1283932648899
    [Google Scholar]
  44. Zepeda-CervantesJ. Martínez-FloresD. Ramírez-JarquínJ.O. Implications of the immune polymorphisms of the host and the genetic variability of SARS-CoV-2 in the development of COVID-19.Viruses20221419410.3390/v1401009435062298
    [Google Scholar]
  45. ZhangT. WuQ. ZhangZ. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak.Curr. Biol.202030713461351.e210.1016/j.cub.2020.03.02232197085
    [Google Scholar]
  46. ZhaoY. WangJ. KuangD. Susceptibility of tree shrew to SARS-CoV-2 infection.Sci. Rep.20201011600710.1038/s41598‑020‑72563‑w32994418
    [Google Scholar]
  47. MalikY.S. SircarS. BhatS. Emerging novel coronavirus (2019-nCoV)—current scenario, evolutionary perspective based on genome analysis and recent developments.Vet. Q.2020401687610.1080/01652176.2020.172799332036774
    [Google Scholar]
  48. MallapatyS. Animal source of the coronavirus continues to elude scientists.Nature20202020810.1038/d41586‑020‑01449‑832427902
    [Google Scholar]
  49. McAlooseD. LaverackM. WangL. From people to Panthera: Natural SARS-CoV-2 infection in tigers and lions at the Bronx Zoo.MBio2020115e02220e2010.1128/mBio.02220‑2033051368
    [Google Scholar]
  50. MeekinsD.A. MorozovI. TrujilloJ.D. Susceptibility of swine cells and domestic pigs to SARS-CoV-2.Emerg. Microbes Infect.2020912278228810.1080/22221751.2020.183140533003988
    [Google Scholar]
  51. MichelitschA. HoffmannD. WernikeK. BeerM. Occurrence of antibodies against SARS-CoV-2 in the domestic cat population of Germany.Vaccines (Basel)20208477210.3390/vaccines804077233348613
    [Google Scholar]
  52. MishraA. KumarN. BhatiaS. AasdevA. KanniappanS. ThayasekharA. SARS-CoV-2 Delta Variant among Asiatic Lions, India.Emerg. Infect. Dis.2021271027232725
    [Google Scholar]
  53. MohandasS. YadavP.D. SheteA. SARS-CoV-2 delta variant pathogenesis and host response in Syrian hamsters.Viruses2021139177310.3390/v1309177334578354
    [Google Scholar]
  54. MunsterV.J. FeldmannF. WilliamsonB.N. Respiratory disease in Rhesus macaques inoculated with SARS-CoV-2.Nature2020585782426827210.1038/s41586‑020‑2324‑732396922
    [Google Scholar]
  55. ChenN. ZhouM. DongX. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study.Lancet20203951022350751310.1016/S0140‑6736(20)30211‑732007143
    [Google Scholar]
  56. GollaknerR. CapuaI. Is COVID-19 the first pandemic that evolves into a panzootic?Vet. Ital.202056178[PMID: 32315124
    [Google Scholar]
  57. GryseelsS. De BruynL. GyselingsR. Calvignac-SpencerS. LeendertzF.H. LeirsH. Risk of human‐to‐wildlife transmission of SARS‐CoV‐2.Mammal Rev.202151227229210.1111/mam.1222533230363
    [Google Scholar]
  58. FanY. ZhaoK. ShiZ.L. ZhouP. Bat Coronaviruses in China.Viruses201911321010.3390/v1103021030832341
    [Google Scholar]
  59. FerasinL. FritzM. FerasinH. Infection with SARS‐CoV‐2 variant B.1.1.7 detected in a group of dogs and cats with suspected myocarditis.Vet. Rec.20211899e94410.1002/vetr.94434738231
    [Google Scholar]
  60. FreulingC.M. BreithauptA. MüllerT. Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection.Emerg. Infect. Dis.202026122982298510.3201/eid2612.20373333089771
    [Google Scholar]
  61. DalyN. First great apes at U.S. zoo receive COVID-19 vaccine made for animals.2021Available From: https://www.nationalgeographic.com/animals/article/first-great-apes-at-us-zoo-receive-coronavirus-vaccine-made-for-animals
  62. Du ToitA. Outbreak of a novel coronavirus.Nat. Rev. Microbiol.2020183123310.1038/s41579‑020‑0332‑031988490
