Skip to content
2000
Volume 7, Issue 2
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Introduction

Primary bloodstream infections are most commonly related to health care and are associated with intravascular devices, increasing patient mortality, length of stay, and health care costs. Among the complications of hospitalizations for COVID-19, bloodstream infection is one of the most prevalent, requiring prevention and early treatment. Due to the contingency of hospital resources during the pandemic, understanding the prevalence and incidence of antimicrobial agents that cause bloodstream infections and using exams judiciously are essential public health measures, avoiding the misuse of antimicrobials and being able to establish treatment.

Objective

This study aimed to determine the antimicrobial susceptibility profile and the prevalence of etiological agents of bloodstream infections in patients with COVID-19 at the field hospital in the city of São Bernardo do Campo - SP.

Methods

A descriptive, observational, and retrospective cross-sectional study was carried out on the results of blood cultures already collected for diagnostic purposes from patients from May to August 2020 at the same hospital.

Results and Discussion

Of the 300 blood cultures analyzed, 73.7% of the samples showed no bacterial growth. Among the others, the main bacteria found were sensitive to tigecycline, present in 30 (10%), followed by sp. (coagulase-negative, non-lugdunensis), sensitive only to doxycycline, gentamicin, tetracycline, and vancomycin, in only 2 (14.3%) samples.

Conclusion

In this study, a low rate of laboratory-confirmed bacterial coinfection was identified in patients with COVID-19.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975286863241028050424
2024-11-04
2026-01-05
Loading full text...

Full text loading...