    [Google Scholar]
  63. AhmedS.F. QuadeerA.A. McKayM.R. Preliminary identification of potential vaccine targets for 2019-nCoV based on SARS-CoV immunological studies.bioRxiv2020
    [Google Scholar]
  64. AkkizH. Implications of the novel mutations in the SARS-CoV-2 genome for transmission, disease severity, and the vaccine development.Front. Med. (Lausanne)2021863653210.3389/fmed.2021.63653234026780
    [Google Scholar]
  65. AVMA (American Veterinary Medical Association). SARS-CoV-2 in animals.2020Available From: https://www.avma.org/resources-tools/animal-health-and-welfare/covid-19/sars-cov-2-animals-including-pets
  66. ChanJ.F.W. ZhangA.J. YuanS. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: Implications for disease pathogenesis and transmissibility.Clin. Infect. Dis.2020719ciaa32510.1093/cid/ciaa32532215622
    [Google Scholar]
  67. CrossR.W. AgansK.N. PrasadA.N. Intranasal exposure of African green monkeys to SARS-CoV-2 results in acute phase pneumonia with shedding and lung injury still present in the early convalescence phase.Virol. J.202017112510.1186/s12985‑020‑01396‑w32811514
    [Google Scholar]
  68. CuiJ. LiF. ShiZ.L. Origin and evolution of pathogenic coronaviruses.Nat. Rev. Microbiol.201917318119210.1038/s41579‑018‑0118‑930531947
    [Google Scholar]
  69. KimY.I. KimS.G. KimS.M. Infection and rapid transmission of SARS-CoV-2 in ferrets.Cell Host Microbe2020275704709.e210.1016/j.chom.2020.03.02332259477
    [Google Scholar]
  70. LamS.D. BordinN. WamanV.P. SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals.Sci. Rep.20201011647110.1038/s41598‑020‑71936‑533020502
    [Google Scholar]
  71. PalmerM.V. MartinsM. FalkenbergS. Susceptibility of white-tailed deer (Odocoileus virginianus) to SARS-CoV-2.J. Virol.20219511e00083e2110.1128/JVI.00083‑2133692203
    [Google Scholar]
  72. RicardoR. EvelinG. YesicaB. HectorS-C. BerthaG. MarinaM. Human-to-dog transmission of SARS-CoV-2 lota variant: Should COVID-19 patients avoid close contact with their pets during illness?Res Sq2021
    [Google Scholar]
  73. RichardM. KokA. de MeulderD. SARS-CoV-2 is transmitted via contact and via the air between ferrets.Nat. Commun.2020111349610.1038/s41467‑020‑17367‑232641684
    [Google Scholar]
  74. RodriguesJ.P.G.L.M. Barrera-VilarmauS. Mc TeixeiraJ. Insights on cross-species transmission of SARS-CoV-2 from structural modeling.PLOS Comput. Biol.20201612e100844910.1371/journal.pcbi.100844933270653
    [Google Scholar]
  75. RothanH.A. ByrareddyS.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak.J. Autoimmun.202010910243310.1016/j.jaut.2020.10243332113704
    [Google Scholar]
  76. SailleauC. DumarestM. VanhomwegenJ. First detection and genome sequencing of SARS‐CoV‐2 in an infected cat in France.Transbound. Emerg. Dis.20206762324232810.1111/tbed.1365932500944
    [Google Scholar]
  77. SharunK. TiwariR. PatelS.K. Coronavirus disease 2019 (COVID-19) in domestic animals and wildlife: Advances and prospects in the development of animal models for vaccine and therapeutic research.Hum. Vaccin. Immunother.202016123043305410.1080/21645515.2020.180780232915100
    [Google Scholar]
  78. SharunK. TiwariR. NatesanS. DhamaK. SARS-CoV-2 infection in farmed minks, associated zoonotic concerns, and importance of the One Health approach during the ongoing COVID-19 pandemic.Vet. Q.2021411506010.1080/01652176.2020.186777633349165
    [Google Scholar]
  79. SharunK. DhamaK. PawdeA.M. SARS-CoV-2 in animals: Potential for unknown reservoir hosts and public health implications.Vet. Q.202141118120110.1080/01652176.2021.192131133892621
    [Google Scholar]
  80. SharunK. SircarS. MalikY.S. SinghR.K. DhamaK. How close is SARS‐CoV ‐2 to canine and feline coronaviruses?J. Small Anim. Pract.202061852352610.1111/jsap.1320732785948
    [Google Scholar]
  81. SchlottauK. RissmannM. GraafA. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: An experimental transmission study.Lancet Microbe202015e218e22510.1016/S2666‑5247(20)30089‑632838346
    [Google Scholar]
  82. ShiJ. WenZ. ZhongG. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2.Science202036864941016102010.1126/science.abb701532269068
    [Google Scholar]
  83. BaeJ. RoC. KangY. GaE. NaW. SongD. Human-to-Animal Transmission of SARS-CoV-2, South Korea, 2021.Emerg. Infect. Dis.20232951066106710.3201/eid2905.22135937081604
    [Google Scholar]
  84. RasheedM.K. AwrahmanH.A. Amin Al-JafS.M. NiranjiS.S. Identification of SARS CoV‐2 Omicron BA.1 and a novel Delta lineage by rapid methods and partial spike protein sequences in Sulaymaniyah Province, Iraq.Immun. Inflamm. Dis.2023113e80110.1002/iid3.80136988244
    [Google Scholar]
  85. HalfmannP.J. IidaS. Iwatsuki-HorimotoK. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters.Nature2022603790268769210.1038/s41586‑022‑04441‑635062015
    [Google Scholar]
  86. YenH.L. SitT.H.C. BrackmanC.J. Transmission of SARS-CoV-2 delta variant (AY.127) from pet hamsters to humans, leading to onward human-to-human transmission: A case study.Lancet2022399103291070107810.1016/S0140‑6736(22)00326‑935279259
    [Google Scholar]
  87. HedmanH.D. KrawczykE. HelmyY.A. ZhangL. VargaC. Host diversity and potential transmission pathways of SARS-CoV-2 at the human-animal interface.Pathogens202110218010.3390/pathogens1002018033567598
    [Google Scholar]
  88. ZhangQ. ZhangH. GaoJ. A serological survey of SARS-CoV-2 in cat in Wuhan.Emerg. Microbes Infect.2020912013201910.1080/22221751.2020.181779632867625
    [Google Scholar]
  89. OliveiraA. PereiraM.A. MateusT.L. MesquitaJ.R. ValaH. Seroprevalence of SARS-CoV-2 in client-owned cats from portugal.Vet. Sci.20229736310.3390/vetsci907036335878380
    [Google Scholar]
  90. YuanF. ChenC. CovaledaL.M. MartinsM. ReinhartJ.M. SullivanD.R. Development of monoclonal antibody-based blocking ELISA for detecting SARS-CoV-2 exposure in animals.bioRxiv202310.1101/2023.03.11.532204
    [Google Scholar]
  91. VargaC. PearlD.L. McEwenS.A. SargeantJ.M. PollariF. GuerinM.T. Area-level global and local clustering of human Salmonella Enteritidis infection rates in the city of Toronto, Canada, 2007–2009.BMC Infect. Dis.201515135910.1186/s12879‑015‑1106‑626290174
    [Google Scholar]
  92. JenksG.F. CaspallF.C. Error on choroplethic maps: Definition, measurement, reduction.Ann. Assoc. Am. Geogr.197161221724410.1111/j.1467‑8306.1971.tb00779.x
    [Google Scholar]
  93. KrivoruchkoK. Empirical bayesian kriging.ArcUser201261145
    [Google Scholar]
  94. GrekousisG. Spatial analysis methods and practice: Describe–explore–explain through GIS.CambridgeCambridge University Press202010.1017/9781108614528
    [Google Scholar]
/content/journals/covid/10.2174/0126667975303458240923044506
Loading
/content/journals/covid/10.2174/0126667975303458240923044506
Loading

Data & Media loading...

Supplements

PRISMA checklist is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keyword(s): domestic felines; pandemic; pathogens; SARS-CoV-2; scientific databases; Zoonosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test