References

  1. Prevention of primary bloodstream infection related to central vascular access.2014Available from: https://hcrp.usp.br/revistaqualidadehc/uploads/Artigos/470/470.pdf
  2. Manual of health care-related infection prevention measures.2013Available from: https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/servicosdesaude/publicacoes/caderno-4-medidas-de-prevencao-de-infeccao-relacionada-a-assistencia-a-saude.pdf/view
  3. National Health Surveillance Agency.2010Available from: https://www.saudedireta.com.br/docsupload/1340372157manual_orientacao_prevencao_ics_set_2010_anvisa.pdf
  4. Wordometer. COVID-19 coronavirus pandemic.2020Available from: https://www.worldometers.info/coronavirus/
  5. HeY. LiW. WangZ. ChenH. TianL. LiuD. Nosocomial infection among patients with COVID-19: A retrospective data analysis of 918 cases from a single center in Wuhan, China.Infec. Control Hosp. Epidem.2020418982983
    [Google Scholar]
  6. GuanW. NiZ. HuY. Clinical characteristics of coronavirus disease 2019 in China.N. Engl. J. Med.2020382181708172010.1056/NEJMoa2002032 32109013
    [Google Scholar]
  7. ZhangJ. DongX. CaoY. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China.Allergy20207571730174110.1111/all.14238 32077115
    [Google Scholar]
  8. WanY. ShangJ. GrahamR. BaricR.S. LiF. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus.J. Virol.2020947e00127e2010.1128/JVI.00127‑20 31996437
    [Google Scholar]
  9. VentoulisI. SarmourliT. AmoiridouP. Bloodstream infection by Saccharomyces cerevisiae in two COVID-19 patients after receiving supplementation of Saccharomyces in the ICU.J. Fungi2020639810.3390/jof6030098 32630111
    [Google Scholar]
  10. SepulvedaJ. WestbladeL.F. WhittierS. Bacteremia and blood culture utilization during COVID-19 surge in New York City.J. Clin. Microbiol.2020588e00875e2010.1128/JCM.00875‑20 32404482
    [Google Scholar]
  11. LangfordB.J. SoucyJ.P. LeungV. Antibiotic resistance associated with the COVID-19 pandemic: A systematic review and meta-analysis.Clin. Microbiol. Infect.202329330230910.1016/j.cmi.2022.12.006 36509377
    [Google Scholar]
  12. Mędrzycka-DąbrowskaW. LangeS. ZorenaK. DąbrowskiS. OzgaD. TomaszekL. Carbapenem-resistant Klebsiella pneumoniae infections in ICU COVID-19 patients—A scoping review.J. Clin. Med.20211010206710.3390/jcm10102067 34066031
    [Google Scholar]
  13. ArcariG. RaponiG. SaccoF. Klebsiella pneumoniae infections in COVID-19 patients: A 2-month retrospective analysis in an Italian hospital.Int. J. Antimicrob. Agents202157110624510.1016/j.ijantimicag.2020.106245 33253903
    [Google Scholar]
  14. SolaMC OliveiraA FeistelJ RezendeC Maintenance of microorganisms: Conservation and viability.Biosphere Encycl2012814
    [Google Scholar]
  15. FalagasM.E. KarveliE.A. KelesidisI. KelesidisT. Community-acquired Acinetobacter infections.Eur. J. Clin. Microbiol. Infect. Dis.2007261285786810.1007/s10096‑007‑0365‑6 17701432
    [Google Scholar]
  16. LimaA.L. OliveiraP.R. PaulaA.P. Acinetobacter infection.N. Engl. J. Med.20083582628462847 18584823
    [Google Scholar]
  17. Huertas VaqueroM Asencio EgeaMÁ Carranza GonzálezR Association between antibiotic pressure and the risk of colonization/infection by multidrug-resistant Acinetobacter baumannii complex: A time series analysis.Rev. Esp. Quimioter.202134662363010.37201/req/061.2021 34610732
    [Google Scholar]
  18. MakJ.K. KimM.J. PhamJ. TapsallJ. WhiteP.A. Antibiotic resistance determinants in nosocomial strains of multidrug-resistant Acinetobacter baumannii.J. Antimicrob. Chemother.2009631475410.1093/jac/dkn454 18988680
    [Google Scholar]
  19. ReinaR. León-MoyaC. Garnacho-MonteroJ. Treatment of serious Acinetobacter baumannii infections.Med Intensiva2022461270071010.1016/j.medin.2022.08.003 36272902
    [Google Scholar]
  20. MonnetDL HarbarthS Will coronavirus disease (COVID-19) impact antimicrobial resistance?.Euro 2020 Surveillance Tour2020
    [Google Scholar]
  21. European Center for Disease Prevention and Control (ECDC).2019Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018
  22. MontrucchioG. CorcioneS. SalesG. CurtoniA. De RosaF.G. BrazziL. Carbapenem-resistant Klebsiella pneumoniae in ICU-admitted COVID-19 patients: Keep an eye on the ball.J. Glob. Antimicrob. Resist.20202339840010.1016/j.jgar.2020.11.004 33242674
    [Google Scholar]
  23. PonsM.J. Marí-AlmirallM. YmañaB. Spread of ST348 Klebsiella pneumoniae producing NDM-1 in a Peruvian hospital.Microorganisms202089139210.3390/microorganisms8091392 32932763
    [Google Scholar]
  24. Sacsaquispe-ContrerasR. Bailón-CalderónH. Identification of carbapenem-resistant genes in enterobacteria from Peruvian hospitals, 2013-2017.Rev. Peru. Med. Exp. Salud Publica201835225926410.17843/rpmesp.2018.352.3829 30183920
    [Google Scholar]
  25. Arteaga-LiviasK. Pinzas-AcostaK. Perez-AbadL. A multidrug-resistant Klebsiella pneumoniae outbreak in a Peruvian hospital: Another threat from the COVID-19 pandemic.Infect. Control Hosp. Epidemiol.202243226726810.1017/ice.2020.1401 33397537
    [Google Scholar]
  26. AnnavajhalaM.K. MohriH. WangP. NairM. ZuckerJ.E. ShengZ. A novel and expanding SARS-CoV-2 variant, B. 1.526, identified in New York.MedRxiv20212021
    [Google Scholar]
  27. García-MeniñoI. ForcelledoL. RoseteY. García-PrietoE. EscuderoD. FernándezJ. Spread of OXA-48-producing Klebsiella pneumoniae among COVID-19-infected patients: The storm after the storm.J. Infect. Public Health2021141505210.1016/j.jiph.2020.11.001 33341484
    [Google Scholar]
  28. TriB. Antimicrobial Stewardship, COVID-19, and infection control program: Spread of carbapenem-resistant Klebsiella pneumoniae colonization in COVID-19 ICU patients. What didn’t work?J. Clinical. Med.2020992744
    [Google Scholar]
  29. HosodaT. HaradaS. OkamotoK. COVID-19 and fatal sepsis caused by hypervirulent Klebsiella pneumoniae, Japan, 2020.Emerg. Infect. Dis.202127255655910.3201/eid2702.204662 33320080
    [Google Scholar]
  30. SintoR. Blood culture utilization and epidemiology of antimicrobial-resistant bloodstream infections before and during the COVID-19 pandemic in Indonesia’s national referral hospital.Antimicrob. Resist. Infect. Control2022111112
    [Google Scholar]
  31. EdradaE.M. LopezE.B. VillaramaJ.B. First COVID-19 infections in the Philippines: A case report.Trop. Med. Health20204812110.1186/s41182‑020‑00203‑0
    [Google Scholar]
  32. ChagasA.P. LimaV.P. Rapid insertion and dissemination of bacterial resistance in a COVID unit and the impact on empirical antimicrobial treatment of patients with bacteremia.Braz. J. Infect. Dis.20222610264710.1016/j.bjid.2022.102647
    [Google Scholar]
  33. Da Silva DavidMT The impact of indiscriminate use of antibiotics in the COVID-19 pandemic.2021
    [Google Scholar]
  34. DiasM.L. CorrealJ.C. de MouraC.A. Descriptive analysis of positivity and contamination rates of blood cultures performed in eight private tertiary hospitals in Rio de Janeiro in 2021 in the COVID-19 era.Braz. J. Infect. Dis.20222610222910.1016/j.bjid.2021.102229
    [Google Scholar]
  35. PimentelNV Factors associated with colonization by methicillinresistant Staphylococcus aureus in patients with COVID-19 in intensive care.Rev Bras Enferm2023736e20190483
    [Google Scholar]
/content/journals/covid/10.2174/0126667975286863241028050424
Loading
/content/journals/covid/10.2174/0126667975286863241028050424
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test